removing motion detection

This commit is contained in:
blakeblackshear
2019-03-27 06:17:00 -05:00
parent 48aa245914
commit 200d769003
4 changed files with 89 additions and 165 deletions

View File

@@ -37,22 +37,16 @@ DEBUG = (os.getenv('DEBUG') == '1')
def main():
DETECTED_OBJECTS = []
recent_motion_frames = {}
recent_frames = {}
# Parse selected regions
regions = []
for region_string in REGIONS.split(':'):
region_parts = region_string.split(',')
region_mask_image = cv2.imread("/config/{}".format(region_parts[5]), cv2.IMREAD_GRAYSCALE)
region_mask = np.where(region_mask_image==[0])
regions.append({
'size': int(region_parts[0]),
'x_offset': int(region_parts[1]),
'y_offset': int(region_parts[2]),
'min_person_area': int(region_parts[3]),
'min_object_size': int(region_parts[4]),
'mask': region_mask,
# Event for motion detection signaling
'motion_detected': mp.Event(),
# array for prepped frame with shape (1, 300, 300, 3)
'prepped_frame_array': mp.Array(ctypes.c_uint8, 300*300*3),
# shared value for storing the prepped_frame_time
@@ -81,14 +75,13 @@ def main():
frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
frame_ready = mp.Condition()
# Condition for notifying that motion status changed globally
motion_changed = mp.Condition()
# Shared memory array for passing prepped frame to tensorflow
prepped_frame_array = mp.Array(ctypes.c_uint8, 300*300*3)
# create shared value for storing the frame_time
prepped_frame_time = mp.Value('d', 0.0)
# Event for notifying that object detection needs a new frame
prepped_frame_grabbed = mp.Event()
# Event for notifying that new frame is ready for detection
prepped_frame_ready = mp.Event()
# Condition for notifying that objects were parsed
objects_parsed = mp.Condition()
@@ -96,6 +89,7 @@ def main():
object_queue = mp.Queue()
# Queue for prepped frames
prepped_frame_queue = queue.Queue(len(regions)*2)
# Array for passing original region box to compute object bounding box
prepped_frame_box = mp.Array(ctypes.c_uint16, 3)
# shape current frame so it can be treated as an image
@@ -106,32 +100,18 @@ def main():
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
capture_process.daemon = True
# for each region, start a separate process for motion detection and object detection
# for each region, start a separate thread to resize the region and prep for detection
detection_prep_threads = []
motion_processes = []
for region in regions:
detection_prep_threads.append(FramePrepper(
frame_arr,
shared_frame_time,
frame_ready,
frame_lock,
region['motion_detected'],
region['size'], region['x_offset'], region['y_offset'],
prepped_frame_queue
))
motion_process = mp.Process(target=detect_motion, args=(shared_arr,
shared_frame_time,
frame_lock, frame_ready,
region['motion_detected'],
motion_changed,
frame_shape,
region['size'], region['x_offset'], region['y_offset'],
region['min_object_size'], region['mask'],
DEBUG))
motion_process.daemon = True
motion_processes.append(motion_process)
prepped_queue_processor = PreppedQueueProcessor(
prepped_frame_array,
prepped_frame_time,
@@ -157,24 +137,22 @@ def main():
# start a thread to store recent motion frames for processing
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
recent_motion_frames, motion_changed, [region['motion_detected'] for region in regions])
recent_frames)
frame_tracker.start()
# start a thread to store the highest scoring recent person frame
best_person_frame = BestPersonFrame(objects_parsed, recent_motion_frames, DETECTED_OBJECTS,
motion_changed, [region['motion_detected'] for region in regions])
best_person_frame = BestPersonFrame(objects_parsed, recent_frames, DETECTED_OBJECTS)
best_person_frame.start()
# start a thread to parse objects from the queue
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS)
object_parser.start()
# start a thread to expire objects from the detected objects list
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS,
motion_changed, [region['motion_detected'] for region in regions])
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
object_cleaner.start()
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
def on_connect(client, userdata, flags, rc):
print("On connect called")
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
@@ -191,32 +169,16 @@ def main():
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
mqtt_publisher.start()
# start thread to publish motion status
mqtt_motion_publisher = MqttMotionPublisher(client, MQTT_TOPIC_PREFIX, motion_changed,
[region['motion_detected'] for region in regions])
mqtt_motion_publisher.start()
# start the process of capturing frames
capture_process.start()
print("capture_process pid ", capture_process.pid)
# start the object detection prep processes
# start the object detection prep threads
for detection_prep_thread in detection_prep_threads:
detection_prep_thread.start()
detection_process.start()
print("detection_process pid ", detection_process.pid)
# start the motion detection processes
# for motion_process in motion_processes:
# motion_process.start()
# print("motion_process pid ", motion_process.pid)
# TEMP: short circuit the motion detection
for region in regions:
region['motion_detected'].set()
with motion_changed:
motion_changed.notify_all()
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@@ -259,8 +221,6 @@ def main():
for region in regions:
color = (255,255,255)
if region['motion_detected'].is_set():
color = (0,255,0)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
@@ -277,8 +237,6 @@ def main():
capture_process.join()
for detection_prep_thread in detection_prep_threads:
detection_prep_thread.join()
for motion_process in motion_processes:
motion_process.join()
detection_process.join()
frame_tracker.join()
best_person_frame.join()