# Copyright(C) 2022. Huawei Technologies Co.,Ltd. All rights reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import os import json import cv2 from StreamManagerApi import StreamManagerApi, MxDataInput import numpy as np from plots import box_label, colors from utils import scale_coords, xyxy2xywh, is_legal, preproc names = ['non_conduct', 'abrasion_mark', 'corner_leak', 'orange_peel', 'leak', 'jet_flow', 'paint_bubble', 'pit', 'motley', 'dirty_spot'] if __name__ == '__main__': # init stream manager streamManagerApi = StreamManagerApi() ret = streamManagerApi.InitManager() if ret != 0: print("Failed to init Stream manager, ret=%s" % str(ret)) exit() # create streams by pipeline config file with open("./pipeline/AlDefectDetection.pipeline", 'rb') as f: pipelineStr = f.read() ret = streamManagerApi.CreateMultipleStreams(pipelineStr) if ret != 0: print("Failed to create Stream, ret=%s" % str(ret)) exit() # Construct the input of the stream dataInput = MxDataInput() ORI_IMG_PATH = "test.jpg" is_legal(ORI_IMG_PATH) # read image ori_img = cv2.imread(ORI_IMG_PATH) h0, w0 = ori_img.shape[:2] r = 640 / max(h0, w0) # ratio input_shape = (640, 640) pre_img = preproc(ori_img, input_shape)[0] pre_img = np.ascontiguousarray(pre_img) PRE_IMG_PATH = "pre_" + ORI_IMG_PATH cv2.imwrite(PRE_IMG_PATH, pre_img) with open(PRE_IMG_PATH, 'rb') as f: dataInput.data = f.read() # Inputs data to a specified stream based on streamName. STREAMNAME = b'classification+detection' INPLUGINID = 0 uniqueId = streamManagerApi.SendDataWithUniqueId(STREAMNAME, INPLUGINID, dataInput) if uniqueId < 0: print("Failed to send data to stream.") exit() # Obtain the inference result by specifying streamName and uniqueId. inferResult = streamManagerApi.GetResultWithUniqueId(STREAMNAME, uniqueId, 10000) if inferResult.errorCode != 0: print("GetResultWithUniqueId error. errorCode=%d, errorMsg=%s" % ( inferResult.errorCode, inferResult.data.decode())) exit() results = json.loads(inferResult.data.decode()) gn = np.array(ori_img.shape)[[1, 0, 1, 0]] bboxes = [] classVecs = [] # draw the result and save image for info in results['MxpiObject']: bboxes.append([int(info['x0']), int(info['y0']), int(info['x1']), int(info['y1'])]) classVecs.append(info["classVec"]) for (xyxy, classVec) in zip(bboxes, classVecs): xyxy = scale_coords(pre_img.shape[:2], np.array(xyxy), ori_img.shape[:2]) xywh = (xyxy2xywh(xyxy.reshape(1, 4)) / gn).reshape(-1).tolist() # normalized xywh print(classVec) label = f'{classVec[0]["className"]} {classVec[0]["confidence"]:.4f}' save_img = box_label(ori_img, xyxy, label, color=colors[names.index(classVec[0]["className"])]) cv2.imwrite('./result_' + ORI_IMG_PATH, save_img) ###################################################################################### # print the infer result print(inferResult.data.decode()) # destroy streams streamManagerApi.DestroyAllStreams()