mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-26 19:41:29 +08:00
Add automatic RKNN conversion and support for semantic search model (#19676)
* Create RKNN model runner and and use for jina v1 clip * Formatting * Handle model type inference * Properly provide input to RKNN * Adjust rknn conversion * Update docs * Formatting * Fix path handling * Handle inputs * Cleanup * Change normalization for better accuracy * Clarify supported models * Remove testing
This commit is contained in:
@@ -5,11 +5,11 @@ title: Enrichments
|
||||
|
||||
# Enrichments
|
||||
|
||||
Some of Frigate's enrichments can use a discrete GPU for accelerated processing.
|
||||
Some of Frigate's enrichments can use a discrete GPU / NPU for accelerated processing.
|
||||
|
||||
## Requirements
|
||||
|
||||
Object detection and enrichments (like Semantic Search, Face Recognition, and License Plate Recognition) are independent features. To use a GPU for object detection, see the [Object Detectors](/configuration/object_detectors.md) documentation. If you want to use your GPU for any supported enrichments, you must choose the appropriate Frigate Docker image for your GPU and configure the enrichment according to its specific documentation.
|
||||
Object detection and enrichments (like Semantic Search, Face Recognition, and License Plate Recognition) are independent features. To use a GPU / NPU for object detection, see the [Object Detectors](/configuration/object_detectors.md) documentation. If you want to use your GPU for any supported enrichments, you must choose the appropriate Frigate Docker image for your GPU / NPU and configure the enrichment according to its specific documentation.
|
||||
|
||||
- **AMD**
|
||||
|
||||
@@ -23,6 +23,9 @@ Object detection and enrichments (like Semantic Search, Face Recognition, and Li
|
||||
- Nvidia GPUs will automatically be detected and used for enrichments in the `-tensorrt` Frigate image.
|
||||
- Jetson devices will automatically be detected and used for enrichments in the `-tensorrt-jp6` Frigate image.
|
||||
|
||||
- **RockChip**
|
||||
- RockChip NPU will automatically be detected and used for semantic search (v1 only) in the `-rk` Frigate image.
|
||||
|
||||
Utilizing a GPU for enrichments does not require you to use the same GPU for object detection. For example, you can run the `tensorrt` Docker image for enrichments and still use other dedicated hardware like a Coral or Hailo for object detection. However, one combination that is not supported is TensorRT for object detection and OpenVINO for enrichments.
|
||||
|
||||
:::note
|
||||
|
@@ -78,7 +78,7 @@ Switching between V1 and V2 requires reindexing your embeddings. The embeddings
|
||||
|
||||
### GPU Acceleration
|
||||
|
||||
The CLIP models are downloaded in ONNX format, and the `large` model can be accelerated using GPU hardware, when available. This depends on the Docker build that is used. You can also target a specific device in a multi-GPU installation.
|
||||
The CLIP models are downloaded in ONNX format, and the `large` model can be accelerated using GPU / NPU hardware, when available. This depends on the Docker build that is used. You can also target a specific device in a multi-GPU installation.
|
||||
|
||||
```yaml
|
||||
semantic_search:
|
||||
@@ -90,7 +90,7 @@ semantic_search:
|
||||
|
||||
:::info
|
||||
|
||||
If the correct build is used for your GPU and the `large` model is configured, then the GPU will be detected and used automatically.
|
||||
If the correct build is used for your GPU / NPU and the `large` model is configured, then the GPU / NPU will be detected and used automatically.
|
||||
Specify the `device` option to target a specific GPU in a multi-GPU system (see [onnxruntime's provider options](https://onnxruntime.ai/docs/execution-providers/)).
|
||||
If you do not specify a device, the first available GPU will be used.
|
||||
|
||||
|
@@ -4,10 +4,12 @@ import logging
|
||||
import os.path
|
||||
from typing import Any
|
||||
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
from frigate.const import MODEL_CACHE_DIR
|
||||
from frigate.util.model import get_ort_providers
|
||||
from frigate.util.rknn_converter import auto_convert_model, is_rknn_compatible
|
||||
|
||||
try:
|
||||
import openvino as ov
|
||||
@@ -25,7 +27,33 @@ class ONNXModelRunner:
|
||||
self.model_path = model_path
|
||||
self.ort: ort.InferenceSession = None
|
||||
self.ov: ov.Core = None
|
||||
providers, options = get_ort_providers(device == "CPU", device, requires_fp16)
|
||||
self.rknn = None
|
||||
self.type = "ort"
|
||||
|
||||
try:
|
||||
if device != "CPU" and is_rknn_compatible(model_path):
|
||||
# Try to auto-convert to RKNN format
|
||||
rknn_path = auto_convert_model(model_path)
|
||||
if rknn_path:
|
||||
try:
|
||||
self.rknn = RKNNModelRunner(rknn_path, device)
|
||||
self.type = "rknn"
|
||||
logger.info(f"Using RKNN model: {rknn_path}")
|
||||
return
|
||||
except Exception as e:
|
||||
logger.debug(
|
||||
f"Failed to load RKNN model, falling back to ONNX: {e}"
|
||||
)
|
||||
self.rknn = None
|
||||
except ImportError:
|
||||
pass
|
||||
|
||||
# Fall back to standard ONNX providers
|
||||
providers, options = get_ort_providers(
|
||||
device == "CPU",
|
||||
device,
|
||||
requires_fp16,
|
||||
)
|
||||
self.interpreter = None
|
||||
|
||||
if "OpenVINOExecutionProvider" in providers:
|
||||
@@ -55,7 +83,9 @@ class ONNXModelRunner:
|
||||
)
|
||||
|
||||
def get_input_names(self) -> list[str]:
|
||||
if self.type == "ov":
|
||||
if self.type == "rknn":
|
||||
return self.rknn.get_input_names()
|
||||
elif self.type == "ov":
|
||||
input_names = []
|
||||
|
||||
for input in self.interpreter.inputs:
|
||||
@@ -67,7 +97,9 @@ class ONNXModelRunner:
|
||||
|
||||
def get_input_width(self):
|
||||
"""Get the input width of the model regardless of backend."""
|
||||
if self.type == "ort":
|
||||
if self.type == "rknn":
|
||||
return self.rknn.get_input_width()
|
||||
elif self.type == "ort":
|
||||
return self.ort.get_inputs()[0].shape[3]
|
||||
elif self.type == "ov":
|
||||
input_info = self.interpreter.inputs
|
||||
@@ -90,8 +122,10 @@ class ONNXModelRunner:
|
||||
return -1
|
||||
return -1
|
||||
|
||||
def run(self, input: dict[str, Any]) -> Any:
|
||||
if self.type == "ov":
|
||||
def run(self, input: dict[str, Any]) -> Any | None:
|
||||
if self.type == "rknn":
|
||||
return self.rknn.run(input)
|
||||
elif self.type == "ov":
|
||||
infer_request = self.interpreter.create_infer_request()
|
||||
|
||||
try:
|
||||
@@ -107,3 +141,121 @@ class ONNXModelRunner:
|
||||
return outputs
|
||||
elif self.type == "ort":
|
||||
return self.ort.run(None, input)
|
||||
|
||||
|
||||
class RKNNModelRunner:
|
||||
"""Run RKNN models for embeddings."""
|
||||
|
||||
def __init__(self, model_path: str, device: str = "AUTO", model_type: str = None):
|
||||
self.model_path = model_path
|
||||
self.device = device
|
||||
self.model_type = model_type
|
||||
self.rknn = None
|
||||
self._load_model()
|
||||
|
||||
def _load_model(self):
|
||||
"""Load the RKNN model."""
|
||||
try:
|
||||
from rknnlite.api import RKNNLite
|
||||
|
||||
self.rknn = RKNNLite(verbose=False)
|
||||
|
||||
if self.rknn.load_rknn(self.model_path) != 0:
|
||||
logger.error(f"Failed to load RKNN model: {self.model_path}")
|
||||
raise RuntimeError("Failed to load RKNN model")
|
||||
|
||||
if self.rknn.init_runtime() != 0:
|
||||
logger.error("Failed to initialize RKNN runtime")
|
||||
raise RuntimeError("Failed to initialize RKNN runtime")
|
||||
|
||||
logger.info(f"Successfully loaded RKNN model: {self.model_path}")
|
||||
|
||||
except ImportError:
|
||||
logger.error("RKNN Lite not available")
|
||||
raise ImportError("RKNN Lite not available")
|
||||
except Exception as e:
|
||||
logger.error(f"Error loading RKNN model: {e}")
|
||||
raise
|
||||
|
||||
def get_input_names(self) -> list[str]:
|
||||
"""Get input names for the model."""
|
||||
# For CLIP models, we need to determine the model type from the path
|
||||
model_name = os.path.basename(self.model_path).lower()
|
||||
|
||||
if "vision" in model_name:
|
||||
return ["pixel_values"]
|
||||
else:
|
||||
# Default fallback - try to infer from model type
|
||||
if self.model_type and "jina-clip" in self.model_type:
|
||||
if "vision" in self.model_type:
|
||||
return ["pixel_values"]
|
||||
|
||||
# Generic fallback
|
||||
return ["input"]
|
||||
|
||||
def get_input_width(self) -> int:
|
||||
"""Get the input width of the model."""
|
||||
# For CLIP vision models, this is typically 224
|
||||
model_name = os.path.basename(self.model_path).lower()
|
||||
if "vision" in model_name:
|
||||
return 224 # CLIP V1 uses 224x224
|
||||
return -1
|
||||
|
||||
def run(self, inputs: dict[str, Any]) -> Any:
|
||||
"""Run inference with the RKNN model."""
|
||||
if not self.rknn:
|
||||
raise RuntimeError("RKNN model not loaded")
|
||||
|
||||
try:
|
||||
input_names = self.get_input_names()
|
||||
rknn_inputs = []
|
||||
|
||||
for name in input_names:
|
||||
if name in inputs:
|
||||
if name == "pixel_values":
|
||||
# RKNN expects NHWC format, but ONNX typically provides NCHW
|
||||
# Transpose from [batch, channels, height, width] to [batch, height, width, channels]
|
||||
pixel_data = inputs[name]
|
||||
if len(pixel_data.shape) == 4 and pixel_data.shape[1] == 3:
|
||||
# Transpose from NCHW to NHWC
|
||||
pixel_data = np.transpose(pixel_data, (0, 2, 3, 1))
|
||||
rknn_inputs.append(pixel_data)
|
||||
else:
|
||||
rknn_inputs.append(inputs[name])
|
||||
else:
|
||||
logger.warning(f"Input '{name}' not found in inputs, using default")
|
||||
|
||||
if name == "pixel_values":
|
||||
batch_size = 1
|
||||
if inputs:
|
||||
for val in inputs.values():
|
||||
if hasattr(val, "shape") and len(val.shape) > 0:
|
||||
batch_size = val.shape[0]
|
||||
break
|
||||
# Create default in NHWC format as expected by RKNN
|
||||
rknn_inputs.append(
|
||||
np.zeros((batch_size, 224, 224, 3), dtype=np.float32)
|
||||
)
|
||||
else:
|
||||
batch_size = 1
|
||||
if inputs:
|
||||
for val in inputs.values():
|
||||
if hasattr(val, "shape") and len(val.shape) > 0:
|
||||
batch_size = val.shape[0]
|
||||
break
|
||||
rknn_inputs.append(np.zeros((batch_size, 1), dtype=np.float32))
|
||||
|
||||
outputs = self.rknn.inference(inputs=rknn_inputs)
|
||||
return outputs
|
||||
|
||||
except Exception as e:
|
||||
logger.error(f"Error during RKNN inference: {e}")
|
||||
raise
|
||||
|
||||
def __del__(self):
|
||||
"""Cleanup when the runner is destroyed."""
|
||||
if self.rknn:
|
||||
try:
|
||||
self.rknn.release()
|
||||
except Exception:
|
||||
pass
|
||||
|
@@ -27,9 +27,50 @@ MODEL_TYPE_CONFIGS = {
|
||||
"std_values": [[255, 255, 255]],
|
||||
"target_platform": None, # Will be set dynamically
|
||||
},
|
||||
"jina-clip-v1-vision": {
|
||||
"mean_values": [[0.48145466 * 255, 0.4578275 * 255, 0.40821073 * 255]],
|
||||
"std_values": [[0.26862954 * 255, 0.26130258 * 255, 0.27577711 * 255]],
|
||||
"target_platform": None, # Will be set dynamically
|
||||
},
|
||||
}
|
||||
|
||||
|
||||
def get_rknn_model_type(model_path: str) -> str | None:
|
||||
if all(keyword in str(model_path) for keyword in ["jina-clip-v1", "vision"]):
|
||||
return "jina-clip-v1-vision"
|
||||
|
||||
model_name = os.path.basename(str(model_path)).lower()
|
||||
|
||||
if any(keyword in model_name for keyword in ["yolo", "yolox", "yolonas"]):
|
||||
return model_name
|
||||
|
||||
return None
|
||||
|
||||
|
||||
def is_rknn_compatible(model_path: str, model_type: str | None = None) -> bool:
|
||||
"""
|
||||
Check if a model is compatible with RKNN conversion.
|
||||
|
||||
Args:
|
||||
model_path: Path to the model file
|
||||
model_type: Type of the model (if known)
|
||||
|
||||
Returns:
|
||||
True if the model is RKNN-compatible, False otherwise
|
||||
"""
|
||||
soc = get_soc_type()
|
||||
if soc is None:
|
||||
return False
|
||||
|
||||
if not model_type:
|
||||
model_type = get_rknn_model_type(model_path)
|
||||
|
||||
if model_type and model_type in MODEL_TYPE_CONFIGS:
|
||||
return True
|
||||
|
||||
return False
|
||||
|
||||
|
||||
def ensure_torch_dependencies() -> bool:
|
||||
"""Dynamically install torch dependencies if not available."""
|
||||
try:
|
||||
@@ -67,13 +108,12 @@ def ensure_torch_dependencies() -> bool:
|
||||
def ensure_rknn_toolkit() -> bool:
|
||||
"""Ensure RKNN toolkit is available."""
|
||||
try:
|
||||
import rknn # type: ignore # noqa: F401
|
||||
from rknn.api import RKNN # type: ignore # noqa: F401
|
||||
|
||||
logger.debug("RKNN toolkit is already available")
|
||||
return True
|
||||
except ImportError:
|
||||
logger.error("RKNN toolkit not found. Please ensure it's installed.")
|
||||
except ImportError as e:
|
||||
logger.error(f"RKNN toolkit not found. Please ensure it's installed. {e}")
|
||||
return False
|
||||
|
||||
|
||||
@@ -109,11 +149,11 @@ def convert_onnx_to_rknn(
|
||||
True if conversion successful, False otherwise
|
||||
"""
|
||||
if not ensure_torch_dependencies():
|
||||
logger.error("PyTorch dependencies not available")
|
||||
logger.debug("PyTorch dependencies not available")
|
||||
return False
|
||||
|
||||
if not ensure_rknn_toolkit():
|
||||
logger.error("RKNN toolkit not available")
|
||||
logger.debug("RKNN toolkit not available")
|
||||
return False
|
||||
|
||||
# Get SoC type if not provided
|
||||
@@ -125,7 +165,7 @@ def convert_onnx_to_rknn(
|
||||
|
||||
# Get model config for the specified type
|
||||
if model_type not in MODEL_TYPE_CONFIGS:
|
||||
logger.error(f"Unsupported model type: {model_type}")
|
||||
logger.debug(f"Unsupported model type: {model_type}")
|
||||
return False
|
||||
|
||||
config = MODEL_TYPE_CONFIGS[model_type].copy()
|
||||
@@ -138,7 +178,16 @@ def convert_onnx_to_rknn(
|
||||
rknn = RKNN(verbose=True)
|
||||
rknn.config(**config)
|
||||
|
||||
if rknn.load_onnx(model=onnx_path) != 0:
|
||||
if model_type == "jina-clip-v1-vision":
|
||||
load_output = rknn.load_onnx(
|
||||
model=onnx_path,
|
||||
inputs=["pixel_values"],
|
||||
input_size_list=[[1, 3, 224, 224]],
|
||||
)
|
||||
else:
|
||||
load_output = rknn.load_onnx(model=onnx_path)
|
||||
|
||||
if load_output != 0:
|
||||
logger.error("Failed to load ONNX model")
|
||||
return False
|
||||
|
||||
@@ -265,7 +314,7 @@ def is_lock_stale(lock_file_path: Path, max_age: int = 600) -> bool:
|
||||
|
||||
|
||||
def wait_for_conversion_completion(
|
||||
rknn_path: Path, lock_file_path: Path, timeout: int = 300
|
||||
model_type: str, rknn_path: Path, lock_file_path: Path, timeout: int = 300
|
||||
) -> bool:
|
||||
"""
|
||||
Wait for another process to complete the conversion.
|
||||
@@ -307,7 +356,7 @@ def wait_for_conversion_completion(
|
||||
# Check if RKNN file appeared while waiting
|
||||
if rknn_path.exists():
|
||||
logger.info(f"RKNN model appeared while waiting: {rknn_path}")
|
||||
return str(rknn_path)
|
||||
return True
|
||||
|
||||
# Convert ONNX to RKNN
|
||||
logger.info(
|
||||
@@ -320,12 +369,12 @@ def wait_for_conversion_completion(
|
||||
|
||||
if onnx_path.exists():
|
||||
if convert_onnx_to_rknn(
|
||||
str(onnx_path), str(rknn_path), "yolo-generic", False
|
||||
str(onnx_path), str(rknn_path), model_type, False
|
||||
):
|
||||
return str(rknn_path)
|
||||
return True
|
||||
|
||||
logger.error("Failed to convert model after stale lock cleanup")
|
||||
return None
|
||||
return False
|
||||
|
||||
finally:
|
||||
release_conversion_lock(lock_file_path)
|
||||
@@ -338,7 +387,7 @@ def wait_for_conversion_completion(
|
||||
|
||||
|
||||
def auto_convert_model(
|
||||
model_path: str, model_type: str, quantization: bool = False
|
||||
model_path: str, model_type: str | None = None, quantization: bool = False
|
||||
) -> Optional[str]:
|
||||
"""
|
||||
Automatically convert a model to RKNN format if needed.
|
||||
@@ -377,6 +426,9 @@ def auto_convert_model(
|
||||
logger.info(f"Converting {model_path} to RKNN format...")
|
||||
rknn_path.parent.mkdir(parents=True, exist_ok=True)
|
||||
|
||||
if not model_type:
|
||||
model_type = get_rknn_model_type(base_path)
|
||||
|
||||
if convert_onnx_to_rknn(
|
||||
str(base_path), str(rknn_path), model_type, quantization
|
||||
):
|
||||
@@ -392,7 +444,10 @@ def auto_convert_model(
|
||||
f"Another process is converting {model_path}, waiting for completion..."
|
||||
)
|
||||
|
||||
if wait_for_conversion_completion(rknn_path, lock_file_path):
|
||||
if not model_type:
|
||||
model_type = get_rknn_model_type(base_path)
|
||||
|
||||
if wait_for_conversion_completion(model_type, rknn_path, lock_file_path):
|
||||
return str(rknn_path)
|
||||
else:
|
||||
logger.error(f"Timeout waiting for conversion of {model_path}")
|
||||
|
Reference in New Issue
Block a user