split into separate processes

This commit is contained in:
Blake Blackshear
2020-02-15 21:07:54 -06:00
parent 60c15e4419
commit 6a9027c002
10 changed files with 1234 additions and 560 deletions

View File

@@ -2,13 +2,16 @@ import cv2
import time
import queue
import yaml
import multiprocessing as mp
import subprocess as sp
import numpy as np
from flask import Flask, Response, make_response, jsonify
import paho.mqtt.client as mqtt
from frigate.video import Camera
from frigate.object_detection import PreppedQueueProcessor
from frigate.video import track_camera
from frigate.object_processing import TrackedObjectProcessor
from frigate.util import EventsPerSecond
from frigate.edgetpu import EdgeTPUProcess
with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f)
@@ -38,8 +41,7 @@ FFMPEG_DEFAULT_CONFIG = {
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']),
'output_args': FFMPEG_CONFIG.get('output_args',
['-vf', 'mpdecimate',
'-f', 'rawvideo',
['-f', 'rawvideo',
'-pix_fmt', 'rgb24'])
}
@@ -48,6 +50,10 @@ GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
# MODEL_PATH = CONFIG.get('tflite_model', '/lab/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite')
MODEL_PATH = CONFIG.get('tflite_model', '/lab/detect.tflite')
LABEL_MAP = CONFIG.get('label_map', '/lab/labelmap.txt')
def main():
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
@@ -70,28 +76,44 @@ def main():
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# Queue for prepped frames, max size set to number of regions * 3
prepped_frame_queue = queue.Queue()
cameras = {}
# start plasma store
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
##
# Setup config defaults for cameras
##
for name, config in CONFIG['cameras'].items():
cameras[name] = Camera(name, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG, config,
prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
config['snapshots'] = {
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
}
fps_tracker = EventsPerSecond()
# Queue for cameras to push tracked objects to
tracked_objects_queue = mp.Queue()
# Start the shared tflite process
tflite_process = EdgeTPUProcess(MODEL_PATH)
prepped_queue_processor = PreppedQueueProcessor(
cameras,
prepped_frame_queue,
fps_tracker
)
prepped_queue_processor.start()
fps_tracker.start()
camera_processes = []
camera_stats_values = {}
for name, config in CONFIG['cameras'].items():
camera_stats_values[name] = {
'fps': mp.Value('d', 10.0),
'avg_wait': mp.Value('d', 0.0)
}
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
tflite_process.detect_lock, tflite_process.detect_ready, tflite_process.frame_ready, tracked_objects_queue,
camera_stats_values[name]['fps'], camera_stats_values[name]['avg_wait']))
camera_process.daemon = True
camera_processes.append(camera_process)
for name, camera in cameras.items():
camera.start()
print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
for camera_process in camera_processes:
camera_process.start()
print(f"Camera_process started {camera_process.pid}")
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
object_processor.start()
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@@ -105,21 +127,23 @@ def main():
def stats():
stats = {
'coral': {
'fps': fps_tracker.eps(),
'inference_speed': prepped_queue_processor.avg_inference_speed,
'queue_length': prepped_frame_queue.qsize()
'fps': tflite_process.fps.value,
'inference_speed': tflite_process.avg_inference_speed.value
}
}
for name, camera in cameras.items():
stats[name] = camera.stats()
for name, camera_stats in camera_stats_values.items():
stats[name] = {
'fps': camera_stats['fps'].value,
'avg_wait': camera_stats['avg_wait'].value
}
return jsonify(stats)
@app.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in cameras:
best_frame = cameras[camera_name].get_best(label)
if camera_name in CONFIG['cameras']:
best_frame = object_processor.get_best(camera_name, label)
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
@@ -132,7 +156,7 @@ def main():
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
if camera_name in cameras:
if camera_name in CONFIG['cameras']:
# return a multipart response
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
@@ -143,13 +167,16 @@ def main():
while True:
# max out at 1 FPS
time.sleep(1)
frame = cameras[camera_name].get_current_frame_with_objects()
frame = object_processor.current_frame_with_objects(camera_name)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + frame + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
camera.join()
for camera_process in camera_processes:
camera_process.join()
plasma_process.terminate()
if __name__ == '__main__':
main()