import torch.nn as nn import torch class myNet_ocr(nn.Module): def __init__(self,cfg=None,num_classes=78,export=False): super(myNet_ocr, self).__init__() if cfg is None: cfg =[32,32,64,64,'M',128,128,'M',196,196,'M',256,256] # cfg =[32,32,'M',64,64,'M',128,128,'M',256,256] self.feature = self.make_layers(cfg, True) self.export = export # self.classifier = nn.Linear(cfg[-1], num_classes) # self.loc = nn.MaxPool2d((2, 2), (5, 1), (0, 1),ceil_mode=True) # self.loc = nn.AvgPool2d((2, 2), (5, 2), (0, 1),ceil_mode=False) self.loc = nn.MaxPool2d((5, 2), (1, 1),(0,1),ceil_mode=False) self.newCnn=nn.Conv2d(256,num_classes,1,1) # self.newBn=nn.BatchNorm2d(num_classes) def make_layers(self, cfg, batch_norm=False): layers = [] in_channels = 3 for i in range(len(cfg)): if i == 0: conv2d =nn.Conv2d(in_channels, cfg[i], kernel_size=5,stride =1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = cfg[i] else : if cfg[i] == 'M': layers += [nn.MaxPool2d(kernel_size=3, stride=2,ceil_mode=True)] else: conv2d = nn.Conv2d(in_channels, cfg[i], kernel_size=3, padding=(1,1),stride =1) if batch_norm: layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)] else: layers += [conv2d, nn.ReLU(inplace=True)] in_channels = cfg[i] return nn.Sequential(*layers) def forward(self, x): x = self.feature(x) x=self.loc(x) x=self.newCnn(x) # x=self.newBn(x) if self.export: conv = x.squeeze(2) # b *512 * width conv = conv.transpose(2,1) # [w, b, c] conv =conv.argmax(dim=2) return conv else: b, c, h, w = x.size() assert h == 1, "the height of conv must be 1" conv = x.squeeze(2) # b *512 * width conv = conv.permute(2, 0, 1) # [w, b, c] # output = F.log_softmax(self.rnn(conv), dim=2) output = torch.softmax(conv, dim=2) return output if __name__ == '__main__': x = torch.randn(1,3,48,168) cfg =[32,'M',64,'M',128,'M',256] model = myNet_ocr(num_classes=78,export=True,cfg=cfg) print(model) # out = model(x) # print(out.shape)