# Copyright(C) 2022. Huawei Technologies Co.,Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import numpy as np import cv2 GRAY = 114 def preproc(img, img_size, swap=(2, 0, 1)): """Resize the input image.""" if len(img.shape) == 3: padding_image = np.ones((img_size[0], img_size[1], 3), dtype=np.uint8) * GRAY else: padding_image = np.ones(img_size, dtype=np.uint8) * GRAY ratio = min(img_size[0] / img.shape[0], img_size[1] / img.shape[1]) resized_img = cv2.resize( img, (int(img.shape[1] * ratio), int(img.shape[0] * ratio)), interpolation=cv2.INTER_AREA, ).astype(np.uint8) top = int((int(img.shape[1] * ratio) - int(img.shape[0] * ratio)) / 2) padding_image[top: top + int(img.shape[0] * ratio), :int(img.shape[1] * ratio)] = resized_img return padding_image, ratio def clip_coords(boxes, shape): boxes[0:4:2] = boxes[0:4:2].clip(0, shape[1]) # x1, x2 boxes[1:4:2] = boxes[1:4:2].clip(0, shape[0]) # y1, y2 def scale_coords(img1_shape, coords, img0_shape, ratio_pad=None): gain = min(img1_shape[0] / img0_shape[0], img1_shape[1] / img0_shape[1]) # gain = old / new pad = (img1_shape[1] - img0_shape[1] * gain) / 2, (img1_shape[0] - img0_shape[0] * gain) / 2 # wh padding coords[0] -= pad[0] # x padding coords[2] -= pad[0] # x padding coords[1] -= pad[1] # y padding coords[3] -= pad[1] # y padding coords[0] /= gain # x padding coords[2] /= gain # x padding coords[1] /= gain # y padding coords[3] /= gain # y padding clip_coords(coords, img0_shape) return coords def xyxy2xywh(x): # Convert nx4 boxes from [x1, y1, x2, y2] to [x, y, w, h] where xy1=top-left, xy2=bottom-right y = np.copy(x) y[:, 0] = (x[:, 0] + x[:, 2]) / 2 # x center y[:, 1] = (x[:, 1] + x[:, 3]) / 2 # y center y[:, 2] = x[:, 2] - x[:, 0] # width y[:, 3] = x[:, 3] - x[:, 1] # height return y def is_jpg(image_path): _, ending = os.path.splitext(image_path) if ending != ".jpg": return False return True def is_legal(image_path): if not os.path.exists(image_path): print("The test image does not exist.") exit() if os.path.getsize(image_path) == 0: print("Error!The test image is empty.") exit() if not is_jpg(image_path): print("Please enter a JPG image") exit()