mirror of
https://github.com/xnd5101/ffmpeg-go
synced 2025-09-28 09:22:06 +08:00
227 lines
5.7 KiB
Go
227 lines
5.7 KiB
Go
// +build gocv
|
|
|
|
// uncomment line above for gocv examples
|
|
|
|
package examples
|
|
|
|
import (
|
|
"encoding/json"
|
|
"fmt"
|
|
"image"
|
|
"image/color"
|
|
"io"
|
|
"log"
|
|
"testing"
|
|
|
|
ffmpeg "github.com/u2takey/ffmpeg-go"
|
|
"gocv.io/x/gocv"
|
|
)
|
|
|
|
func getVideoSize(fileName string) (int, int) {
|
|
log.Println("Getting video size for", fileName)
|
|
data, err := ffmpeg.Probe(fileName)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
log.Println("got video info", data)
|
|
type VideoInfo struct {
|
|
Streams []struct {
|
|
CodecType string `json:"codec_type"`
|
|
Width int
|
|
Height int
|
|
} `json:"streams"`
|
|
}
|
|
vInfo := &VideoInfo{}
|
|
err = json.Unmarshal([]byte(data), vInfo)
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
for _, s := range vInfo.Streams {
|
|
if s.CodecType == "video" {
|
|
return s.Width, s.Height
|
|
}
|
|
}
|
|
return 0, 0
|
|
}
|
|
|
|
// TestExampleOpenCvFaceDetect will: take a video as input => use opencv for face detection => draw box and show a window
|
|
// This example depends on gocv and opencv, please refer: https://pkg.go.dev/gocv.io/x/gocv for installation.
|
|
// func TestExampleOpenCvFaceDetectWithVideo(t *testing.T) {
|
|
// inputFile := "./sample_data/head-pose-face-detection-male-short.mp4"
|
|
// xmlFile := "./sample_data/haarcascade_frontalface_default.xml"
|
|
|
|
// w, h := getVideoSize(inputFile)
|
|
// log.Println(w, h)
|
|
|
|
// pr1, pw1 := io.Pipe()
|
|
// readProcess(inputFile, pw1)
|
|
// openCvProcess(xmlFile, pr1, w, h)
|
|
// log.Println("Done")
|
|
// }
|
|
|
|
func readProcess(infileName string, writer io.WriteCloser) {
|
|
log.Println("Starting ffmpeg process1")
|
|
go func() {
|
|
err := ffmpeg.Input(infileName).
|
|
Output("pipe:",
|
|
ffmpeg.KwArgs{
|
|
"format": "rawvideo", "pix_fmt": "rgb24",
|
|
}).
|
|
WithOutput(writer).
|
|
ErrorToStdOut().
|
|
Run()
|
|
log.Println("ffmpeg process1 done")
|
|
_ = writer.Close()
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
}()
|
|
return
|
|
}
|
|
|
|
func openCvProcess(xmlFile string, reader io.ReadCloser, w, h int) {
|
|
// open display window
|
|
window := gocv.NewWindow("Face Detect")
|
|
defer window.Close()
|
|
|
|
// color for the rect when faces detected
|
|
blue := color.RGBA{B: 255}
|
|
|
|
classifier := gocv.NewCascadeClassifier()
|
|
defer classifier.Close()
|
|
|
|
if !classifier.Load(xmlFile) {
|
|
fmt.Printf("Error reading cascade file: %v\n", xmlFile)
|
|
return
|
|
}
|
|
|
|
frameSize := w * h * 3
|
|
buf := make([]byte, frameSize, frameSize)
|
|
for {
|
|
n, err := io.ReadFull(reader, buf)
|
|
if n == 0 || err == io.EOF {
|
|
return
|
|
} else if n != frameSize || err != nil {
|
|
panic(fmt.Sprintf("read error: %d, %s", n, err))
|
|
}
|
|
img, err := gocv.NewMatFromBytes(h, w, gocv.MatTypeCV8UC3, buf)
|
|
if err != nil {
|
|
fmt.Println("decode fail", err)
|
|
}
|
|
if img.Empty() {
|
|
continue
|
|
}
|
|
img2 := gocv.NewMat()
|
|
gocv.CvtColor(img, &img2, gocv.ColorBGRToRGB)
|
|
|
|
// detect faces
|
|
rects := classifier.DetectMultiScale(img2)
|
|
fmt.Printf("found %d faces\n", len(rects))
|
|
|
|
// draw a rectangle around each face on the original image, along with text identifing as "Human"
|
|
for _, r := range rects {
|
|
gocv.Rectangle(&img2, r, blue, 3)
|
|
|
|
size := gocv.GetTextSize("Human", gocv.FontHersheyPlain, 1.2, 2)
|
|
pt := image.Pt(r.Min.X+(r.Min.X/2)-(size.X/2), r.Min.Y-2)
|
|
gocv.PutText(&img2, "Human", pt, gocv.FontHersheyPlain, 1.2, blue, 2)
|
|
}
|
|
|
|
// show the image in the window, and wait 1 millisecond
|
|
window.IMShow(img2)
|
|
img.Close()
|
|
img2.Close()
|
|
if window.WaitKey(10) >= 0 {
|
|
break
|
|
}
|
|
}
|
|
return
|
|
}
|
|
|
|
// TestExampleOpenCvFaceDetectWithCamera will: task stream from webcam => use opencv for face detection => output with ffmpeg
|
|
// This example depends on gocv and opencv, please refer: https://pkg.go.dev/gocv.io/x/gocv for installation.
|
|
func TestExampleOpenCvFaceDetectWithCamera(t *testing.T) {
|
|
// deviceID := "0" // camera device id
|
|
deviceID := "./sample_data/head-pose-face-detection-male-short.mp4"
|
|
xmlFile := "./sample_data/haarcascade_frontalface_default.xml"
|
|
|
|
webcam, err := gocv.OpenVideoCapture(deviceID)
|
|
if err != nil {
|
|
fmt.Printf("error opening video capture device: %v\n", deviceID)
|
|
return
|
|
}
|
|
defer webcam.Close()
|
|
|
|
// prepare image matrix
|
|
img := gocv.NewMat()
|
|
defer img.Close()
|
|
|
|
if ok := webcam.Read(&img); !ok {
|
|
panic(fmt.Sprintf("Cannot read device %v", deviceID))
|
|
}
|
|
fmt.Printf("img: %vX%v\n", img.Cols(), img.Rows())
|
|
|
|
pr1, pw1 := io.Pipe()
|
|
writeProcess("./sample_data/face_detect.mp4", pr1, img.Cols(), img.Rows())
|
|
|
|
// color for the rect when faces detected
|
|
blue := color.RGBA{B: 255}
|
|
|
|
// load classifier to recognize faces
|
|
classifier := gocv.NewCascadeClassifier()
|
|
defer classifier.Close()
|
|
|
|
if !classifier.Load(xmlFile) {
|
|
fmt.Printf("Error reading cascade file: %v\n", xmlFile)
|
|
return
|
|
}
|
|
|
|
fmt.Printf("Start reading device: %v\n", deviceID)
|
|
for i := 0; i < 200; i++ {
|
|
if ok := webcam.Read(&img); !ok {
|
|
fmt.Printf("Device closed: %v\n", deviceID)
|
|
return
|
|
}
|
|
if img.Empty() {
|
|
continue
|
|
}
|
|
|
|
// detect faces
|
|
rects := classifier.DetectMultiScale(img)
|
|
fmt.Printf("found %d faces\n", len(rects))
|
|
|
|
// draw a rectangle around each face on the original image, along with text identifing as "Human"
|
|
for _, r := range rects {
|
|
gocv.Rectangle(&img, r, blue, 3)
|
|
|
|
size := gocv.GetTextSize("Human", gocv.FontHersheyPlain, 1.2, 2)
|
|
pt := image.Pt(r.Min.X+(r.Min.X/2)-(size.X/2), r.Min.Y-2)
|
|
gocv.PutText(&img, "Human", pt, gocv.FontHersheyPlain, 1.2, blue, 2)
|
|
}
|
|
pw1.Write(img.ToBytes())
|
|
}
|
|
pw1.Close()
|
|
log.Println("Done")
|
|
}
|
|
|
|
func writeProcess(outputFile string, reader io.ReadCloser, w, h int) {
|
|
log.Println("Starting ffmpeg process1")
|
|
go func() {
|
|
err := ffmpeg.Input("pipe:",
|
|
ffmpeg.KwArgs{"format": "rawvideo",
|
|
"pix_fmt": "bgr24", "s": fmt.Sprintf("%dx%d", w, h),
|
|
}).
|
|
Overlay(ffmpeg.Input("./sample_data/overlay.png"), "").
|
|
Output(outputFile).
|
|
WithInput(reader).
|
|
ErrorToStdOut().
|
|
OverWriteOutput().
|
|
Run()
|
|
log.Println("ffmpeg process1 done")
|
|
if err != nil {
|
|
panic(err)
|
|
}
|
|
_ = reader.Close()
|
|
}()
|
|
}
|