# Text Image Augmentation [![Build Status](https://travis-ci.org/Canjie-Luo/Text-Image-Augmentation.svg?branch=master)](https://travis-ci.org/Canjie-Luo/Text-Image-Augmentation) A general geometric augmentation tool for text images in the CVPR 2020 paper "Learn to Augment: Joint Data Augmentation and Network Optimization for Text Recognition". We provide the tool to avoid overfitting and gain robustness of text recognizers. Note that this is a general toolkit. Please customize for your specific task. If the repo benefits your work, please cite the papers. ## Requirements - [Python](https://www.python.org/) 3.6.4 - [Numpy](https://numpy.org/) 1.14.0 ## Demo - Distortion ![](imgs/distort.gif) - Stretch ![](imgs/stretch.gif) - Perspective ![](imgs/perspective.gif) ## Speed To transform an image with size (H:64, W:200), it takes less than 14ms using a 2.5GHz CPU. It is possible to accelerate the process by calling multi-process batch samplers in an on-the-fly manner, such as setting [**\"num_workers\"**](https://pytorch.org/docs/0.3.1/data.html?highlight=dataset#torch.utils.data.DataLoader) in [PyTorch](https://pytorch.org/docs/0.3.1/data.html?highlight=dataset#torch.utils.data.DataLoader). ## Attention Modify from https://github.com/Canjie-Luo/Text-Image-Augmentation.git.