mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-26 11:31:28 +08:00
update detection handoff to use shared memory
This commit is contained in:
43
benchmark.py
43
benchmark.py
@@ -11,7 +11,7 @@ labels = load_labels('/labelmap.txt')
|
||||
######
|
||||
# Minimal same process runner
|
||||
######
|
||||
# object_detector = ObjectDetector()
|
||||
# object_detector = LocalObjectDetector()
|
||||
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
|
||||
|
||||
# start = datetime.datetime.now().timestamp()
|
||||
@@ -40,8 +40,8 @@ labels = load_labels('/labelmap.txt')
|
||||
######
|
||||
# Separate process runner
|
||||
######
|
||||
def start(id, num_detections, detection_queue):
|
||||
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
|
||||
def start(id, num_detections, detection_queue, event):
|
||||
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue, event)
|
||||
start = datetime.datetime.now().timestamp()
|
||||
|
||||
frame_times = []
|
||||
@@ -54,26 +54,35 @@ def start(id, num_detections, detection_queue):
|
||||
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||
|
||||
edgetpu_process = EdgeTPUProcess()
|
||||
event = mp.Event()
|
||||
edgetpu_process = EdgeTPUProcess({'1': event})
|
||||
|
||||
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
|
||||
start(1, 1000, edgetpu_process.detection_queue, event)
|
||||
print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
|
||||
|
||||
####
|
||||
# Multiple camera processes
|
||||
####
|
||||
camera_processes = []
|
||||
for x in range(0, 10):
|
||||
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
|
||||
camera_process.daemon = True
|
||||
camera_processes.append(camera_process)
|
||||
# camera_processes = []
|
||||
|
||||
start = datetime.datetime.now().timestamp()
|
||||
# pipes = {}
|
||||
# for x in range(0, 10):
|
||||
# pipes[x] = mp.Pipe(duplex=False)
|
||||
|
||||
for p in camera_processes:
|
||||
p.start()
|
||||
# edgetpu_process = EdgeTPUProcess({str(key): value[1] for (key, value) in pipes.items()})
|
||||
|
||||
for p in camera_processes:
|
||||
p.join()
|
||||
# for x in range(0, 10):
|
||||
# camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue, pipes[x][0]))
|
||||
# camera_process.daemon = True
|
||||
# camera_processes.append(camera_process)
|
||||
|
||||
duration = datetime.datetime.now().timestamp()-start
|
||||
print(f"Total - Processed for {duration:.2f} seconds.")
|
||||
# start = datetime.datetime.now().timestamp()
|
||||
|
||||
# for p in camera_processes:
|
||||
# p.start()
|
||||
|
||||
# for p in camera_processes:
|
||||
# p.join()
|
||||
|
||||
# duration = datetime.datetime.now().timestamp()-start
|
||||
# print(f"Total - Processed for {duration:.2f} seconds.")
|
Reference in New Issue
Block a user