Files
ebiten/vector/stroke.go
Hajime Hoshi 159eea683d vector: calculate the allowance value based on the size of a curve
This should improve the result of transforming a path with a
geometry matrix.

Updates #3311
2025-09-06 03:07:21 +09:00

427 lines
12 KiB
Go

// Copyright 2025 The Ebitengine Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package vector
import (
"math"
"github.com/hajimehoshi/ebiten/v2"
)
// LineCap represents the way in which how the ends of the stroke are rendered.
type LineCap int
const (
LineCapButt LineCap = iota
LineCapRound
LineCapSquare
)
// LineJoin represents the way in which how two segments are joined.
type LineJoin int
const (
LineJoinMiter LineJoin = iota
LineJoinBevel
LineJoinRound
)
// StrokeOptions is options to render a stroke.
type StrokeOptions struct {
// Width is the stroke width in pixels.
//
// The default (zero) value is 0.
Width float32
// LineCap is the way in which how the ends of the stroke are rendered.
// Line caps are not rendered when the sub-path is marked as closed.
//
// The default (zero) value is [LineCapButt].
LineCap LineCap
// LineJoin is the way in which how two segments are joined.
//
// The default (zero) value is [LineJoinMiter].
LineJoin LineJoin
// MiterLimit is the miter limit for [LineJoinMiter].
// For details, see https://developer.mozilla.org/en-US/docs/Web/SVG/Attribute/stroke-miterlimit.
//
// The default (zero) value is 0.
MiterLimit float32
}
// AddStrokeOptions is options for [Path.AddStroke].
type AddStrokeOptions struct {
// StrokeOptions is options for the stroke.
StrokeOptions
// GeoM is a geometry matrix to apply to the path.
//
// The default (zero) value is an identity matrix.
GeoM ebiten.GeoM
}
// AddStroke adds a stroke path to the path p.
//
// The added stroke path must be rendered with FileRuleNonZero.
func (p *Path) AddStroke(src *Path, options *AddStrokeOptions) {
if options == nil {
return
}
if options.Width <= 0 {
return
}
// Normalize the source path to simplify the logic to generate a stroke path.
src.normalize()
origN := len(p.subPaths)
// p might be the same as src. Use srcN to avoid modifying the overlapped region.
srcN := len(src.subPaths)
for _, subPath := range src.subPaths[:srcN] {
_, sp1, sp2, sp3, sp4 := strokeStartControlPositions(&subPath, options.Width/2)
p.MoveTo(sp4.x, sp4.y)
appendParalleledPathFromSubPath(p, &subPath, &options.StrokeOptions)
_, ep1, ep2, ep3, ep4 := strokeEndControlPositions(&subPath, options.Width/2)
if subPath.closed {
p.Close()
p.MoveTo(ep4.x, ep4.y)
} else {
switch options.LineCap {
case LineCapButt:
p.LineTo(ep4.x, ep4.y)
case LineCapRound:
p.ArcTo(ep1.x, ep1.y, ep2.x, ep2.y, options.Width/2)
p.ArcTo(ep3.x, ep3.y, ep4.x, ep4.y, options.Width/2)
case LineCapSquare:
p.LineTo(ep1.x, ep1.y)
p.LineTo(ep3.x, ep3.y)
p.LineTo(ep4.x, ep4.y)
}
}
appendParalleledPathFromSubPathReversed(p, &subPath, &options.StrokeOptions)
if !subPath.closed {
switch options.LineCap {
case LineCapButt:
p.LineTo(sp4.x, sp4.y)
case LineCapRound:
p.ArcTo(sp1.x, sp1.y, sp2.x, sp2.y, options.Width/2)
p.ArcTo(sp3.x, sp3.y, sp4.x, sp4.y, options.Width/2)
case LineCapSquare:
p.LineTo(sp1.x, sp1.y)
p.LineTo(sp3.x, sp3.y)
p.LineTo(sp4.x, sp4.y)
}
}
p.Close()
}
if options.GeoM != (ebiten.GeoM{}) {
for i, subPath := range p.subPaths[origN:] {
x, y := options.GeoM.Apply(float64(subPath.start.x), float64(subPath.start.y))
p.subPaths[origN+i].start = point{x: float32(x), y: float32(y)}
for j, op := range subPath.ops {
switch op.typ {
case opTypeLineTo:
x1, y1 := options.GeoM.Apply(float64(op.p1.x), float64(op.p1.y))
p.subPaths[origN+i].ops[j].p1 = point{x: float32(x1), y: float32(y1)}
case opTypeQuadTo:
x1, y1 := options.GeoM.Apply(float64(op.p1.x), float64(op.p1.y))
x2, y2 := options.GeoM.Apply(float64(op.p2.x), float64(op.p2.y))
p.subPaths[origN+i].ops[j].p1 = point{x: float32(x1), y: float32(y1)}
p.subPaths[origN+i].ops[j].p2 = point{x: float32(x2), y: float32(y2)}
}
}
}
}
}
func strokeStartControlPositions(subPath *subPath, dist float32) (point, point, point, point, point) {
p := subPath.startAtOp(0)
dir := subPath.startDir(0).inv().norm().mul(dist)
dirPerp := dir.perp()
// TODO: These values are a little tricky. Refactor this.
return p.add(dirPerp), p.add(dir).add(dirPerp), p.add(dir), p.add(dir).add(dirPerp.inv()), p.add(dirPerp.inv())
}
func strokeEndControlPositions(subPath *subPath, dist float32) (point, point, point, point, point) {
p := subPath.endAtOp(len(subPath.ops) - 1)
dir := subPath.endDir(len(subPath.ops) - 1).norm().mul(dist)
dirPerp := dir.perp()
// TODO: These values are a little tricky. Refactor this.
return p.add(dirPerp), p.add(dir).add(dirPerp), p.add(dir), p.add(dir).add(dirPerp.inv()), p.add(dirPerp.inv())
}
func appendParalleledPathFromSubPath(strokePath *Path, subPath *subPath, options *StrokeOptions) {
if len(subPath.ops) == 0 {
panic("not reached")
}
// As the source path is normalized, every operation is guaranteed to be valid.
// A line operation must have a different point from the start point.
// A quadratic curve operation must have create a curve, not a line.
cur := subPath.start
for i, op := range subPath.ops {
switch op.typ {
case opTypeLineTo:
appendParalleledLine(strokePath, cur, op.p1, options.Width/2)
cur = op.p1
case opTypeQuadTo:
appendParalleledQuad(strokePath, cur, op.p1, op.p2, options.Width/2)
cur = op.p2
}
addJoint(strokePath, subPath, i, false, options)
}
}
func appendParalleledPathFromSubPathReversed(strokePath *Path, subPath *subPath, options *StrokeOptions) {
if len(subPath.ops) == 0 {
panic("not reached")
}
// As the source path is normalized, every operation is guaranteed to be valid.
// A line operation must have a different point from the start point.
// A quadratic curve operation must have create a curve, not a line.
for i := len(subPath.ops) - 1; i >= 0; i-- {
op := subPath.ops[i]
nextP := subPath.startAtOp(i)
switch op.typ {
case opTypeLineTo:
appendParalleledLine(strokePath, op.p1, nextP, options.Width/2)
case opTypeQuadTo:
appendParalleledQuad(strokePath, op.p2, op.p1, nextP, options.Width/2)
}
addJoint(strokePath, subPath, i, true, options)
}
}
func appendParalleledLine(path *Path, p0, p1 point, dist float32) {
if p0 == p1 {
panic("not reached")
}
dir := vec2{x: p1.x - p0.x, y: p1.y - p0.y}
v := dir.perp().norm().mul(dist)
pp1 := p1.add(v)
path.LineTo(pp1.x, pp1.y)
}
// appendParalleledLineForQuadIfNeeded appends a paralleled line for a quadratic curve if the quadratic curve is just a line.
func appendParalleledLineForQuadIfNeeded(path *Path, p0, p1, p2 point, dist float32) bool {
if p0 == p1 && p0 == p2 {
panic("not reached")
}
// This curve is empty as the start and the end points are the same.
if p0 == p2 {
return true
}
// This curve is a line as the control point is the same as the start point.
if p0 == p1 || p1 == p2 {
appendParalleledLine(path, p0, p2, dist)
return true
}
// This curve is a line as p0, p1, and p2 are on the same line.
if (p1.x-p0.x)*(p2.y-p0.y)-(p2.x-p0.x)*(p1.y-p0.y) == 0 {
appendParalleledLine(path, p0, p2, dist)
return true
}
return false
}
func appendParalleledQuad(path *Path, p0, p1, p2 point, dist float32) {
if appendParalleledLineForQuadIfNeeded(path, p0, p1, p2, dist) {
return
}
doAppendParalleledQuad(path, p0, p1, p2, dist, 0)
}
func doAppendParalleledQuad(path *Path, p0, p1, p2 point, dist float32, level int) {
if p0 == p1 && p0 == p2 {
return
}
if appendParalleledLineForQuadIfNeeded(path, p0, p1, p2, dist) {
return
}
// B(t) = (1-t)*(1-t)*p0 + 2*(1-t)*t*p1 + t*t*p2
// B'(t) = 2*(1-t)*(p1-p0) + 2*t*(p2-p1)
// B'(0) = 2*(p1-p0)
// B'(0.5) = p2-p0
// B'(1) = 2*(p2-p1)
// B''(t) = 2*(p0 - 2*p1 + p2)
// t = 0
dir0 := vec2{x: p1.x - p0.x, y: p1.y - p0.y}
v0 := dir0.perp().norm().mul(dist)
pp0 := p0.add(v0)
// t = 1
dir2 := vec2{x: p2.x - p1.x, y: p2.y - p1.y}
v2 := dir2.perp().norm().mul(dist)
pp2 := p2.add(v2)
// t = 0.5
dir1 := vec2{x: p2.x - p0.x, y: p2.y - p0.y}
v1 := dir1.perp().norm().mul(dist)
mid := point{
x: 0.25*p0.x + 0.5*p1.x + 0.25*p2.x,
y: 0.25*p0.y + 0.5*p1.y + 0.25*p2.y,
}.add(v1)
// Calculate the control point P1 from B(0.5).
pp1 := point{
x: 2*mid.x - 0.5*(pp0.x+pp2.x),
y: 2*mid.y - 0.5*(pp0.y+pp2.y),
}
if level > 5 {
path.QuadTo(pp1.x, pp1.y, pp2.x, pp2.y)
return
}
// If any of the points is not a regular float32, do not call this function recursively.
if !isRegularF32(pp0.x) || !isRegularF32(pp0.y) || !isRegularF32(pp1.x) || !isRegularF32(pp1.y) || !isRegularF32(pp2.x) || !isRegularF32(pp2.y) {
path.QuadTo(pp1.x, pp1.y, pp2.x, pp2.y)
return
}
minAllowance := max(dist*63/64, 0)
maxAllowance := dist * 65 / 64
var needSplit bool
for _, t := range []float32{0.25, 0.75} {
gotP := point{
x: (1-t)*(1-t)*pp0.x + 2*(1-t)*t*pp1.x + t*t*pp2.x,
y: (1-t)*(1-t)*pp0.y + 2*(1-t)*t*pp1.y + t*t*pp2.y,
}
dir := vec2{
x: (1-t)*(p1.x-p0.x) + t*(p2.x-p1.x),
y: (1-t)*(p1.y-p0.y) + t*(p2.y-p1.y),
}
v := dir.perp().norm().mul(dist)
p := point{
x: (1-t)*(1-t)*p0.x + 2*(1-t)*t*p1.x + t*t*p2.x + v.x,
y: (1-t)*(1-t)*p0.y + 2*(1-t)*t*p1.y + t*t*p2.y + v.y,
}
expectedP := p.add(v)
if !arePointsInRange(gotP, expectedP, minAllowance, maxAllowance) {
needSplit = true
break
}
}
if !needSplit {
path.QuadTo(pp1.x, pp1.y, pp2.x, pp2.y)
return
}
// Split a quadratic curve into two quadratic curves by De Casteljau algorithm.
p01 := point{
x: (p0.x + p1.x) / 2,
y: (p0.y + p1.y) / 2,
}
p12 := point{
x: (p1.x + p2.x) / 2,
y: (p1.y + p2.y) / 2,
}
p012 := point{
x: (p01.x + p12.x) / 2,
y: (p01.y + p12.y) / 2,
}
doAppendParalleledQuad(path, p0, p01, p012, dist, level+1)
doAppendParalleledQuad(path, p012, p12, p2, dist, level+1)
}
func addJoint(strokePath *Path, subPath *subPath, opIndex int, reverse bool, options *StrokeOptions) {
var p point
var dir0, dir1 vec2
if !reverse {
nextOpIdx := opIndex + 1
if nextOpIdx == len(subPath.ops) {
if !subPath.closed {
return
}
nextOpIdx = 0
}
p = subPath.endAtOp(opIndex)
dir0 = subPath.endDir(opIndex).norm()
dir1 = subPath.startDir(nextOpIdx).norm()
} else {
nextOpIdx := opIndex - 1
if nextOpIdx == -1 {
if !subPath.closed {
return
}
nextOpIdx = len(subPath.ops) - 1
}
p = subPath.startAtOp(opIndex)
dir0 = subPath.startDir(opIndex).inv().norm()
dir1 = subPath.endDir(nextOpIdx).inv().norm()
}
if dir0 == dir1 {
return
}
v1 := dir1.perp().mul(options.Width / 2)
p1 := p.add(v1)
// If the joint is an internal angle (< 180 degrees), the joint is not rendered. Just connect the two segments.
// [vec2.cross] has a precision issue. Use a comparison instead.
if dir0.x*dir1.y > dir0.y*dir1.x {
strokePath.LineTo(p1.x, p1.y)
return
}
v0 := dir0.perp().mul(options.Width / 2)
p0 := p.add(v0)
// Add a joint.
switch options.LineJoin {
case LineJoinMiter:
theta := math.Acos(float64(dir0.x*(-dir1.x) + dir0.y*(-dir1.y)))
exceed := float32(math.Abs(1/math.Sin(float64(theta/2)))) > options.MiterLimit
if !exceed {
cp := crossingPointForTwoLines(p0, p0.add(dir0), p1, p1.add(dir1))
if isRegularF32(cp.x) && isRegularF32(cp.y) {
strokePath.LineTo(cp.x, cp.y)
}
}
strokePath.LineTo(p1.x, p1.y)
case LineJoinBevel:
strokePath.LineTo(p1.x, p1.y)
case LineJoinRound:
dir := vec2{
x: dir0.x - dir1.x,
y: dir0.y - dir1.y,
}.norm()
cp := p.add(dir.mul(options.Width / 2))
cp0 := crossingPointForTwoLines(p0, p0.add(dir0), cp, cp.add(dir.perp()))
cp1 := crossingPointForTwoLines(p1, p1.add(dir1), cp, cp.add(dir.perp()))
if isRegularF32(cp.x) && isRegularF32(cp.y) && isRegularF32(cp0.x) && isRegularF32(cp0.y) && isRegularF32(cp1.x) && isRegularF32(cp1.y) {
strokePath.ArcTo(cp0.x, cp0.y, cp.x, cp.y, options.Width/2)
strokePath.ArcTo(cp1.x, cp1.y, p1.x, p1.y, options.Width/2)
} else {
strokePath.LineTo(p1.x, p1.y)
}
}
}