mirror of
https://github.com/Ascend/ascend_community_projects.git
synced 2025-09-26 20:01:17 +08:00
108 lines
4.1 KiB
Python
108 lines
4.1 KiB
Python
# Copyright(C) 2022. Huawei Technologies Co.,Ltd. All rights reserved.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import math
|
||
import collections
|
||
import cv2
|
||
import numpy as np
|
||
import camera_configs
|
||
from yolov3_infer import yolo_infer
|
||
|
||
LEFTIMG_PATH = "./image/left_0.jpg"
|
||
RIGHTIMG_PATH = "./image/right_0.jpg"
|
||
YOLO_RESIZELEN = 416
|
||
|
||
|
||
def get_rectify(height, width):
|
||
left_matrix = camera_configs.left_camera_matrix
|
||
right_matrix = camera_configs.right_camera_matrix
|
||
left_distortion = camera_configs.left_distortion
|
||
right_distortion = camera_configs.right_distortion
|
||
R = camera_configs.R
|
||
T = camera_configs.T
|
||
|
||
# 图像尺寸
|
||
size = (width, height)
|
||
|
||
# 进行立体更正
|
||
R1, R2, P1, P2, Q, roi1, roi2 = cv2.stereoRectify(left_matrix, left_distortion,
|
||
right_matrix, right_distortion, size, R, T)
|
||
# 计算更正map
|
||
left_map1, left_map2 = cv2.initUndistortRectifyMap(left_matrix, left_distortion, R1, P1, size, cv2.CV_16SC2)
|
||
right_map1, right_map2 = cv2.initUndistortRectifyMap(right_matrix, right_distortion, R2, P2, size, cv2.CV_16SC2)
|
||
|
||
Camera = collections.namedtuple('Camera', ['left_map1', 'left_map2', 'right_map1', 'right_map2', 'Q'])
|
||
|
||
camera = Camera(left_map1, left_map2, right_map1, right_map2, Q)
|
||
return camera
|
||
|
||
|
||
def stereo_match(imgleft, imgright):
|
||
stereo = cv2.StereoSGBM_create(minDisparity=0,
|
||
numDisparities=16 * 6,
|
||
blockSize=5,
|
||
P1=216,
|
||
P2=864,
|
||
disp12MaxDiff=1,
|
||
uniquenessRatio=10,
|
||
speckleWindowSize=0,
|
||
speckleRange=1,
|
||
preFilterCap=60,
|
||
mode=cv2.STEREO_SGBM_MODE_SGBM_3WAY)
|
||
disparity = stereo.compute(imgleft, imgright)
|
||
return disparity
|
||
|
||
|
||
if __name__ == '__main__':
|
||
img1 = cv2.imread(LEFTIMG_PATH)
|
||
img2 = cv2.imread(RIGHTIMG_PATH)
|
||
|
||
img_height, img_width = img1.shape[0:2]
|
||
|
||
configs = get_rectify(img_height, img_width)
|
||
|
||
# 根据更正map对图片进行重构
|
||
img1_rectified = cv2.remap(img1, configs.left_map1, configs.left_map2, cv2.INTER_LINEAR)
|
||
img2_rectified = cv2.remap(img2, configs.right_map1, configs.right_map2, cv2.INTER_LINEAR)
|
||
cv2.imwrite("SGBM_left.jpg", img1_rectified)
|
||
|
||
# 将图片置为灰度图,为StereoSGBM作准备
|
||
imgL = cv2.cvtColor(img1_rectified, cv2.COLOR_BGR2GRAY)
|
||
imgR = cv2.cvtColor(img2_rectified, cv2.COLOR_BGR2GRAY)
|
||
|
||
# 根据SGBM/Semi-Global Block Matching方法生成差异图
|
||
left_match = stereo_match(imgL, imgR)
|
||
|
||
# 将图片扩展至3d空间中,其z方向的值则为当前的距离
|
||
threeD = cv2.reprojectImageTo3D(left_match.astype(np.float32) / 16., configs.Q)
|
||
|
||
# 因为om模型读取要YUV格式,前面cv读取处理是BGR,我暂时没找到直接定义Image类的方法,所以重读一遍重构后的图片
|
||
coordinate = yolo_infer("SGBM_left.jpg", YOLO_RESIZELEN)
|
||
|
||
for coor in coordinate:
|
||
x = coor.x1
|
||
y = coor.y1
|
||
|
||
x = int(x)
|
||
y = int(y)
|
||
|
||
print('\n像素坐标 x = %d, y = %d' % (x, y))
|
||
|
||
x = x - 1
|
||
y = y - 1
|
||
print("世界坐标xyz 是:", threeD[y][x][0] / 1000.0, threeD[y][x][1] / 1000.0, threeD[y][x][2] / 1000.0, "m")
|
||
distance = math.sqrt(threeD[y][x][0] ** 2 + threeD[y][x][1] ** 2 + threeD[y][x][2] ** 2)
|
||
distance = distance / 1000.0 # mm -> m
|
||
print("距离是:", distance, "m")
|