WIP: convert to camera class

This commit is contained in:
blakeblackshear
2019-03-29 20:49:27 -05:00
parent 8774e537dc
commit 0279121d77
4 changed files with 223 additions and 206 deletions

View File

@@ -20,23 +20,16 @@ from frigate.util import tonumpyarray
from frigate.mqtt import MqttMotionPublisher, MqttObjectPublisher
from frigate.objects import ObjectParser, ObjectCleaner, BestPersonFrame
from frigate.motion import detect_motion
from frigate.video import fetch_frames, FrameTracker
from frigate.video import fetch_frames, FrameTracker, Camera
from frigate.object_detection import FramePrepper, PreppedQueueProcessor
with open('/config/config.yml') as f:
# use safe_load instead load
CONFIG = yaml.safe_load(f)
rtsp_camera = CONFIG['cameras']['back']['rtsp']
if (rtsp_camera['password'].startswith('$')):
rtsp_camera['password'] = os.getenv(rtsp_camera['password'][1:])
RTSP_URL = 'rtsp://{}:{}@{}:{}{}'.format(rtsp_camera['user'],
rtsp_camera['password'], rtsp_camera['host'], rtsp_camera['port'],
rtsp_camera['path'])
MQTT_HOST = CONFIG['mqtt']['host']
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG['mqtt']['topic_prefix'] + '/back'
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
@@ -44,80 +37,6 @@ WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
def main():
DETECTED_OBJECTS = []
recent_frames = {}
# Parse selected regions
regions = CONFIG['cameras']['back']['regions']
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(RTSP_URL)
ret, frame = video.read()
if ret:
frame_shape = frame.shape
else:
print("Unable to capture video stream")
exit(1)
video.release()
# compute the flattened array length from the array shape
flat_array_length = frame_shape[0] * frame_shape[1] * frame_shape[2]
# create shared array for storing the full frame image data
shared_arr = mp.Array(ctypes.c_uint8, flat_array_length)
# create shared value for storing the frame_time
shared_frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame
frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
frame_ready = mp.Condition()
# Condition for notifying that objects were parsed
objects_parsed = mp.Condition()
# Queue for detected objects
object_queue = queue.Queue()
# Queue for prepped frames
prepped_frame_queue = queue.Queue(len(regions)*2)
# shape current frame so it can be treated as an image
frame_arr = tonumpyarray(shared_arr).reshape(frame_shape)
# start the process to capture frames from the RTSP stream and store in a shared array
capture_process = mp.Process(target=fetch_frames, args=(shared_arr,
shared_frame_time, frame_lock, frame_ready, frame_shape, RTSP_URL))
capture_process.daemon = True
# for each region, start a separate thread to resize the region and prep for detection
detection_prep_threads = []
for region in regions:
detection_prep_threads.append(FramePrepper(
frame_arr,
shared_frame_time,
frame_ready,
frame_lock,
region['size'], region['x_offset'], region['y_offset'],
prepped_frame_queue
))
prepped_queue_processor = PreppedQueueProcessor(
prepped_frame_queue,
object_queue
)
prepped_queue_processor.start()
# start a thread to store recent motion frames for processing
frame_tracker = FrameTracker(frame_arr, shared_frame_time, frame_ready, frame_lock,
recent_frames)
frame_tracker.start()
# start a thread to store the highest scoring recent person frame
best_person_frame = BestPersonFrame(objects_parsed, recent_frames, DETECTED_OBJECTS)
best_person_frame.start()
# start a thread to parse objects from the queue
object_parser = ObjectParser(object_queue, objects_parsed, DETECTED_OBJECTS, regions)
object_parser.start()
# start a thread to expire objects from the detected objects list
object_cleaner = ObjectCleaner(objects_parsed, DETECTED_OBJECTS)
object_cleaner.start()
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
@@ -128,84 +47,82 @@ def main():
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# Queue for prepped frames
# TODO: set length to 1.5x the number of total regions
prepped_frame_queue = queue.Queue(6)
# start a thread to publish object scores (currently only person)
mqtt_publisher = MqttObjectPublisher(client, MQTT_TOPIC_PREFIX, objects_parsed, DETECTED_OBJECTS)
mqtt_publisher.start()
# start the process of capturing frames
capture_process.start()
print("capture_process pid ", capture_process.pid)
camera = Camera('back', CONFIG['cameras']['back'], prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
# start the object detection prep threads
for detection_prep_thread in detection_prep_threads:
detection_prep_thread.start()
cameras = {
'back': camera
}
prepped_queue_processor = PreppedQueueProcessor(
cameras,
prepped_frame_queue
)
prepped_queue_processor.start()
camera.start()
camera.join()
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
# app = Flask(__name__)
@app.route('/best_person.jpg')
def best_person():
frame = np.zeros(frame_shape, np.uint8) if best_person_frame.best_frame is None else best_person_frame.best_frame
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
# @app.route('/best_person.jpg')
# def best_person():
# frame = np.zeros(frame_shape, np.uint8) if camera.get_best_person() is None else camera.get_best_person()
# ret, jpg = cv2.imencode('.jpg', frame)
# response = make_response(jpg.tobytes())
# response.headers['Content-Type'] = 'image/jpg'
# return response
@app.route('/')
def index():
# return a multipart response
return Response(imagestream(),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream():
while True:
# max out at 5 FPS
time.sleep(0.2)
# make a copy of the current detected objects
detected_objects = DETECTED_OBJECTS.copy()
# lock and make a copy of the current frame
with frame_lock:
frame = frame_arr.copy()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in detected_objects:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
# @app.route('/')
# def index():
# # return a multipart response
# return Response(imagestream(),
# mimetype='multipart/x-mixed-replace; boundary=frame')
# def imagestream():
# while True:
# # max out at 5 FPS
# time.sleep(0.2)
# # make a copy of the current detected objects
# detected_objects = DETECTED_OBJECTS.copy()
# # lock and make a copy of the current frame
# with frame_lock:
# frame = frame_arr.copy()
# # convert to RGB for drawing
# frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# # draw the bounding boxes on the screen
# for obj in detected_objects:
# vis_util.draw_bounding_box_on_image_array(frame,
# obj['ymin'],
# obj['xmin'],
# obj['ymax'],
# obj['xmax'],
# color='red',
# thickness=2,
# display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
# use_normalized_coordinates=False)
for region in regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# for region in regions:
# color = (255,255,255)
# cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
# (region['x_offset']+region['size'], region['y_offset']+region['size']),
# color, 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
# # convert back to BGR
# frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
# # encode the image into a jpg
# ret, jpg = cv2.imencode('.jpg', frame)
# yield (b'--frame\r\n'
# b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
capture_process.join()
for detection_prep_thread in detection_prep_threads:
detection_prep_thread.join()
frame_tracker.join()
best_person_frame.join()
object_parser.join()
object_cleaner.join()
mqtt_publisher.join()
# app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
if __name__ == '__main__':
main()