Files
ffmpeg-go-rtmp/examples/opencv_test.go
xingnaidong1 a538f53f13 demo save
2022-01-06 17:28:07 +08:00

227 lines
5.7 KiB
Go

// +build gocv
// uncomment line above for gocv examples
package examples
import (
"encoding/json"
"fmt"
"image"
"image/color"
"io"
"log"
"testing"
ffmpeg "github.com/u2takey/ffmpeg-go"
"gocv.io/x/gocv"
)
func getVideoSize(fileName string) (int, int) {
log.Println("Getting video size for", fileName)
data, err := ffmpeg.Probe(fileName)
if err != nil {
panic(err)
}
log.Println("got video info", data)
type VideoInfo struct {
Streams []struct {
CodecType string `json:"codec_type"`
Width int
Height int
} `json:"streams"`
}
vInfo := &VideoInfo{}
err = json.Unmarshal([]byte(data), vInfo)
if err != nil {
panic(err)
}
for _, s := range vInfo.Streams {
if s.CodecType == "video" {
return s.Width, s.Height
}
}
return 0, 0
}
// TestExampleOpenCvFaceDetect will: take a video as input => use opencv for face detection => draw box and show a window
// This example depends on gocv and opencv, please refer: https://pkg.go.dev/gocv.io/x/gocv for installation.
// func TestExampleOpenCvFaceDetectWithVideo(t *testing.T) {
// inputFile := "./sample_data/head-pose-face-detection-male-short.mp4"
// xmlFile := "./sample_data/haarcascade_frontalface_default.xml"
// w, h := getVideoSize(inputFile)
// log.Println(w, h)
// pr1, pw1 := io.Pipe()
// readProcess(inputFile, pw1)
// openCvProcess(xmlFile, pr1, w, h)
// log.Println("Done")
// }
func readProcess(infileName string, writer io.WriteCloser) {
log.Println("Starting ffmpeg process1")
go func() {
err := ffmpeg.Input(infileName).
Output("pipe:",
ffmpeg.KwArgs{
"format": "rawvideo", "pix_fmt": "rgb24",
}).
WithOutput(writer).
ErrorToStdOut().
Run()
log.Println("ffmpeg process1 done")
_ = writer.Close()
if err != nil {
panic(err)
}
}()
return
}
func openCvProcess(xmlFile string, reader io.ReadCloser, w, h int) {
// open display window
window := gocv.NewWindow("Face Detect")
defer window.Close()
// color for the rect when faces detected
blue := color.RGBA{B: 255}
classifier := gocv.NewCascadeClassifier()
defer classifier.Close()
if !classifier.Load(xmlFile) {
fmt.Printf("Error reading cascade file: %v\n", xmlFile)
return
}
frameSize := w * h * 3
buf := make([]byte, frameSize, frameSize)
for {
n, err := io.ReadFull(reader, buf)
if n == 0 || err == io.EOF {
return
} else if n != frameSize || err != nil {
panic(fmt.Sprintf("read error: %d, %s", n, err))
}
img, err := gocv.NewMatFromBytes(h, w, gocv.MatTypeCV8UC3, buf)
if err != nil {
fmt.Println("decode fail", err)
}
if img.Empty() {
continue
}
img2 := gocv.NewMat()
gocv.CvtColor(img, &img2, gocv.ColorBGRToRGB)
// detect faces
rects := classifier.DetectMultiScale(img2)
fmt.Printf("found %d faces\n", len(rects))
// draw a rectangle around each face on the original image, along with text identifing as "Human"
for _, r := range rects {
gocv.Rectangle(&img2, r, blue, 3)
size := gocv.GetTextSize("Human", gocv.FontHersheyPlain, 1.2, 2)
pt := image.Pt(r.Min.X+(r.Min.X/2)-(size.X/2), r.Min.Y-2)
gocv.PutText(&img2, "Human", pt, gocv.FontHersheyPlain, 1.2, blue, 2)
}
// show the image in the window, and wait 1 millisecond
window.IMShow(img2)
img.Close()
img2.Close()
if window.WaitKey(10) >= 0 {
break
}
}
return
}
// TestExampleOpenCvFaceDetectWithCamera will: task stream from webcam => use opencv for face detection => output with ffmpeg
// This example depends on gocv and opencv, please refer: https://pkg.go.dev/gocv.io/x/gocv for installation.
func TestExampleOpenCvFaceDetectWithCamera(t *testing.T) {
// deviceID := "0" // camera device id
deviceID := "./sample_data/head-pose-face-detection-male-short.mp4"
xmlFile := "./sample_data/haarcascade_frontalface_default.xml"
webcam, err := gocv.OpenVideoCapture(deviceID)
if err != nil {
fmt.Printf("error opening video capture device: %v\n", deviceID)
return
}
defer webcam.Close()
// prepare image matrix
img := gocv.NewMat()
defer img.Close()
if ok := webcam.Read(&img); !ok {
panic(fmt.Sprintf("Cannot read device %v", deviceID))
}
fmt.Printf("img: %vX%v\n", img.Cols(), img.Rows())
pr1, pw1 := io.Pipe()
writeProcess("./sample_data/face_detect.mp4", pr1, img.Cols(), img.Rows())
// color for the rect when faces detected
blue := color.RGBA{B: 255}
// load classifier to recognize faces
classifier := gocv.NewCascadeClassifier()
defer classifier.Close()
if !classifier.Load(xmlFile) {
fmt.Printf("Error reading cascade file: %v\n", xmlFile)
return
}
fmt.Printf("Start reading device: %v\n", deviceID)
for i := 0; i < 200; i++ {
if ok := webcam.Read(&img); !ok {
fmt.Printf("Device closed: %v\n", deviceID)
return
}
if img.Empty() {
continue
}
// detect faces
rects := classifier.DetectMultiScale(img)
fmt.Printf("found %d faces\n", len(rects))
// draw a rectangle around each face on the original image, along with text identifing as "Human"
for _, r := range rects {
gocv.Rectangle(&img, r, blue, 3)
size := gocv.GetTextSize("Human", gocv.FontHersheyPlain, 1.2, 2)
pt := image.Pt(r.Min.X+(r.Min.X/2)-(size.X/2), r.Min.Y-2)
gocv.PutText(&img, "Human", pt, gocv.FontHersheyPlain, 1.2, blue, 2)
}
pw1.Write(img.ToBytes())
}
pw1.Close()
log.Println("Done")
}
func writeProcess(outputFile string, reader io.ReadCloser, w, h int) {
log.Println("Starting ffmpeg process1")
go func() {
err := ffmpeg.Input("pipe:",
ffmpeg.KwArgs{"format": "rawvideo",
"pix_fmt": "bgr24", "s": fmt.Sprintf("%dx%d", w, h),
}).
Overlay(ffmpeg.Input("./sample_data/overlay.png"), "").
Output(outputFile).
WithInput(reader).
ErrorToStdOut().
OverWriteOutput().
Run()
log.Println("ffmpeg process1 done")
if err != nil {
panic(err)
}
_ = reader.Close()
}()
}