Files
crnn_plate_recognition/train.py
we0091234 ffa7567057 update
2023-03-20 20:38:15 +08:00

176 lines
5.9 KiB
Python

import argparse
from easydict import EasyDict as edict
import yaml
import os
import torch
import torch.backends.cudnn as cudnn
from torch.utils.data import DataLoader
import lib.models.crnn as crnn
import lib.utils.utils as utils
from lib.dataset import get_dataset
from lib.core import function
from lib.utils.utils import model_info
from plateNet import myNet_ocr
from alphabets import plateName,plate_chr
from LPRNet import build_lprnet
from tensorboardX import SummaryWriter
def parse_arg():
parser = argparse.ArgumentParser(description="train crnn")
parser.add_argument('--cfg', help='experiment configuration filename', required=True, type=str)
parser.add_argument('--img_h', type=int, default=48, help='height')
parser.add_argument('--img_w',type=int,default=168,help='width')
args = parser.parse_args()
with open(args.cfg, 'r') as f:
# config = yaml.load(f, Loader=yaml.FullLoader)
config = yaml.load(f)
config = edict(config)
config.DATASET.ALPHABETS = plateName
config.MODEL.NUM_CLASSES = len(config.DATASET.ALPHABETS)
config.HEIGHT=args.img_h
config.WIDTH = args.img_w
return config
def main():
# load config
config = parse_arg()
# create output folder
output_dict = utils.create_log_folder(config, phase='train')
# cudnn
cudnn.benchmark = config.CUDNN.BENCHMARK
cudnn.deterministic = config.CUDNN.DETERMINISTIC
cudnn.enabled = config.CUDNN.ENABLED
# writer dict
writer_dict = {
'writer': SummaryWriter(log_dir=output_dict['tb_dir']),
'train_global_steps': 0,
'valid_global_steps': 0,
}
# construct face related neural networks
#cfg =[8,8,16,16,'M',32,32,'M',48,48,'M',64,128] #small model
cfg =[16,16,32,32,'M',64,64,'M',96,96,'M',128,256]#medium model
# cfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256] #big model
# model = crnn.get_crnn(config,cfg=cfg)
model = myNet_ocr(num_classes=len(plate_chr),cfg=cfg)
# model = build_lprnet(num_classes=len(plate_chr))
# get device
if torch.cuda.is_available():
device = torch.device("cuda:{}".format(config.GPUID))
else:
device = torch.device("cpu:0")
model = model.to(device)
# define loss function
criterion = torch.nn.CTCLoss()
last_epoch = config.TRAIN.BEGIN_EPOCH
optimizer = utils.get_optimizer(config, model)
if isinstance(config.TRAIN.LR_STEP, list):
lr_scheduler = torch.optim.lr_scheduler.MultiStepLR(
optimizer, config.TRAIN.LR_STEP,
config.TRAIN.LR_FACTOR, last_epoch-1
)
else:
lr_scheduler = torch.optim.lr_scheduler.StepLR(
optimizer, config.TRAIN.LR_STEP,
config.TRAIN.LR_FACTOR, last_epoch - 1
)
if config.TRAIN.FINETUNE.IS_FINETUNE:
model_state_file = config.TRAIN.FINETUNE.FINETUNE_CHECKPOINIT
if model_state_file == '':
print(" => no checkpoint found")
checkpoint = torch.load(model_state_file, map_location='cpu')
if 'state_dict' in checkpoint.keys():
checkpoint = checkpoint['state_dict']
# from collections import OrderedDict
# model_dict = OrderedDict()
# for k, v in checkpoint.items():
# if 'cnn' in k:
# model_dict[k[4:]] = v
# model.cnn.load_state_dict(model_dict)
model.load_state_dict(checkpoint)
# if config.TRAIN.FINETUNE.FREEZE:
# for p in model.cnn.parameters():
# p.requires_grad = False
elif config.TRAIN.RESUME.IS_RESUME:
model_state_file = config.TRAIN.RESUME.FILE
if model_state_file == '':
print(" => no checkpoint found")
checkpoint = torch.load(model_state_file, map_location='cpu')
if 'state_dict' in checkpoint.keys():
model.load_state_dict(checkpoint['state_dict'])
last_epoch = checkpoint['epoch']
# optimizer.load_state_dict(checkpoint['optimizer'])
# lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
else:
model.load_state_dict(checkpoint)
model_info(model)
train_dataset = get_dataset(config)(config, input_w=config.WIDTH,input_h=config.HEIGHT,is_train=True)
train_loader = DataLoader(
dataset=train_dataset,
batch_size=config.TRAIN.BATCH_SIZE_PER_GPU,
shuffle=config.TRAIN.SHUFFLE,
num_workers=config.WORKERS,
pin_memory=config.PIN_MEMORY,
)
val_dataset = get_dataset(config)(config,input_w=config.WIDTH,input_h=config.HEIGHT, is_train=False)
val_loader = DataLoader(
dataset=val_dataset,
batch_size=config.TEST.BATCH_SIZE_PER_GPU,
shuffle=config.TEST.SHUFFLE,
num_workers=config.WORKERS,
pin_memory=config.PIN_MEMORY,
)
best_acc = 0.5
converter = utils.strLabelConverter(config.DATASET.ALPHABETS)
for epoch in range(last_epoch, config.TRAIN.END_EPOCH):
function.train(config, train_loader, train_dataset, converter, model,
criterion, optimizer, device, epoch, writer_dict, output_dict)
lr_scheduler.step()
acc = function.validate(config, val_loader, val_dataset, converter,
model, criterion, device, epoch, writer_dict, output_dict)
is_best = acc > best_acc
best_acc = max(acc, best_acc)
print("is best:", is_best)
print("best acc is:", best_acc)
# save checkpoint
torch.save(
{
"cfg":cfg,
"state_dict": model.state_dict(),
"epoch": epoch + 1,
# "optimizer": optimizer.state_dict(),
# "lr_scheduler": lr_scheduler.state_dict(),
"best_acc": best_acc,
}, os.path.join(output_dict['chs_dir'], "checkpoint_{}_acc_{:.4f}.pth".format(epoch, acc))
)
writer_dict['writer'].close()
if __name__ == '__main__':
main()