#include "test_common.hpp" #include "test_perf.hpp" void PERF_TEST::Test_MatMul(aclCxt *acl_context) { int val, n; int valmax = 4096; int cycle_index = 100; double begin, end, time, acltime; Common_Test test; vector type{CV_32FC1}; for (size_t i = 0; i < type.size(); ++i) { for (val = 8; val <= valmax; val *= 2) { Mat mat_src(val, val, type[i]); Mat mat_src1(val, val, type[i]); Mat mat_dest(val, val, type[i]); Mat mat_dest1(val, val, type[i]); test.SetDataRange(mat_src, 32); test.SetDataRange(mat_src1, 32); test.SetDataRange(mat_dest, 32); aclMat aclmat_src(val, val, type[i], mat_src.data, acl_context); aclMat aclmat_src1(val, val, type[i], mat_src1.data, acl_context); aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context); n = cycle_index; begin = static_cast(getTickCount()); while (n--) mat_dest = mat_src * mat_src1; end = static_cast(getTickCount()); time = (end - begin) / getTickFrequency() / cycle_index; n = (cycle_index - 1); MatMul(aclmat_src1, aclmat_src, aclmat_dest, 0); wait_stream(acl_context, 0); begin = static_cast(getTickCount()); while (n--) MatMul(aclmat_src1, aclmat_src, aclmat_dest, 1); wait_stream(acl_context, 1); end = static_cast(getTickCount()); acltime = (end - begin) / getTickFrequency() / (cycle_index - 1); aclmat_dest.download(mat_dest1); bool ret = test.Test_Diff(mat_dest, mat_dest1); ASSERT_TRUE(ret); if (val < 128) cout << "Shape: " << val << " x " << val << "\t\t"; else cout << "Shape: " << val << " x " << val << "\t"; cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl; } } } void PERF_TEST::Test_Convolution(aclCxt *acl_context) { int val, n; int valmax = 4096; int cycle_index = 100; double begin, end, time, acltime; Common_Test test; vector type{CV_32FC1}; for (size_t i = 0; i < type.size(); ++i) { for (val = 8; val <= valmax; val *= 2) { Mat mat_src(val, val, type[i], Scalar{1, 2}); Mat mat_kernel(3, 3, type[i], Scalar(1, 4)); Mat mat_dest(val, val, type[i], Scalar{6}); aclMat aclmat_src(val, val, type[i], mat_src.data, acl_context); aclMat aclmat_kernel(3, 3, type[i], mat_kernel.data, acl_context); aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context); n = cycle_index; begin = static_cast(getTickCount()); while (n--) filter2D(mat_src, mat_dest, -1, mat_kernel); end = static_cast(getTickCount()); time = (end - begin) / getTickFrequency() / cycle_index; vector strides{1, 1, 1, 1}; vector pads{1, 1, 1, 1}; n = (cycle_index - 1); Convolution(aclmat_src, aclmat_kernel, aclmat_dest, strides, pads, 0); wait_stream(acl_context, 0); begin = static_cast(getTickCount()); while (n--) Convolution(aclmat_src, aclmat_kernel, aclmat_dest, strides, pads, 1); wait_stream(acl_context, 1); end = static_cast(getTickCount()); Mat mat_dest1(aclmat_dest.rows, aclmat_dest.cols, type[i]); acltime = (end - begin) / getTickFrequency() / (cycle_index - 1); aclmat_dest.download(mat_dest1); /* bool ret = test.Test_Diff(mat_dest, mat_dest1); ASSERT_TRUE(ret); */ if (val < 128) cout << "Shape: " << val << " x " << val << "\t\t"; else cout << "Shape: " << val << " x " << val << "\t"; cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl; } } }