mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-26 19:41:29 +08:00
Add support for RF-DETR models (#17298)
* Add support for rf-detr models * Add docs for rf-detr model * Cleanup
This commit is contained in:
@@ -342,7 +342,7 @@ Note that the labelmap uses a subset of the complete COCO label set that has onl
|
||||
|
||||
#### D-FINE
|
||||
|
||||
[D-FINE](https://github.com/Peterande/D-FINE) is the [current state of the art](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=d-fine-redefine-regression-task-in-detrs-as) at the time of writing. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-d-fine-model) for more information on downloading the D-FINE model for use in Frigate.
|
||||
[D-FINE](https://github.com/Peterande/D-FINE) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-d-fine-model) for more information on downloading the D-FINE model for use in Frigate.
|
||||
|
||||
After placing the downloaded onnx model in your config/model_cache folder, you can use the following configuration:
|
||||
|
||||
@@ -647,9 +647,29 @@ model:
|
||||
|
||||
Note that the labelmap uses a subset of the complete COCO label set that has only 80 objects.
|
||||
|
||||
#### RF-DETR
|
||||
|
||||
[RF-DETR](https://github.com/roboflow/rf-detr) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-rf-detr-model) for more informatoin on downloading the RF-DETR model for use in Frigate.
|
||||
|
||||
After placing the downloaded onnx model in your `config/model_cache` folder, you can use the following configuration:
|
||||
|
||||
```
|
||||
detectors:
|
||||
onnx:
|
||||
type: onnx
|
||||
|
||||
model:
|
||||
model_type: rfdetr
|
||||
width: 560
|
||||
height: 560
|
||||
input_tensor: nchw
|
||||
input_dtype: float
|
||||
path: /config/model_cache/rfdetr.onnx
|
||||
```
|
||||
|
||||
#### D-FINE
|
||||
|
||||
[D-FINE](https://github.com/Peterande/D-FINE) is the [current state of the art](https://paperswithcode.com/sota/real-time-object-detection-on-coco?p=d-fine-redefine-regression-task-in-detrs-as) at the time of writing. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-d-fine-model) for more information on downloading the D-FINE model for use in Frigate.
|
||||
[D-FINE](https://github.com/Peterande/D-FINE) is a DETR based model. The ONNX exported models are supported, but not included by default. See [the models section](#downloading-d-fine-model) for more information on downloading the D-FINE model for use in Frigate.
|
||||
|
||||
After placing the downloaded onnx model in your config/model_cache folder, you can use the following configuration:
|
||||
|
||||
@@ -873,6 +893,16 @@ Make sure you change the batch size to 1 before exporting.
|
||||
|
||||
:::
|
||||
|
||||
### Download RF-DETR Model
|
||||
|
||||
To export as ONNX:
|
||||
|
||||
1. `pip3 install rfdetr`
|
||||
2. `python`
|
||||
3. `from rfdetr import RFDETRBase`
|
||||
4. `x = RFDETRBase()`
|
||||
5. `x.export()`
|
||||
|
||||
### Downloading YOLO-NAS Model
|
||||
|
||||
You can build and download a compatible model with pre-trained weights using [this notebook](https://github.com/blakeblackshear/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb) [](https://colab.research.google.com/github/blakeblackshear/frigate/blob/dev/notebooks/YOLO_NAS_Pretrained_Export.ipynb).
|
||||
|
Reference in New Issue
Block a user