This commit is contained in:
luoliang
2022-07-22 17:14:48 +08:00
commit b5c1dcf4d8
33 changed files with 4992 additions and 0 deletions

139
README_CN.md Executable file
View File

@@ -0,0 +1,139 @@
# Opencv ACL模块安装及使用<a name="ZH-CN_TOPIC_0302083215"></a>
## 功能描述<a name="section1421916179418"></a>
该模块实现了Opencv部分模块对AscendCL的支持,包括MAT类及部分矩阵操作函数具体见API接口文档
## 目录结构<a name="section8733528154320"></a>
```
├── CMakeLists.txt //Cmake配置
├── include //头文件目录
│ └── opencv2
│ └── acl
│ ├── acl.hpp //ACL头文件
│ ├── acl_init.hpp //ACL初始化模块类的声明
│ ├── acl_mat.hpp //aclMat类的声明
│ ├── acl_type.hpp //ACL类型声明
│ ├── gemm.hpp //gemm模块
│ ├── init_core.hpp //ACL初始化环境核心实现
│ ├── mat_core.hpp //Mat类核心实现
│ ├── mathfuncs.hpp //math函数模块
│ ├── matrices.hpp //矩阵操作模块
│ └── operator_desc.hpp //算子描述模块
├── README_CN.md
├── run.sh //自动化部署脚本
├── src //源文件目录,对应声明
│ ├── acl_init.cpp
│ ├── acl_mat.cpp
│ ├── gemm.cpp
│ ├── mathfuncs.cpp
│ ├── matrices.cpp
│ ├── operator_desc.cpp
│ └── precomp.hpp //头文件总包含
└── test //单元测试目录
├── acl.cpp //总测试模块
├── acl.json
├── test_acl.cpp //aclMat类重载运算符测试
├── test_common.cpp //测试公用模块
├── test_common.hpp //测试公用模块声明
├── test_correctness.cpp //函数正确性验证
├── test_correctness.hpp
├── test_gemm.cpp //gemm模块性能验证
├── test_main.cpp
├── test_mathfuncs.cpp //math函数模块性能验证
├── test_matrices.cpp //矩阵操作模块性能验证
├── test_perf.hpp
└── test_precomp.hpp //测试头文件总包含
```
## 环境要求<a name="zh-cn_topic_0230709958_section1256019267915"></a>
- 操作系统及架构CentOS x86\_64、CentOS aarch64、Ubuntu 18.04 x86\_64、EulerOS x86、EulerOS aarch64
- 编译器:
- 运行环境操作系统架构为x86时编译器为g++
- 运行环境操作系统架构为arm64时编译器为aarch64-linux-gnu-g++
- python及依赖的库Python3.7.*x*3.7.0 ~ 3.7.11、Python3.8.*x*3.8.0 ~ 3.8.11
- 已完成昇腾AI软件栈的部署。
## 配置环境变量
- 开发环境上环境变量配置
1. CANN-Toolkit包提供进程级环境变量配置脚本供用户在进程中引用以自动完成CANN基础环境变量的配置配置示例如下所示
```
. ${HOME}/Ascend/ascend-toolkit/set_env.sh
```
“$HOME/Ascend”请替换“Ascend-cann-toolkit”包的实际安装路径。
2. 算子编译依赖Python以Python3.7.5为例请以运行用户执行如下命令设置Python3.7.5的相关环境变量。
```
#用于设置python3.7.5库文件路径
export LD_LIBRARY_PATH=/usr/local/python3.7.5/lib:$LD_LIBRARY_PATH
#如果用户环境存在多个python3版本则指定使用python3.7.5版本
export PATH=/usr/local/python3.7.5/bin:$PATH
```
Python3.7.5安装路径请根据实际情况进行替换,您也可以将以上命令写入~/.bashrc文件中然后执行source ~/.bashrc命令使其立即生效。
3. 开发环境上设置环境变量配置AscendCL单算子验证程序编译依赖的头文件与库文件路径。
编译脚本会按环境变量指向的路径查找编译依赖的头文件和库文件,“$HOME/Ascend”请替换“Ascend-cann-toolkit”包的实际安装路径。
- 当运行环境操作系统架构是x86时配置示例如下所示
```
export DDK_PATH=$HOME/Ascend/ascend-toolkit/latest/x86_64-linux
export NPU_HOST_LIB=$DDK_PATH/acllib/lib64/stub
```
- 当运行环境操作系统架构时AArch64时配置示例如下所示
```
export DDK_PATH=$HOME/Ascend/ascend-toolkit/latest/arm64-linux
export NPU_HOST_LIB=$DDK_PATH/acllib/lib64/stub
```
- 运行环境上环境变量配置
- 若运行环境上安装的“Ascend-cann-toolkit”包环境变量设置如下
```
. ${HOME}/Ascend/ascend-toolkit/set_env.sh
```
- 若运行环境上安装的“Ascend-cann-nnrt”包环境变量设置如下
```
. ${HOME}/Ascend/nnrt/set_env.sh
```
- 若运行环境上安装的“Ascend-cann-nnae”包环境变量设置如下
```
. ${HOME}/Ascend/nnae/set_env.sh
```
“$HOME/Ascend”请替换相关软件包的实际安装路径。
## 安装说明
1. 在配置好AScend之后,用户需要官网下载好opencv库和本模块(acl),保证acl模块和opencv在同一级目录下
2. 进入acl目录将run.sh脚本拷贝或者移动到acl和opencv的同级目录
3. 如果acl路径不在系统默认路径修改acl/CMakelists.txt文件修改acl_lib,acl_inc路径
4. 给脚本文件加权限: chmod +x run.sh
5. 运行脚本: ./run.sh
6. 如果需要安装之后运行单元测试模块,可在脚本后加命令: ./run.sh ACLTEST

23
acl/CMakeLists.txt Normal file
View File

@@ -0,0 +1,23 @@
#if(NOT HAVE_ACL)
# ocv_module_disable(acl)
# return()
#endif()
#set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS}" "-DENABLE_DVPP_INTERFACE")
set(acl_lib "/usr/local/Ascend/ascend-toolkit/latest/acllib/lib64/stub/")
set(acl_lib "/usr/local/Ascend/ascend-toolkit/latest/fwkacllib/lib64/stub/")
link_directories(${acl_lib})
set(acl_inc "/usr/local/Ascend/ascend-toolkit/latest/acllib/include/")
set(acl_inc "/usr/local/Ascend/ascend-toolkit/latest/fwkacllib/include/")
ocv_include_directories(${acl_inc})
set(ASCEND_LIBRARIES "ascendcl" "stdc++" "acl_op_compiler")
set(the_description "ACL-accelerated Computer Vision")
ocv_define_module(acl opencv_core opencv_imgproc opencv_features2d opencv_objdetect opencv_video opencv_calib3d opencv_ml "${ASCEND_LIBRARIES}")
ocv_target_link_libraries(${the_module} "${ASCEND_LIBRARIES}")
ocv_warnings_disable(CMAKE_CXX_FLAGS -Wshadow -Woverloaded-virtual -Wunused-private-field)

View File

@@ -0,0 +1,57 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_ACL_HPP
#define OPENCV_ACL_HPP
#include "acl_type.hpp"
#include "acl_init.hpp"
#include "acl_mat.hpp"
#include "operator_desc.hpp"
#include "mathfuncs.hpp"
#include "matrices.hpp"
#include "gemm.hpp"
#include "mat_core.hpp"
#include "init_core.hpp"
#endif

View File

@@ -0,0 +1,58 @@
#ifndef OPENCV_ACL_INIT_HPP
#define OPENCV_ACL_INIT_HPP
#include <memory>
#include <vector>
#include "opencv2/core.hpp"
#include "acl_type.hpp"
using namespace std;
namespace cv
{
namespace acl
{
CV_EXPORTS Mutex &getInitMutex();
//////////////////////////////// aclEnv ////////////////////////////////
class CV_EXPORTS aclEnv
{
public:
aclEnv();
aclEnv(const char* config_path);
static aclEnv* get_acl_env(const char* config_path);
int get_device_count();
int *refcount;
~aclEnv();
private:
uint32_t _device_count;
};
//////////////////////////////// aclCxt ////////////////////////////////
class CV_EXPORTS aclCxt
{
public:
aclCxt();
aclCxt(int device_id);
aclrtContext* get_context();
void set_current_context();
void create_stream(int count = 1);
aclStream get_stream(const size_t index = 0);
~aclCxt();
private:
int32_t _device_id;
aclrtContext* _context;
std::vector<aclStream> _acl_streams;
};
//////////////////////////////// device ////////////////////////////////
CV_EXPORTS aclCxt *set_device(const char* config_path, int device_id = 0, int stream_count = 1);
CV_EXPORTS void release_device(aclCxt* context);
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -0,0 +1,173 @@
#ifndef OPENCV_ACL_MAT_HPP
#define OPENCV_ACL_MAT_HPP
#include "acl/acl.h"
#include "opencv2/core.hpp"
#include "acl_type.hpp"
#include "acl_init.hpp"
namespace cv
{
namespace acl
{
//////////////////////////////// aclMat ////////////////////////////////
class CV_EXPORTS aclMat
{
public:
//! default constructor
aclMat();
//! constructs aclMatrix of the specified size and type (_type is CV_8UC1, CV_16FC1 etc.)
aclMat(int rows, int cols, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_HUGE_FIRST);
aclMat(Size size, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_HUGE_FIRST);
//! copy constructor
aclMat(const aclMat &m);
//! constructor for aclMatrix headers pointing to user-allocated data
aclMat(int rows, int cols, int type, void *data, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
aclMat(Size size, int type, void *data, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
//! creates a matrix header for a part of the bigger matrix
aclMat(const aclMat &m, const Range &rowRange, const Range &colRange = Range::all());
aclMat(const aclMat &m, const Rect &roi);
//! builds aclMat from Mat. Perfom blocking upload to device.
aclMat (const Mat &m, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_HUGE_FIRST);
//! destructor - calls release()
~aclMat();
//! assignment operators shallow copy
aclMat &operator=(const aclMat &m);
//! assignment operator. Perfom blocking upload to device.
aclMat &operator=(const Mat &m);
//! pefroms blocking upload data to aclMat.
void upload(const Mat &m, ALIGNMENT config = MEMORY_UNALIGNED);
void upload(const Mat &m, aclStream stream, ALIGNMENT config = MEMORY_UNALIGNED);
//! downloads data from device to host memory. Blocking calls.
void download(Mat &m, ALIGNMENT config = MEMORY_UNALIGNED) const;
void download(Mat &m, aclStream stream, ALIGNMENT config = MEMORY_UNALIGNED) const;
operator Mat() const;
aclMat clone() const;
void copyTo(aclMat& dest) const;
//! returns a new aclMatrix header for the specified row
aclMat row(int y) const;
//! returns a new aclMatrix header for the specified column
aclMat col(int x) const;
//! ... for the specified row span
aclMat rowRange(int startrow, int endrow) const;
aclMat rowRange(const Range &r) const;
//! ... for the specified column span
aclMat colRange(int startcol, int endcol) const;
aclMat colRange(const Range &r) const;
//! locates aclMatrix header within a parent aclMatrix. See below
void locateROI(Size &wholeSize, Point &ofs) const;
//! moves/resizes the current aclMatrix ROI inside the parent aclMatrix.
aclMat &adjustROI(int dtop, int dbottom, int dleft, int dright);
//! allocates new aclMatrix data unless the aclMatrix already has specified size and type.
// previous data is unreferenced if needed.
void create(int rows, int cols, int type, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_HUGE_FIRST);
void create(Size size, int type, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_HUGE_FIRST);
//! allocates new aclMatrix with specified device memory type.
void createEx(int rows, int cols, int type, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_HUGE_FIRST);
void createEx(Size size, int type, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_HUGE_FIRST);
//! decreases reference counter;
// deallocate the data when reference counter reaches 0.
void release();
//! swaps with other smart pointer
void swap(aclMat &mat);
//! extracts a rectangular sub-aclMatrix
// (this is a generalized form of row, rowRange etc.)
aclMat operator()( Range rowRange, Range colRange ) const;
aclMat operator()( const Rect &roi ) const;
aclMat& operator+=( const aclMat& m );
aclMat& operator-=( const aclMat& m );
aclMat& operator/=( const aclMat& m );
aclMat& operator*=( const aclMat& m );
//! returns true if the aclMatrix data is continuous
// (i.e. when there are no gaps between successive rows).
// similar to CV_IS_aclMat_CONT(cvaclMat->type)
bool isContinuous() const;
//! returns element size in bytes,
// similar to CV_ELEM_SIZE(cvMat->type)
size_t elemSize() const;
//! returns the size of element channel in bytes.
size_t elemSize1() const;
//! returns element type, similar to CV_MAT_TYPE(cvMat->type)
int type() const;
//! returns element type, i.e. 8UC3 returns 8UC4 because in acl
//! 3 channels element actually use 4 channel space
int acltype() const;
//! returns element type, similar to CV_MAT_DEPTH(cvMat->type)
int depth() const;
//! returns element type, similar to CV_MAT_CN(cvMat->type)
int channels() const;
//! returns element type, return 4 for 3 channels element,
//!becuase 3 channels element actually use 4 channel space
int aclchannels() const;
//! returns step/elemSize1()
size_t step1() const;
//! returns aclMatrix size:
// width == number of columns, height == number of rows
Size size() const;
//! returns true if aclMatrix data is NULL
bool empty() const;
friend void swap(aclMat &a, aclMat &b);
friend void ensureSizeIsEnough(int rows, int cols, int type, aclMat &m, ALIGNMENT config = MEMORY_UNALIGNED);
friend void ensureSizeIsEnough(Size size, int type, aclMat &m, ALIGNMENT config = MEMORY_UNALIGNED);
/*! includes several bit-fields:
- the magic signature
- continuity flag
- depth
- number of channels
*/
int flags;
//! the number of rows and columns
int rows, cols;
//! a distance between successive rows in bytes; includes the gap if any
size_t step;
//! pointer to the data(ACL memory object)
//uchar *data;
//! OpenCL context associated with the aclMat object.
void *data; // TODO
//! pointer to the reference counter;
// when aclMatrix points to user-allocated data, the pointer is NULL
int *refcount;
//! helper fields used in locateROI and adjustROI
//datastart and dataend are not used in current version
uchar *datastart;
uchar *dataend;
//add offset for handle ROI, calculated in byte
int offset;
//add wholerows and wholecols for the whole matrix, datastart and dataend are no longer used
int wholerows;
int wholecols;
aclCxt *acl_context;
size_t totalSize;
};
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -0,0 +1,158 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_ACL_TYPE_HPP
#define OPENCV_ACL_TYPE_HPP
#define AclSafeCall(expr) __aclSafeCall(expr, __FILE__, __LINE__, __func__)
#define AclVerifyCall(expr) __aclSafeCall(res, __FILE__, __LINE__, __func__)
#include <iostream>
#include "opencv2/core.hpp"
#include "acl/acl.h"
namespace cv
{
namespace acl
{
/**
* An error is reported if the expression value is not 0
*/
static inline void __aclSafeCall(int err, const char* file, const int line, const char *func="")
{
if(0 != err)
{
const char* function = func ? func : "unknown function";
std::cerr << "Acl Called Error: " << "file " << file << ", func " << function << ", line " << line << " errorCode: " << err << std::endl;
std::cerr.flush();
}
}
/* Memory alignment */
enum ALIGNMENT { MEMORY_UNALIGNED = 0, MEMORY_ALIGN = 1};
enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
typedef aclrtStream aclStream;
typedef enum Opdims { TWO_DIMS = 1, FOUR_DIMS } Opdims;
enum DeviceType
{
ACL_DEVICE_TYPE_DEFAULT = (1 << 0),
ACL_DEVICE_TYPE_200 = (1 << 1),
ACL_DEVICE_TYPE_ACCELERATOR = (1 << 3),
};
enum AttrType
{
OP_BOOL = 1,
OP_INT,
OP_FLOAT,
OP_STRING
};
typedef enum MemMallocPolicy
{
MALLOC_HUGE_FIRST = 1,
MALLOC_HUGE_ONLY,
MALLOC_NORMAL_ONLY,
MALLOC_HUGE_FIRST_P2P,
MALLOC_HUGE_ONLY_P2P,
MALLOC_NORMAL_ONLY_P2P
} MemMallocPolicy;
CV_EXPORTS aclDataType type_transition(int depth);
CV_EXPORTS aclrtMemMallocPolicy type_transition(MemMallocPolicy type);
inline aclDataType type_transition(int depth)
{
switch (depth)
{
case CV_8U:
return ACL_UINT8;
case CV_8S:
return ACL_INT8;
case CV_16U:
return ACL_UINT16;
case CV_16S:
return ACL_INT16;
case CV_16F:
return ACL_FLOAT16;
case CV_32S:
return ACL_INT32;
case CV_32F:
return ACL_FLOAT;
case CV_64F:
return ACL_DOUBLE;
}
return ACL_DT_UNDEFINED;
}
inline aclrtMemMallocPolicy type_transition(MemMallocPolicy type)
{
switch (type)
{
case MALLOC_HUGE_FIRST:
return ACL_MEM_MALLOC_HUGE_FIRST;
case MALLOC_HUGE_ONLY:
return ACL_MEM_MALLOC_HUGE_ONLY;
case MALLOC_NORMAL_ONLY:
return ACL_MEM_MALLOC_NORMAL_ONLY;
case MALLOC_HUGE_FIRST_P2P:
return ACL_MEM_MALLOC_HUGE_FIRST_P2P;
case MALLOC_HUGE_ONLY_P2P:
return ACL_MEM_MALLOC_HUGE_ONLY_P2P;
case MALLOC_NORMAL_ONLY_P2P:
return ACL_MEM_MALLOC_NORMAL_ONLY_P2P;
}
return ACL_MEM_MALLOC_HUGE_FIRST;
}
} /* end of namespace acl */
} /* end of namespace cv */
#endif /* __OPENCV_ACL_HPP__ */

View File

@@ -0,0 +1,21 @@
#ifndef OPENCV_GEMM_HPP
#define OPENCV_GEMM_HPP
#include "acl_mat.hpp"
namespace cv
{
namespace acl
{
// matrix multiplication
CV_EXPORTS void MatMul(const aclMat& src1, const aclMat& src2, aclMat& dest);
// convolution
CV_EXPORTS void Convolution(const aclMat& src, const aclMat& kernel, aclMat& dest, \
const vector<int64_t>& stridesList = vector<int64_t> {1, 1, 1, 1}, const vector<int64_t>& padsList = vector<int64_t> {0, 0, 0, 0});
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -0,0 +1,118 @@
#ifndef OPENCV_INIT_CORE_HPP
#define OPENCV_INIT_CORE_HPP
#include "acl_init.hpp"
namespace cv
{
namespace acl
{
///////////////////////////aclEnv//////////////////////////////////
/**
* acl init
*/
inline aclEnv::aclEnv()
{}
inline aclEnv::aclEnv(const char* config_path)
{
uint32_t device_count;
AclSafeCall(aclInit(config_path));
AclSafeCall(aclrtGetDeviceCount(&device_count));
_device_count = device_count;
// Reference Counting
refcount = static_cast<int *>(fastMalloc(sizeof(*refcount)));
*refcount = 0;
clog << "aclInit() is success" << endl;
}
inline int aclEnv::get_device_count()
{
return _device_count;
}
inline aclEnv::~aclEnv()
{
AclSafeCall(aclFinalize());
clog << "aclFinalize() is success" << endl;
}
/////////////////////////////////////////aclCxt////////////////////////////
inline aclCxt::aclCxt() {};
inline aclCxt::aclCxt(int device_id) : _device_id(device_id)
{
_context = static_cast<aclrtContext *>(fastMalloc(sizeof(*_context)));
AclSafeCall(aclrtCreateContext(_context, _device_id));
clog << "aclrtCreateContext() is success" << endl;
}
inline aclrtContext* aclCxt::get_context()
{
return _context;
}
/**
* set current context
*/
inline void aclCxt::set_current_context()
{
AclSafeCall(aclrtSetCurrentContext(*_context));
}
inline void aclCxt::create_stream(int count)
{
CV_Assert(count > 0);
int i;
for(i = 0; i <count; i++)
{
aclStream stream;
AclSafeCall(aclrtCreateStream(&stream));
_acl_streams.push_back(stream);
}
clog << "aclrtCreateStream() is success" << endl;
}
inline aclrtStream aclCxt::get_stream(const size_t index)
{
CV_Assert(index < _acl_streams.size());
return _acl_streams[index];
}
/**
* destroy stream and context
*/
inline aclCxt::~aclCxt()
{
size_t i = 0;
AclSafeCall(aclrtSetCurrentContext(*_context));
for (i = 0; i < _acl_streams.size(); i++)
{
aclStream acl_stream = _acl_streams[i];
AclSafeCall(aclrtDestroyStream(acl_stream));
}
clog << "aclrtDestroyStream() is success" << endl;
// empty vector
std::vector<aclrtStream>().swap(_acl_streams);
AclSafeCall(aclrtDestroyContext(*_context));
clog << "aclrtDestroyContext() is success" << endl;
}
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -0,0 +1,383 @@
#ifndef OPENCV_MAT_CORE_HPP
#define OPENCV_MAT_CORE_HPP
#include "acl_type.hpp"
namespace cv
{
namespace acl
{
////////////////////////////////////////////////////////////////////////
//////////////////////////////// aclMat ////////////////////////////////
////////////////////////////////////////////////////////////////////////
inline aclMat::aclMat()
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr),
datastart(nullptr), dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(0), totalSize(0)
{
}
/**
* @param [in] _acl_context: Acl context
* @param [in] config: Byte aligned or not, Default MEMORY_UNALIGNED
* @param [in] policy: Acl Memory Application mode, Default ACL_MEM_MALLOC_HUGE_FIRST
*/
inline aclMat::aclMat(int _rows, int _cols, int _type, aclCxt *_acl_context, ALIGNMENT config, MemMallocPolicy policy)
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
if (_rows > 0 && _cols > 0)
create(_rows, _cols, _type, config, policy);
}
inline aclMat::aclMat(Size _size, int _type, aclCxt *_acl_context, ALIGNMENT config, MemMallocPolicy policy)
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
if (_size.height > 0 && _size.width > 0)
create(_size, _type, config, policy);
}
inline aclMat::aclMat(const aclMat &m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount),
datastart(m.datastart), dataend(m.dataend), offset(m.offset), wholerows(m.wholerows), wholecols(m.wholecols),
acl_context(m.acl_context), totalSize(m.totalSize)
{
if (refcount)
CV_XADD(refcount, 1);
}
inline aclMat::aclMat(int _rows, int _cols, int _type, void *_data, aclCxt *_acl_context, ALIGNMENT config, size_t _step)
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
cv::Mat m(_rows, _cols, _type, _data, _step);
if (m.rows > 0 && m.cols > 0)
create(m.rows, m.cols, m.type(), config);
upload(m, config);
}
inline aclMat::aclMat(Size _size, int _type, void *_data, aclCxt *_acl_context, ALIGNMENT config, size_t _step)
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
cv::Mat m(_size, _type, _data, _step);
if (m.rows > 0 && m.cols > 0)
create(m.rows, m.cols, m.type(), config);
upload(m, config);
}
/**
* @param [in] rRange: rows begin to end, Range(start, end)
* @param [in] cRange: cols begin to end, Range(start, end)
*/
inline aclMat::aclMat(const aclMat &m, const Range &rRange, const Range &cRange)
: flags(m.flags), step(m.step), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend),
offset(m.offset), wholerows(m.wholerows), wholecols(m.wholecols), acl_context(m.acl_context), totalSize(m.totalSize)
{
if (rRange == Range::all())
rows = m.rows;
else
{
CV_Assert(0 <= rRange.start && rRange.start <= rRange.end && rRange.end <= m.rows);
rows = rRange.size();
offset += step * rRange.start;
}
if (cRange == Range::all())
cols = m.cols;
else
{
CV_Assert(0 <= cRange.start && cRange.start <= cRange.end && cRange.end <= m.cols);
cols = cRange.size();
offset += cRange.start * elemSize();
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
}
if (rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
data = static_cast<void *>((static_cast<uchar *>(m.data) + offset));
}
/**
* @param [in] roi: Matrix position, Rect(x, y, width, height)
*
*/
inline aclMat::aclMat(const aclMat &m, const Rect &roi)
: flags(m.flags), rows(roi.height), cols(roi.width), step(m.step), refcount(m.refcount), datastart(m.datastart),
dataend(m.dataend), offset(m.offset), wholerows(m.wholerows), wholecols(m.wholecols), acl_context(m.acl_context),
totalSize(m.totalSize)
{
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
offset += roi.y * step + roi.x * elemSize();
CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.wholecols &&
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.wholerows);
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
data = static_cast<void *>((static_cast<uchar *>(m.data) + offset));
}
inline aclMat::aclMat(const Mat &m, aclCxt *_acl_context, ALIGNMENT config, MemMallocPolicy policy)
: flags(0), rows(m.rows), cols(m.cols), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
if (m.rows > 0 && m.cols > 0)
create(m.rows, m.cols, m.type(), config, policy);
upload(m, config);
}
inline aclMat::~aclMat()
{
release();
}
inline aclMat &aclMat::operator=(const aclMat &m)
{
if (this != &m)
{
if (m.refcount)
CV_XADD(m.refcount, 1);
flags = m.flags;
rows = m.rows;
cols = m.cols;
step = m.step;
datastart = m.datastart;
dataend = m.dataend;
offset = m.offset;
wholerows = m.wholerows;
wholecols = m.wholecols;
refcount = m.refcount;
acl_context = m.acl_context;
totalSize = m.totalSize;
data = m.data;
}
return *this;
}
inline aclMat& aclMat::operator=(const Mat &m)
{
upload(m);
return *this;
}
inline aclMat::operator Mat() const
{
Mat m(rows, cols, type());
download(m);
return m;
}
inline aclMat aclMat::clone() const
{
aclMat m;
copyTo(m);
return m;
}
inline void aclMat::copyTo(aclMat& dest) const
{
if (this != &dest)
{
dest.rows = rows;
dest.cols = cols;
dest.step = step;
dest.wholerows = wholerows;
dest.wholecols = wholecols;
dest.refcount = refcount;
dest.acl_context = acl_context;
dest.totalSize = totalSize;
void *dev_ptr;
AclSafeCall(aclrtMalloc(&dev_ptr, totalSize, type_transition(MALLOC_HUGE_FIRST)));
AclSafeCall(aclrtMemcpy(dev_ptr, totalSize, data, totalSize, ACL_MEMCPY_DEVICE_TO_DEVICE));
dest.data = dev_ptr;
dest.datastart = static_cast<uchar *>(data);
dest.dataend = static_cast<uchar *>(data) + totalSize;
dest.refcount = static_cast<int *>(fastMalloc(sizeof(*refcount)));
*refcount = 0;
CV_XADD(refcount, 1);
dest.flags |= Mat::CONTINUOUS_FLAG;
}
}
inline aclMat aclMat::row(int y) const
{
return aclMat(*this, Range(y, y + 1), Range::all());
}
inline aclMat aclMat::col(int x) const
{
return aclMat(*this, Range::all(), Range(x, x + 1));
}
inline aclMat aclMat::rowRange(int startrow, int endrow) const
{
return aclMat(*this, Range(startrow, endrow), Range::all());
}
inline aclMat aclMat::rowRange(const Range &r) const
{
return aclMat(*this, r, Range::all());
}
inline aclMat aclMat::colRange(int startcol, int endcol) const
{
return aclMat(*this, Range::all(), Range(startcol, endcol));
}
inline aclMat aclMat::colRange(const Range &r) const
{
return aclMat(*this, Range::all(), r);
}
inline void aclMat::locateROI( Size &wholeSize, Point &ofs ) const
{
size_t esz = elemSize();
CV_DbgAssert(step > 0);
if(offset == 0)
ofs.x = ofs.y = 0;
else
{
ofs.y = (int)(offset / step);
ofs.x = (int)((offset - step * ofs.y) / esz);
CV_DbgAssert(data == (datastart + ofs.y * step + ofs.x * esz));
}
wholeSize.height = wholerows;
wholeSize.width = wholecols;
}
inline aclMat &aclMat::adjustROI( int dtop, int dbottom, int dleft, int dright )
{
Size wholeSize;
Point ofs;
size_t esz = elemSize();
locateROI( wholeSize, ofs );
int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width);
offset += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
rows = row2 - row1;
cols = col2 - col1;
if( esz * cols == step || rows == 1 )
flags |= Mat::CONTINUOUS_FLAG;
else
flags &= ~Mat::CONTINUOUS_FLAG;
data = static_cast<void *>((static_cast<uchar *>(datastart) + offset));
return *this;
}
inline void aclMat::swap(aclMat &b)
{
std::swap( flags, b.flags );
std::swap( rows, b.rows );
std::swap( cols, b.cols );
std::swap( step, b.step );
std::swap( data, b.data );
std::swap( datastart, b.datastart );
std::swap( dataend, b.dataend );
std::swap( refcount, b.refcount );
std::swap( offset, b.offset );
std::swap( wholerows, b.wholerows );
std::swap( wholecols, b.wholecols );
std::swap( acl_context, b.acl_context);
std::swap( totalSize, b.totalSize);
}
inline aclMat aclMat::operator()( Range rRange, Range cRange ) const
{
return aclMat(*this, rRange, cRange);
}
inline aclMat aclMat::operator()( const Rect &roi ) const
{
return aclMat(*this, roi);
}
inline bool aclMat::isContinuous() const
{
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
inline size_t aclMat::elemSize() const
{
return CV_ELEM_SIZE((CV_MAKE_TYPE(type(), channels())));
}
inline size_t aclMat::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
inline int aclMat::type() const
{
return CV_MAT_TYPE(flags);
}
inline int aclMat::acltype() const
{
return CV_MAKE_TYPE(depth(), aclchannels());
}
inline int aclMat::depth() const
{
return CV_MAT_DEPTH(flags);
}
inline int aclMat::channels() const
{
return CV_MAT_CN(flags);
}
inline int aclMat::aclchannels() const
{
return (CV_MAT_CN(flags)) == 3 ? 4 : (CV_MAT_CN(flags));
}
inline size_t aclMat::step1() const
{
return step / elemSize1();
}
inline Size aclMat::size() const
{
return Size(cols, rows);
}
inline bool aclMat::empty() const
{
return data == 0;
}
inline void swap( aclMat &a, aclMat &b )
{
a.swap(b);
}
inline void ensureSizeIsEnough(int rows, int cols, int type, aclMat &m, ALIGNMENT config)
{
if (m.type() == type && m.rows >= rows && m.cols >= cols)
m = m(Rect(0, 0, cols, rows));
else
m.create(rows, cols, type, config);
}
inline void ensureSizeIsEnough(Size size, int type, ALIGNMENT config, aclMat &m)
{
ensureSizeIsEnough(size.height, size.width, type, m, config);
}
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -0,0 +1,27 @@
#ifndef OPENCV_MATHFUNCS_HPP
#define OPENCV_MATHFUNCS_HPP
#include "acl_mat.hpp"
/**
* mathfunctions;
*/
namespace cv
{
namespace acl
{
CV_EXPORTS aclMat abs(const aclMat &src);
CV_EXPORTS void pow(const aclMat &src, double power, aclMat &dest);
CV_EXPORTS void sqrt(const aclMat &src, aclMat &dest);
CV_EXPORTS void add(const aclMat &src, const aclMat &other_src, aclMat &dest);
CV_EXPORTS void divide(const aclMat &src, const aclMat &other_src, aclMat &dest);
CV_EXPORTS void exp(const aclMat &src, aclMat &dest);
CV_EXPORTS void log(const aclMat &src, aclMat &dest);
CV_EXPORTS void max(const aclMat &src, const aclMat &other_src, aclMat &dest);
CV_EXPORTS void min(const aclMat &src, const aclMat &other_src, aclMat &dest);
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -0,0 +1,23 @@
#ifndef OPENCV_MATRICES_HPP
#define OPENCV_MATRICES_HPP
#include "acl_mat.hpp"
namespace cv
{
namespace acl
{
// Matrix lookup table
//CV_EXPORTS void lookUpTable(const aclMat& src, const aclMat& lut, aclMat& dst);
// Multiple channel merge
CV_EXPORTS void merge(const vector<aclMat>& mv, aclMat& dst);
// Split into channels
CV_EXPORTS void split(const aclMat& src, vector<aclMat>& mv);
// Matrix transpose
CV_EXPORTS void transpose(const aclMat& src, aclMat& dest);
CV_EXPORTS void flip(const aclMat& src, aclMat& dest, int flipCode = 0);
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -0,0 +1,93 @@
#ifndef OPENCV_OPERATOR_DESC_HPP
#define OPENCV_OPERATOR_DESC_HPP
#include <string>
#include <vector>
#include "acl_type.hpp"
#include "acl_init.hpp"
#include "acl_mat.hpp"
#include "acl/acl.h"
namespace cv
{
namespace acl
{
class CV_EXPORTS OperatorDesc
{
public:
/**
* Constructor
* @param [in] opType: op type
*/
OperatorDesc(std::string opType);
/**
* Destructor
*/
virtual ~OperatorDesc();
/**
* Add an input tensor description
* @param [in] dataType: data type
* @param [in] numDims: number of dims
* @param [in] dims: dims
* @param [in] format: format
* @return OperatorDesc
*/
OperatorDesc &AddInputTensorDesc(aclDataType dataType, int numDims, const int64_t *dims, aclFormat format);
/**
* Add an output tensor description
* @param [in] dataType: data type
* @param [in] numDims: number of dims
* @param [in] dims: dims
* @param [in] format: format
* @return OperatorDesc
*/
OperatorDesc &AddOutputTensorDesc(aclDataType dataType, int numDims, const int64_t *dims, aclFormat format);
template <typename T>
bool AddTensorAttr(const char *attrName, AttrType type, T vaule)
{
if (opAttr == nullptr)
return false;
switch (type)
{
case OP_BOOL:
aclopSetAttrBool(opAttr, attrName, vaule);
break;
case OP_INT:
aclopSetAttrInt(opAttr, attrName, vaule);
break;
case OP_FLOAT:
aclopSetAttrFloat(opAttr, attrName, vaule);
break;
default:
break;
}
return true;
}
std::string opType;
std::vector<aclTensorDesc *> inputDesc;
std::vector<aclTensorDesc *> outputDesc;
aclopAttr *opAttr;
};
// Create operator description
CV_EXPORTS OperatorDesc CreateOpDesc(const string opType, const vector<aclMat> &input_Mat, vector<aclMat> &output_Mat, aclFormat format = ACL_FORMAT_NHWC, Opdims config = FOUR_DIMS);
// Compile and run the operator
CV_EXPORTS void compileAndRunop(OperatorDesc &opDesc, vector<aclDataBuffer *> &inputBuffers_, vector<aclDataBuffer *> &outputBuffers_, aclCxt *acl_context);
// Suitable for one input and one output
CV_EXPORTS void OneInAndOneOut(const aclMat &input, aclMat &output, const string opType);
// Suitable for tow input and one output
CV_EXPORTS void TwoInAndOneOut(const aclMat &inputMat, const aclMat &inputMatOther, aclMat &outputMat, const string opType);
// run the operator
CV_EXPORTS void Runop(vector<aclMat> &input, vector<aclMat> &output, OperatorDesc &opDesc);
} /* end of namespace acl */
} /* end of namespace cv */
#endif // OPERATOR_DESC_HPP

119
acl/src/acl_init.cpp Normal file
View File

@@ -0,0 +1,119 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "precomp.hpp"
namespace cv
{
namespace acl
{
///////////////////////////aclEnv//////////////////////////////////
static Mutex *__initmutex = NULL;
Mutex &getInitMutex()
{
if (__initmutex == NULL)
__initmutex = new Mutex();
return *__initmutex;
}
aclEnv *global_aclenv = nullptr;
aclEnv* aclEnv::get_acl_env(const char* config_path)
{
if (nullptr == global_aclenv)
{
AutoLock lock(getInitMutex());
if (nullptr == global_aclenv)
global_aclenv = new aclEnv(config_path);
}
return global_aclenv;
}
/////////////////////////create acl context////////////////////////
/**
* @brief: set device and stream
* @param [in] config_path: ajson path
* @param [in] device_id: device id
* @param [in] stream_count: stream count
*/
aclCxt *set_device(const char* config_path, int device_id, int stream_count)
{
aclEnv *acl_env = aclEnv::get_acl_env(config_path);
if (global_aclenv->refcount) {
AutoLock lock(getInitMutex());
CV_XADD(global_aclenv->refcount, 1);
}
int device_count = acl_env->get_device_count();
CV_Assert(device_id < device_count);
aclCxt *acl_context = new aclCxt(device_id);
acl_context->set_current_context();
acl_context->create_stream(stream_count);
clog << "set_device() is success" << endl;
return acl_context;
}
void release_device(aclCxt* context)
{
CV_Assert(context);
delete context;
context = nullptr;
if (global_aclenv->refcount)
{
AutoLock lock(getInitMutex());
CV_XADD(global_aclenv->refcount, -1);
if (*(global_aclenv->refcount) == 0)
{
delete global_aclenv;
global_aclenv = nullptr;
}
}
clog << "release_device() is success" << endl;
}
} /* end of namespace acl */
} /* end of namespace cv */

216
acl/src/acl_mat.cpp Normal file
View File

@@ -0,0 +1,216 @@
#include "precomp.hpp"
#define ALIGN 64
namespace cv
{
namespace acl
{
/* Memory alignment */
static inline size_t alignSize(size_t sz, int n = ALIGN);
void aclMat::upload(const Mat &m, ALIGNMENT config)
{
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) || (config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy((void *)this->data, (m.step * m.rows), (void *)m.data, (m.step * m.rows), ACL_MEMCPY_HOST_TO_DEVICE);
}
else if (config == ALIGNMENT::MEMORY_ALIGN)
{
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy2d((void *)this->data, this->step, (void *)m.data, m.step, m.cols * m.elemSize(), m.rows, ACL_MEMCPY_HOST_TO_DEVICE);
}
}
void aclMat::upload(const Mat &m, aclStream stream, ALIGNMENT config)
{
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) || (config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpyAsync((void *)this->data, this->totalSize, (void *)m.data, (m.step * m.rows), ACL_MEMCPY_HOST_TO_DEVICE, stream);
}
else if (config == ALIGNMENT::MEMORY_ALIGN)
{
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy2dAsync((void *)this->data, this->step, (void *)m.data, m.step, m.cols * m.elemSize(), m.rows, ACL_MEMCPY_HOST_TO_DEVICE, stream);
}
AclSafeCall(aclrtSynchronizeStream(stream));
}
void aclMat::download(Mat &m, ALIGNMENT config) const
{
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) || (config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy((void *)m.data, (m.step * m.rows), (void *)(this->data), (m.step * m.rows), ACL_MEMCPY_DEVICE_TO_HOST);
}
else if (config == ALIGNMENT::MEMORY_ALIGN)
{
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy2d((void *)m.data, m.step, (void *)(this->data), this->step, this->cols * this->elemSize(), this->rows, ACL_MEMCPY_DEVICE_TO_HOST);
}
return;
}
void aclMat::download(Mat &m, aclStream stream, ALIGNMENT config) const
{
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) || (config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpyAsync((void *)m.data, (m.step * m.rows), (void *)(this->data), this->totalSize, ACL_MEMCPY_DEVICE_TO_HOST, stream);
}
else if (config == ALIGNMENT::MEMORY_ALIGN)
{
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy2dAsync((void *)m.data, m.step, (void *)(this->data), this->step, this->cols * this->elemSize(), this->rows, ACL_MEMCPY_DEVICE_TO_HOST, stream);
}
AclSafeCall(aclrtSynchronizeStream(stream));
return;
}
void aclMat::create(int _rows, int _cols, int _type, ALIGNMENT config, MemMallocPolicy policy)
{
createEx(_rows, _cols, _type, config, policy);
}
void aclMat::create(Size size, int type, ALIGNMENT config, MemMallocPolicy policy)
{
createEx(size, type, config, policy);
}
inline size_t alignSize(size_t sz, int n)
{
return (((sz) + n - 1) / n ) * n;
}
/* core logic */
void aclMat::createEx(int _rows, int _cols, int _type, ALIGNMENT config, MemMallocPolicy policy)
{
/* TO ENSURE */
//_type &= CV_MAT_TYPE_MASK;
_type &= TYPE_MASK;
if (rows == _rows && cols == _cols && type() == _type && data)
return;
if (data)
release();
CV_DbgAssert(_rows >= 0 && _cols >= 0);
if (_rows > 0 && _cols > 0)
{
/* TO ENSURE */
//flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
flags = Mat::MAGIC_VAL + _type;
rows = _rows;
cols = _cols;
wholerows = _rows;
wholecols = _cols;
size_t esz = elemSize();
void *dev_ptr;
if (config == ALIGNMENT::MEMORY_ALIGN)
{
if (channels() == 3)
step = alignSize(cols * esz, ALIGN * channels());
else
step = alignSize(cols * esz);
}
else
step = cols * esz;
totalSize = step * rows;
AclSafeCall(aclrtMalloc(&dev_ptr, totalSize, type_transition(policy)));
data = dev_ptr;
datastart = static_cast<uchar *>(data);
dataend = static_cast<uchar *>(data) + totalSize;
refcount = static_cast<int *>(fastMalloc(sizeof(*refcount)));
*refcount = 0;
CV_XADD(refcount, 1);
flags |= Mat::CONTINUOUS_FLAG;
}
}
void aclMat::createEx(Size size, int type, ALIGNMENT config, MemMallocPolicy policy)
{
createEx(size.height, size.width, type, config, policy);
}
void aclMat::release()
{
CV_XADD(refcount, -1);
if (data && (*refcount == 0))
{
aclrtFree(data);
}
data = nullptr;
datastart = nullptr;
dataend = nullptr;
}
aclMat &aclMat::operator+=(const aclMat &m)
{
CV_Assert(this->rows == m.rows && this->cols == m.cols && this->type() == m.type());
TwoInAndOneOut(*this, m, *this, "Add");
return *this;
}
aclMat &aclMat::operator-=(const aclMat &m)
{
CV_Assert(this->rows == m.rows && this->cols == m.cols && this->type() == m.type());
TwoInAndOneOut(*this, m, *this, "Sub");
return *this;
}
aclMat &aclMat::operator/=(const aclMat &m)
{
CV_Assert(this->rows == m.rows && this->cols == m.cols && this->type() == m.type());
TwoInAndOneOut(*this, m, *this, "Div");
return *this;
}
aclMat &aclMat::operator*=(const aclMat &m)
{
CV_Assert(this->cols == m.rows && this->type() == m.type());
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
aclMat newMat{this->rows, m.cols, this->type(), this->acl_context};
input_Mat.emplace_back(*this);
input_Mat.emplace_back(m);
output_Mat.emplace_back(newMat);
inputBuffers_.emplace_back(aclCreateDataBuffer(this->data, this->totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(m.data, m.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(nullptr, 0));
outputBuffers_.emplace_back(aclCreateDataBuffer(newMat.data, newMat.totalSize));
OperatorDesc opDesc = CreateOpDesc("MatMul", input_Mat, output_Mat, ACL_FORMAT_NHWC, TWO_DIMS);
opDesc.AddInputTensorDesc(ACL_DT_UNDEFINED, 0, nullptr, ACL_FORMAT_UNDEFINED);
opDesc.AddTensorAttr("transpose_x1", OP_BOOL, false);
opDesc.AddTensorAttr("transpose_x2", OP_BOOL, false);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, this->acl_context);
newMat.data = aclGetDataBufferAddr(outputBuffers_[0]);
*this = newMat;
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
return *this;
}
} /* end of namespace acl */
} /* end of namespace cv */

90
acl/src/gemm.cpp Normal file
View File

@@ -0,0 +1,90 @@
#include "precomp.hpp"
namespace cv
{
namespace acl
{
/**
* @brief: matrix multiplication
*
*/
void MatMul(const aclMat& src1, const aclMat& src2, aclMat& dest)
{
CV_Assert(src1.cols == src2.rows && src1.type() == src2.type());
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
input_Mat.emplace_back(src1);
input_Mat.emplace_back(src2);
output_Mat.emplace_back(dest);
inputBuffers_.emplace_back(aclCreateDataBuffer(src1.data, src1.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(src2.data, src2.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(nullptr, 0));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
OperatorDesc opDesc = CreateOpDesc("MatMul", input_Mat, output_Mat, ACL_FORMAT_NHWC, TWO_DIMS);
opDesc.AddInputTensorDesc(ACL_DT_UNDEFINED, 0, nullptr, ACL_FORMAT_UNDEFINED);
opDesc.AddTensorAttr("transpose_x1", OP_BOOL, false);
opDesc.AddTensorAttr("transpose_x2", OP_BOOL, false);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
dest.data = aclGetDataBufferAddr(outputBuffers_[0]);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
/**
* @brief convolution
* @param [in] src: characteristic matrix
* @param [in] kernel: convolution kernel
* @param [in] dest: destination matrix
* @param [in] stridesList: strides, The N and C dimensions must be set to 1
* @param [in] padSList: pads, vector<int64_t>(top, bottom, left, right)
*/
void Convolution(const aclMat& src, const aclMat& kernel, aclMat& dest, const vector<int64_t>& stridesList, const vector<int64_t>& padsList)
{
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
vector<int64_t> dilationsList{1, 1, 1, 1};
string opType = "Conv2D";
int dest_rows = (src.rows + padsList[0] + padsList[1] - (1 * (kernel.rows - 1) + 1)) / stridesList[2] + 1;
int dest_cols = (src.cols + padsList[2] + padsList[3] - (1 * (kernel.cols - 1) + 1)) / stridesList[3] + 1;
aclMat acl_dest{dest_rows, dest_cols, src.type(), src.acl_context};
vector<int64_t> shape{1, 1, src.rows, src.cols};
vector<int64_t> shape1{1, 1, kernel.rows, kernel.cols};
vector<int64_t> shape2{1, 1, acl_dest.rows, acl_dest.cols};
aclDataType dataType = type_transition(src.depth());
aclFormat format = ACL_FORMAT_NCHW;
OperatorDesc opDesc(opType);
opDesc.AddInputTensorDesc(dataType, shape.size(), shape.data(), format);
opDesc.AddInputTensorDesc(dataType, shape1.size(), shape1.data(), format);
opDesc.AddOutputTensorDesc(dataType, shape2.size(), shape2.data(), format);
auto opAttr = opDesc.opAttr;
aclopSetAttrListInt(opAttr, "strides", stridesList.size(), stridesList.data());
aclopSetAttrListInt(opAttr, "pads", padsList.size(), padsList.data());
aclopSetAttrListInt(opAttr, "dilations", dilationsList.size(), dilationsList.data());
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(kernel.data, kernel.totalSize));
outputBuffers_.emplace_back(aclCreateDataBuffer(acl_dest.data, acl_dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, src.acl_context);
acl_dest.data = aclGetDataBufferAddr(outputBuffers_[0]);
dest = acl_dest;
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
} /* end of namespace acl */
} /* end of namespace cv */

220
acl/src/mathfuncs.cpp Normal file
View File

@@ -0,0 +1,220 @@
#include "precomp.hpp"
namespace cv
{
namespace acl
{
aclMat abs(const aclMat& a)
{
aclMat dest(a.rows, a.cols, a.type(), a.acl_context);
OneInAndOneOut(a, dest, "Abs");
return a;
}
static void *power_data(double power, aclDataType type, size_t powersize)
{
void *dev_ptr;
switch(type)
{
case ACL_UINT8:
{
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
uchar power_8u = uchar(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_8u), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_INT8:
{
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
char power_8s = char(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_8s), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_FLOAT16:
{
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
float16_t power_16f = float16_t(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_16f), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_INT32:
{
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
int power_32s = int(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_32s), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_FLOAT:
{
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
float32_t power_32f = float32_t(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_32f), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_DOUBLE:
{
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
double power_64f = double(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_64f), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
default:
return nullptr;
}
}
void pow(const aclMat& src, double power, aclMat& dest)
{
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
aclDataType dataType = type_transition(src.depth());
input_Mat.emplace_back(src);
output_Mat.emplace_back(dest);
OperatorDesc opDesc = CreateOpDesc("Pow", input_Mat, output_Mat);
vector<int64_t> shape2{1};
opDesc.AddInputTensorDesc(dataType, shape2.size(), shape2.data(), ACL_FORMAT_NHWC);
size_t size = aclGetTensorDescSize(opDesc.inputDesc[1]);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(power_data(power, dataType, size), size));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
void add(const aclMat& src, const aclMat& other_src, aclMat& dest)
{
bool is_correct;
is_correct = (src.rows == other_src.rows);
is_correct &= (src.rows == dest.rows);
is_correct &= (src.cols == other_src.cols);
is_correct &= (src.cols == dest.cols);
is_correct &= (src.type() == other_src.type());
is_correct &= (src.type() == dest.type());
CV_Assert(is_correct);
TwoInAndOneOut(src, other_src, dest, "Add");
}
void divide(const aclMat& src, const aclMat& other_src, aclMat& dest)
{
bool is_correct;
is_correct = (src.rows == other_src.rows);
is_correct &= (src.rows == dest.rows);
is_correct &= (src.cols == other_src.cols);
is_correct &= (src.cols == dest.cols);
is_correct &= (src.type() == other_src.type());
is_correct &= (src.type() == dest.type());
CV_Assert(is_correct);
TwoInAndOneOut(src, other_src, dest, "Div");
}
void exp(const aclMat& src, aclMat& dest)
{
CV_Assert(src.rows == dest.rows && src.cols == dest.cols && src.type() == dest.type());
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
input_Mat.emplace_back(src);
output_Mat.emplace_back(dest);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
OperatorDesc opDesc = CreateOpDesc("Exp", input_Mat, output_Mat);
opDesc.AddTensorAttr("base", OP_FLOAT, -1.0);
opDesc.AddTensorAttr("scale", OP_FLOAT, 1.0);
opDesc.AddTensorAttr("shift", OP_FLOAT, 0.0);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[0]));
}
void log(const aclMat &src, aclMat &dest)
{
CV_Assert(src.rows == dest.rows && src.cols == dest.cols && src.type() == dest.type());
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
input_Mat.emplace_back(src);
output_Mat.emplace_back(dest);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
OperatorDesc opDesc = CreateOpDesc("Log", input_Mat, output_Mat);
opDesc.AddTensorAttr("base", OP_FLOAT, -1.0);
opDesc.AddTensorAttr("scale", OP_FLOAT, 1.0);
opDesc.AddTensorAttr("shift", OP_FLOAT, 0.0);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[0]));
}
void max(const aclMat &src, const aclMat &other_src, aclMat &dest)
{
bool is_correct;
is_correct = (src.rows == other_src.rows);
is_correct &= (src.rows == dest.rows);
is_correct &= (src.cols == other_src.cols);
is_correct &= (src.cols == dest.cols);
is_correct &= (src.type() == other_src.type());
is_correct &= (src.type() == dest.type());
CV_Assert(is_correct);
TwoInAndOneOut(src, other_src, dest, "Maximum");
}
void min(const aclMat &src, const aclMat &other_src, aclMat &dest)
{
bool is_correct;
is_correct = (src.rows == other_src.rows);
is_correct &= (src.rows == dest.rows);
is_correct &= (src.cols == other_src.cols);
is_correct &= (src.cols == dest.cols);
is_correct &= (src.type() == other_src.type());
is_correct &= (src.type() == dest.type());
CV_Assert(is_correct);
TwoInAndOneOut(src, other_src, dest, "Minimum");
}
void sqrt(const aclMat &src, aclMat &dest)
{
CV_Assert(src.rows == dest.rows && src.cols == dest.cols && src.type() == dest.type());
OneInAndOneOut(src, dest, "Sqrt");
}
} /* end of namespace acl */
} /* end of namespace cv */

438
acl/src/matrices.cpp Normal file
View File

@@ -0,0 +1,438 @@
#include "precomp.hpp"
namespace cv
{
namespace acl
{
/*
//disable
void lookUpTable(const aclMat& src, const aclMat& lut, aclMat& dest)
{
bool is_correct;
is_correct = ((src.depth() == CV_8U) || (src.depth() == CV_8S));
is_correct &= ((lut.depth() == CV_8U) || (lut.depth() == CV_8S));
is_correct &= (lut.totalSize == 256);
CV_Assert(is_correct);
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
uchar keyValue[256];
for (int i = 0; i < 256; ++i)
keyValue[i] = i;
aclMat key(1, 256, src.type(), keyValue, src.acl_context);
input_Mat.emplace_back(src);
input_Mat.emplace_back(key);
input_Mat.emplace_back(lut);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(key.data, key.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(lut.data, lut.totalSize));
aclDataType dataType = type_transition(input_Mat[0].depth());
aclFormat format = ACL_FORMAT_NHWC;
OperatorDesc opDesc("LookupTableImport");
vector<int64_t> shape1{src.rows, src.cols * src.channels()};
vector<int64_t> shape2{lut.rows, lut.cols * lut.channels()};
vector<int64_t> shape3{dest.rows, dest.cols * dest.channels()};
opDesc.AddInputTensorDesc(dataType, shape1.size(), shape1.data(), format);
opDesc.AddInputTensorDesc(dataType, shape2.size(), shape2.data(), format);
opDesc.AddInputTensorDesc(dataType, shape3.size(), shape3.data(), format);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
dest.data = aclGetDataBufferAddr(inputBuffers_[0]);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
*/
/*
void merge(const vector<aclMat>& mv, aclMat& dest)
{
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
OperatorDesc opDesc("ConcatD");
aclDataType dataType = type_transition(mv[0].depth());
for (size_t i = 0; i < mv.size(); ++i)
{
int cols = mv[i].step/mv[i].elemSize();
vector<int64_t> inputShape{1, mv[i].rows, cols, mv[i].channels()};
opDesc.AddInputTensorDesc(dataType, inputShape.size(), inputShape.data(), ACL_FORMAT_ND);
}
int cols = dest.step/dest.elemSize();
vector<int64_t> outputShape{1, dest.rows, cols, dest.channels()};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
for (size_t i = 0; i < opDesc.inputDesc.size(); ++i)
{
inputBuffers_.emplace_back(aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
}
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
aclopSetAttrInt(opDesc.opAttr, "N", mv.size());
aclopSetAttrInt(opDesc.opAttr, "concat_dim", 3);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
*/
void merge(const vector<aclMat>& mv, aclMat& dest)
{
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
OperatorDesc opDesc("Concat");
aclDataType dataType = type_transition(mv[0].depth());
vector<int64_t> inputShape{};
opDesc.AddInputTensorDesc(ACL_INT32, inputShape.size(), inputShape.data(), ACL_FORMAT_ND);
for (size_t i = 0; i < mv.size(); ++i)
{
int cols = mv[i].step/mv[i].elemSize();
vector<int64_t> inputShape{1, mv[i].rows, cols, mv[i].channels()};
opDesc.AddInputTensorDesc(dataType, inputShape.size(), inputShape.data(), ACL_FORMAT_NHWC);
}
int cols = dest.step/dest.elemSize();
vector<int64_t> outputShape{1, dest.rows, cols, dest.channels()};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_NHWC);
ino64_t N = mv.size();
aclopSetAttrInt(opDesc.opAttr, "N", N);
aclSetTensorDescName(opDesc.inputDesc[0], "concat_dim");
aclSetTensorDescName(opDesc.inputDesc[1], "x0");
aclSetTensorDescName(opDesc.inputDesc[2], "x1");
aclSetTensorDescName(opDesc.inputDesc[3], "x2");
aclSetTensorDescName(opDesc.outputDesc[0], "y");
void *dev;
int64_t concat_dim = 3;
size_t size = aclGetTensorDescSize(opDesc.inputDesc[0]);
aclrtMalloc(&dev, size, ACL_MEM_MALLOC_HUGE_FIRST);
aclrtMemcpy(dev, size, &concat_dim, size, ACL_MEMCPY_HOST_TO_DEVICE);
inputBuffers_.emplace_back(aclCreateDataBuffer(dev, size));
for (size_t i = 0; i < mv.size(); ++i)
inputBuffers_.emplace_back(aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
aclrtFree(dev);
}
/**
* @brief : Dynamic shape reasoning, compiler problems
*
*/
void transpose(const aclMat& src, aclMat& dest)
{
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
vector<aclDataBuffer *> inputBuffers_host;
OperatorDesc opDesc("Transpose");
aclDataType dataType = type_transition(src.depth());
vector<int64_t> inputShape1{1, src.rows, src.cols, src.channels()};
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(), ACL_FORMAT_ND);
vector<int64_t> inputShape2{4};
opDesc.AddInputTensorDesc(ACL_INT32, inputShape2.size(), inputShape2.data(), ACL_FORMAT_ND);
vector<int64_t> outputShape{-1, -1, -1, -1};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
void *dev;
void *perm;
size_t size = aclGetTensorDescSize(opDesc.inputDesc[1]);
aclrtMalloc(&dev, size, ACL_MEM_MALLOC_HUGE_FIRST);
aclrtMallocHost(&perm, aclGetTensorDescSize(opDesc.inputDesc.data()[1]));
((int *)perm)[0] = 0;
((int *)perm)[1] = 2;
((int *)perm)[2] = 1;
((int *)perm)[3] = 3;
aclrtMemcpy(dev, size, perm, size, ACL_MEMCPY_HOST_TO_DEVICE);
inputBuffers_.emplace_back(aclCreateDataBuffer(dev, size));
AclSafeCall(aclopCompile(opDesc.opType.c_str(),
opDesc.inputDesc.size(),
opDesc.inputDesc.data(),
opDesc.outputDesc.size(),
opDesc.outputDesc.data(),
opDesc.opAttr,
ACL_ENGINE_SYS,
ACL_COMPILE_SYS,
nullptr));
void *host_data;
size_t host_size = src.totalSize;
aclrtMallocHost(&host_data, host_size);
aclrtMemcpy(host_data, host_size, src.data, host_size, ACL_MEMCPY_DEVICE_TO_HOST);
inputBuffers_host.emplace_back(aclCreateDataBuffer(host_data, host_size));
inputBuffers_host.emplace_back(aclCreateDataBuffer(perm, size));
AclSafeCall(aclopInferShape("Transpose", opDesc.inputDesc.size(), opDesc.inputDesc.data(), \
inputBuffers_host.data(), opDesc.outputDesc.size(), opDesc.outputDesc.data(), opDesc.opAttr));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
AclSafeCall(aclopExecuteV2(opDesc.opType.c_str(),
inputBuffers_.size(),
opDesc.inputDesc.data(),
inputBuffers_.data(),
outputBuffers_.size(),
opDesc.outputDesc.data(),
outputBuffers_.data(),
opDesc.opAttr,
src.acl_context->get_stream(0)));
AclSafeCall(aclrtSynchronizeStream(src.acl_context->get_stream(0)));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[1]));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_host[0]));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_host[1]));
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[0]));
aclrtFreeHost(perm);
aclrtFreeHost(host_data);
}
/*
void transpose(const aclMat& src, aclMat& dest)
{
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
OperatorDesc opDesc("TransposeD");
aclDataType dataType = type_transition(src.depth());
vector<int64_t> inputShape1{1, src.rows, src.cols, src.channels()};
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(), ACL_FORMAT_NHWC);
vector<int64_t> outputShape{1, src.cols, src.rows, src.channels()};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_NHWC);
vector<int64_t> permlist = {0, 2, 1, 3};
aclopSetAttrListInt(opDesc.opAttr, "perm", permlist.size(), permlist.data());
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, src.acl_context);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[0]));
}
*/
void split(const aclMat& src, vector<aclMat>& mv)
{
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
int split_dim = 3;
int num_split = src.channels();
OperatorDesc opDesc("SplitD");
aclDataType dataType = type_transition(src.depth());
int cols = src.step/src.elemSize();
vector<int64_t> inputShape1{1, src.rows, cols, src.channels()};
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(), ACL_FORMAT_ND);
for (int i = 0; i < num_split; ++i)
{
int cols = mv[i].step/mv[i].elemSize();
vector<int64_t> outputShape{1, mv[i].rows, cols, mv[i].channels()};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
}
auto opAttr = opDesc.opAttr;
aclopSetAttrInt(opAttr, "split_dim", split_dim);
aclopSetAttrInt(opAttr, "num_split", num_split);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
for (int i = 0; i < num_split; ++i)
outputBuffers_.emplace_back(aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, src.acl_context);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
for (int i = 0; i < num_split; ++i)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
/*
//disable
void split(const aclMat& src, vector<aclMat>& mv)
{
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> inputBuffers_host;
vector<aclDataBuffer *> outputBuffers_;
int num_split = src.channels();
OperatorDesc opDesc("Split");
aclDataType dataType = type_transition(src.depth());
vector<int64_t> inputShape{};
opDesc.AddInputTensorDesc(ACL_INT32, inputShape.size(), inputShape.data(), ACL_FORMAT_ND);
int cols = src.step/src.elemSize();
vector<int64_t> inputShape1{1, src.rows, cols, src.channels()};
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(), ACL_FORMAT_ND);
for (int i = 0; i < num_split; ++i)
{
vector<int64_t> outputShape{-1, -1, -1, -1};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
}
aclSetTensorDescName(opDesc.inputDesc[0], "split_dim");
aclSetTensorDescName(opDesc.inputDesc[1], "x");
aclSetTensorDescName(opDesc.outputDesc[0], "y0");
aclSetTensorDescName(opDesc.outputDesc[1], "y1");
aclSetTensorDescName(opDesc.outputDesc[2], "y2");
aclopSetAttrInt(opDesc.opAttr, "num_split", num_split);
AclSafeCall(aclopCompile(opDesc.opType.c_str(),
opDesc.inputDesc.size(),
opDesc.inputDesc.data(),
opDesc.outputDesc.size(),
opDesc.outputDesc.data(),
opDesc.opAttr,
ACL_ENGINE_SYS,
ACL_COMPILE_SYS,
nullptr));
void *dev;
int split_dim = 3;
size_t size = aclGetTensorDescSize(opDesc.inputDesc[0]);
aclrtMalloc(&dev, size, ACL_MEM_MALLOC_HUGE_FIRST);
aclrtMemcpy(dev, size, &split_dim, size, ACL_MEMCPY_HOST_TO_DEVICE);
inputBuffers_host.emplace_back(aclCreateDataBuffer(&split_dim, size));
void *host_data;
size_t host_size = src.totalSize;
aclrtMallocHost(&host_data, host_size);
aclrtMemcpy(host_data, host_size, src.data, host_size, ACL_MEMCPY_DEVICE_TO_HOST);
inputBuffers_host.emplace_back(aclCreateDataBuffer(host_data, host_size));
AclSafeCall(aclopInferShape("Split", opDesc.inputDesc.size(), opDesc.inputDesc.data(), \
inputBuffers_host.data(), opDesc.outputDesc.size(), opDesc.outputDesc.data(), opDesc.opAttr));
inputBuffers_.emplace_back(aclCreateDataBuffer(dev, size));
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
for (int i = 0; i < num_split; ++i)
outputBuffers_.emplace_back(aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
AclSafeCall(aclopExecuteV2(opDesc.opType.c_str(),
inputBuffers_.size(),
opDesc.inputDesc.data(),
inputBuffers_.data(),
outputBuffers_.size(),
opDesc.outputDesc.data(),
outputBuffers_.data(),
opDesc.opAttr,
src.acl_context->get_stream(0)));
AclSafeCall(aclrtSynchronizeStream(src.acl_context->get_stream(0)));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[1]));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_host[0]));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_host[1]));
for (int i = 0; i < num_split; ++i)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
*/
static void flip_(const aclMat& src, aclMat& dest, int axis)
{
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
OperatorDesc opDesc("ReverseV2");
aclDataType dataType = type_transition(src.depth());
vector<int64_t> inputShape1{1, src.rows, src.cols, src.channels()};
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(), ACL_FORMAT_ND);
vector<int64_t> inputShape2{1};
opDesc.AddInputTensorDesc(ACL_INT32, inputShape2.size(), inputShape2.data(), ACL_FORMAT_ND);
vector<int64_t> outputShape{1, dest.rows, dest.cols, dest.channels()};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
void *dev;
size_t size = aclGetTensorDescSize(opDesc.inputDesc[1]);
aclrtMalloc(&dev, size, ACL_MEM_MALLOC_HUGE_FIRST);
aclrtMemcpy(dev, size, &axis, size, ACL_MEMCPY_HOST_TO_DEVICE);
inputBuffers_.emplace_back(aclCreateDataBuffer(dev, size));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, src.acl_context);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[1]));
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[0]));
}
void flip(const aclMat& src, aclMat& dest, int filpCode)
{
if (filpCode == 0) {
flip_(src, dest, 1);
}
else if (filpCode > 0) {
flip_(src, dest, 2);
}
else {
flip_(src, dest, 2);
aclMat tmp(dest.rows, dest.cols, dest.type(), dest.acl_context);
aclrtMemcpy(tmp.data, dest.totalSize, dest.data, dest.totalSize, ACL_MEMCPY_DEVICE_TO_DEVICE);
flip_(tmp, dest, 1);
}
}
} /* end of namespace acl */
} /* end of namespace cv */

185
acl/src/operator_desc.cpp Normal file
View File

@@ -0,0 +1,185 @@
/**
* @file operator_desc.cpp
*
* Copyright (C) 2020. Huawei Technologies Co., Ltd. All rights reserved.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
*/
#include "precomp.hpp"
using namespace std;
namespace cv
{
namespace acl
{
OperatorDesc::OperatorDesc(std::string opType) : opType(std::move(opType))
{
opAttr = aclopCreateAttr();
}
OperatorDesc::~OperatorDesc()
{
for (auto *desc : inputDesc)
{
aclDestroyTensorDesc(desc);
}
for (auto *desc : outputDesc)
{
aclDestroyTensorDesc(desc);
}
aclopDestroyAttr(opAttr);
}
OperatorDesc &OperatorDesc::AddInputTensorDesc(aclDataType dataType,
int numDims,
const int64_t *dims,
aclFormat format)
{
aclTensorDesc *desc = aclCreateTensorDesc(dataType, numDims, dims, format);
CV_Assert(desc);
inputDesc.emplace_back(desc);
return *this;
}
OperatorDesc &OperatorDesc::AddOutputTensorDesc(aclDataType dataType,
int numDims,
const int64_t *dims,
aclFormat format)
{
aclTensorDesc *desc = aclCreateTensorDesc(dataType, numDims, dims, format);
CV_Assert(desc);
outputDesc.emplace_back(desc);
return *this;
}
/**
* @brief create operator describe
*
*/
OperatorDesc CreateOpDesc(const string opType, const vector<aclMat>& input_Mat, vector<aclMat>& output_Mat, aclFormat format, Opdims config)
{
CV_Assert(config == TWO_DIMS || config == FOUR_DIMS);
size_t i;
aclDataType dataType = type_transition(input_Mat[0].depth());
OperatorDesc opDesc(opType);
for (i = 0; i < input_Mat.size(); ++i) {
if (config == TWO_DIMS)
{
int cols = input_Mat[i].step / input_Mat[i].elemSize();
vector<int64_t> shape{input_Mat[i].rows, cols};
opDesc.AddInputTensorDesc(dataType, shape.size(), shape.data(), format);
}
else if(config == FOUR_DIMS)
{
int cols = input_Mat[i].step / input_Mat[i].elemSize();
vector<int64_t> shape{1, input_Mat[i].rows, cols, input_Mat[i].channels()};
opDesc.AddInputTensorDesc(dataType, shape.size(), shape.data(), format);
}
}
for (i = 0; i < output_Mat.size(); ++i) {
if (config == TWO_DIMS)
{
int cols = output_Mat[i].step / output_Mat[i].elemSize();
vector<int64_t> shape{output_Mat[i].rows, cols};
opDesc.AddOutputTensorDesc(dataType, shape.size(), shape.data(), format);
}
else if(config == FOUR_DIMS)
{
int cols = output_Mat[i].step / output_Mat[i].elemSize();
vector<int64_t> shape{1, output_Mat[i].rows, cols, output_Mat[i].channels()};
opDesc.AddOutputTensorDesc(dataType, shape.size(), shape.data(), format);
}
}
return opDesc;
}
/**
* @brief compile and run operator
*
*/
void compileAndRunop(OperatorDesc& opDesc, vector<aclDataBuffer *>& inputBuffers_, vector<aclDataBuffer *>& outputBuffers_, aclCxt *acl_context)
{
AclSafeCall(aclopCompile(opDesc.opType.c_str(),
opDesc.inputDesc.size(),
opDesc.inputDesc.data(),
opDesc.outputDesc.size(),
opDesc.outputDesc.data(),
opDesc.opAttr,
ACL_ENGINE_SYS,
ACL_COMPILE_SYS,
nullptr));
AclSafeCall(aclopExecuteV2(opDesc.opType.c_str(),
inputBuffers_.size(),
opDesc.inputDesc.data(),
inputBuffers_.data(),
outputBuffers_.size(),
opDesc.outputDesc.data(),
outputBuffers_.data(),
opDesc.opAttr,
acl_context->get_stream(0)));
AclSafeCall(aclrtSynchronizeStream(acl_context->get_stream(0)));
}
void Runop(vector<aclMat>& input, vector<aclMat>& output, OperatorDesc& opDesc)
{
size_t i;
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
for (i = 0; i < input.size(); ++i)
inputBuffers_.emplace_back(aclCreateDataBuffer(input[i].data, input[i].totalSize));
for (i = 0; i < output.size(); ++i)
outputBuffers_.emplace_back(aclCreateDataBuffer(output[i].data, output[i].totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, output[0].acl_context);
for (i = 0; i < input.size(); ++i)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (i = 0; i < output.size(); ++i)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
void OneInAndOneOut(const aclMat& inputMat, aclMat& outputMat, const string opType)
{
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
input_Mat.emplace_back(inputMat);
output_Mat.emplace_back(outputMat);
OperatorDesc opDesc = CreateOpDesc(opType, input_Mat, output_Mat);
Runop(input_Mat, output_Mat, opDesc);
}
void TwoInAndOneOut(const aclMat& inputMat, const aclMat& inputMatOther, aclMat& outputMat, const string opType)
{
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
input_Mat.emplace_back(inputMat);
input_Mat.emplace_back(inputMatOther);
output_Mat.emplace_back(outputMat);
OperatorDesc opDesc = CreateOpDesc(opType, input_Mat, output_Mat);
Runop(input_Mat, output_Mat, opDesc);
}
} /* end of namespace acl */
} /* end of namespace cv */

70
acl/src/precomp.hpp Normal file
View File

@@ -0,0 +1,70 @@
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#ifndef OPENCV_ACL_PRECOMP_HPP__
#define OPENCV_ACL_PRECOMP_HPP__
#include <assert.h>
#include <ctype.h>
#include <float.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/acl/acl.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/acl/operator_desc.hpp"
#include "acl/acl.h"
#include "acl/acl_op_compiler.h"
using namespace std;
using namespace cv;
using namespace cv::acl;
#endif

305
acl/test/acl.cpp Normal file
View File

@@ -0,0 +1,305 @@
#include "test_correctness.hpp"
#include "test_perf.hpp"
#include "test_common.hpp"
namespace opencv_test
{
namespace
{
aclCxt *acl_context_0 = set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 1, 2);
////////////////////////////////////////////////////Correctness_test////////////////////////////////////////////////////////
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* config: MEMORY_ALIGN
* aclMat(int rows, int cols, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(Size size, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(const aclMat &m);
*
*/
TEST(ACLMAT_CONSTRUCTOR, MEMORY_ALIGN)
{
AclMat_Test test;
test.Test_constructor_ALIGN(acl_context_0);
}
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* config: MEMORY_UNALIGNED
* aclMat(int rows, int cols, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(Size size, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
*
*/
TEST(ACLMAT_CONSTRUCTOR, MEMORY_UNALIGNED)
{
AclMat_Test test;
test.Test_constructor_UNALIGNED(acl_context_0);
}
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* aclMat(const aclMat &m);
*/
TEST(ACLMAT_CONSTRUCTOR, COPY_CONSTRUCTOR)
{
AclMat_Test test;
test.Test_constructor(acl_context_0);
}
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* aclMat(int rows, int cols, int type, void *data, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
* aclMat(Size size, int type, void *data, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
*/
TEST(ACLMAT_CONSTRUCTOR, DATA)
{
AclMat_Test test;
test.Test_constructor_DATA(acl_context_0);
}
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* aclMat(const aclMat &m, const Range &rowRange, const Range &colRange = Range::all());
*
*/
TEST(ACLMAT_CONSTRUCTOR, RANGE)
{
AclMat_Test test;
test.Test_constructor_RANGE(acl_context_0);
}
/*
* test function:
* aclMat(const aclMat &m, const Rect &roi);
*
*/
TEST(ACLMAT_CONSTRUCTOR, ROI)
{
AclMat_Test test;
test.Test_constructor_ROI(acl_context_0);
}
/*
* test function:
* aclMat (const Mat &m, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
*/
TEST(ACLMAT_CONSTRUCTOR, MAT)
{
AclMat_Test test;
test.Test_constructor_MAT(acl_context_0);
}
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* CV_EXPORTS void upload(const Mat &m, ALIGNMENT config = MEMORY_UNALIGNED);
* CV_EXPORTS void upload(const Mat &m, aclStream stream, ALIGNMENT config = MEMORY_UNALIGNED);
*
*/
TEST(ACLMAT_FUNCTION, DATA_TRANSFER)
{
AclMat_Test test;
test.Test_DATA_TRANSFER(acl_context_0);
}
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* CV_EXPORTS void download(Mat &m, ALIGNMENT config = MEMORY_UNALIGNED) const;
* CV_EXPORTS void download(Mat &m, aclStream stream, ALIGNMENT config = MEMORY_UNALIGNED) const;
*
*/
TEST(ACLMAT_FUNCTION, DATA_TRANSFERASYNC)
{
AclMat_Test test;
test.Test_DATA_TRANSFERASYNC(acl_context_0);
}
/*
* test function:
* void locateROI(Size &wholeSize, Point &ofs) const;
*/
TEST(ACLMAT_FUNCTION, LOCATEROI)
{
AclMat_Test test;
test.Test_locateROI(acl_context_0);
}
/*
* test function:
* void swap(aclMat &mat);
*
*/
TEST(ACLMAT_FUNCTION, SWAP)
{
AclMat_Test test;
test.Test_swap(acl_context_0);
}
/*
* test function:
* operator+=()
*
*/
TEST(ACLMAT_FUNCTION, OPERATOR_ADD)
{
AclMat_Test test;
test.Test_operator_add(acl_context_0);
}
/*
* test function:
* operator-=()
*
*/
TEST(ACLMAT_FUNCTION, OPERATOR_SUB)
{
AclMat_Test test;
test.Test_operator_sub(acl_context_0);
}
/*
* test function:
* operator*=()
*
*/
TEST(ACLMAT_FUNCTION, OPERATOR_MUL)
{
AclMat_Test test;
test.Test_operator_mul(acl_context_0);
}
/*
* test function:
* operator/=()
*
*/
TEST(ACLMAT_FUNCTION, OPERATOR_DIV)
{
AclMat_Test test;
test.Test_operator_div(acl_context_0);
}
////////////////////////////////////////////////////Perf_test////////////////////////////////////////////////////////
TEST(Operator, add)
{
PERF_TEST test;
test.Test_operator_add_perf(acl_context_0);
}
TEST(Operator, sub)
{
PERF_TEST test;
test.Test_operator_sub_perf(acl_context_0);
}
TEST(Operator, div)
{
PERF_TEST test;
test.Test_operator_div_perf(acl_context_0);
}
TEST(Operator, mul)
{
PERF_TEST test;
test.Test_operator_mul_perf(acl_context_0);
}
TEST(Mathfuncs, abs)
{
PERF_TEST test;
test.Test_Abs(acl_context_0);
}
TEST(Mathfunction, pow)
{
PERF_TEST test;
test.Test_Pow(acl_context_0);
}
TEST(Mathfunction, sqrt)
{
PERF_TEST test;
test.Test_Sqrt(acl_context_0);
}
TEST(Mathfunction, add)
{
PERF_TEST test;
test.Test_Add(acl_context_0);
}
TEST(Mathfunction, divide)
{
PERF_TEST test;
test.Test_Divide(acl_context_0);
}
TEST(Mathfunction, exp)
{
PERF_TEST test;
test.Test_Exp(acl_context_0);
}
TEST(Mathfunction, log)
{
PERF_TEST test;
test.Test_Log(acl_context_0);
}
TEST(Mathfunction, max)
{
PERF_TEST test;
test.Test_Max(acl_context_0);
}
TEST(Mathfunction, min)
{
PERF_TEST test;
test.Test_Min(acl_context_0);
}
TEST(Gemm, MatMul)
{
PERF_TEST test;
test.Test_MatMul(acl_context_0);
}
TEST(Matrices, merge)
{
PERF_TEST test;
test.Test_Merge(acl_context_0);
}
TEST(Gemm, Convolution)
{
PERF_TEST test;
test.Test_Convolution(acl_context_0);
}
TEST(Matrices, split)
{
PERF_TEST test;
test.Test_Split(acl_context_0);
}
/*
TEST(Matrices, lookuptable)
{
PERF_TEST test;
test.Test_Lookuptable(acl_context_0);
}
*/
TEST(Matrices, transpose)
{
PERF_TEST test;
test.Test_Transpose(acl_context_0);
}
TEST(Matrices, flip)
{
PERF_TEST test;
test.Test_Flip(acl_context_0);
release_device(acl_context_0);
}
}
}

1
acl/test/acl.json Normal file
View File

@@ -0,0 +1 @@
{}

196
acl/test/test_acl.cpp Normal file
View File

@@ -0,0 +1,196 @@
#include "test_common.hpp"
#include "test_perf.hpp"
void PERF_TEST::Test_operator_add_perf(aclCxt *acl_context)
{
int val;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Perf test : Function: operator+=()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
Mat mat_dest1(val, val, type[i]);
test.SetDataRange(mat_src, 1);
test.SetDataRange(mat_dest, 1);
aclMat aclmat_src(val, val, type[i], mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest += mat_src;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest += aclmat_src;
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_operator_sub_perf(aclCxt *acl_context)
{
int val;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Perf test : Function: operator-=()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
Mat mat_dest1(val, val, type[i]);
test.SetDataRange(mat_src, 1);
test.SetDataRange(mat_dest, 1);
aclMat aclmat_src(val, val, type[i], mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest -= mat_src;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest -= aclmat_src;
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_operator_div_perf(aclCxt *acl_context)
{
int val;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Perf test : Function: operator/=()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
Mat mat_dest1(val, val, type[i]);
test.SetDataRange(mat_src, 2);
test.SetDataRange(mat_dest, 1);
aclMat aclmat_src(val, val, type[i], mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest /= mat_src;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest /= aclmat_src;
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_operator_mul_perf(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src, 1);
test.SetDataRange(mat_dest, 1);
aclMat aclmat_src(val, val, type, mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest *= mat_src;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest *= aclmat_src;
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}

238
acl/test/test_common.cpp Normal file
View File

@@ -0,0 +1,238 @@
#include "test_common.hpp"
Common_Test::Common_Test() {
srand((unsigned)time(NULL));
}
Common_Test::~Common_Test() {
}
bool Common_Test::Test_Diff(const aclMat& aclmat, const Mat& mat, ALIGNMENT config) {
bool is_correct;
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
is_correct = (aclmat.rows == mat.rows);
is_correct &= (aclmat.cols == mat.cols);
is_correct &= (aclmat.channels() == mat.channels());
is_correct &= (aclmat.type() == mat.type());
is_correct &= (aclmat.step == mat.step);
is_correct &= (aclmat.elemSize() == mat.elemSize());
is_correct &= (aclmat.totalSize == mat.total() * mat.elemSize());
is_correct &= ((aclmat.dataend - aclmat.datastart) == (mat.dataend - mat.datastart));
Mat mat_dest(mat.rows, mat.cols, mat.type());
aclmat.download(mat_dest);
is_correct &= Test_Diff(mat, mat_dest);
}
else
{
is_correct = (aclmat.rows == mat.rows);
is_correct &= (aclmat.cols == mat.cols);
is_correct &= (aclmat.channels() == mat.channels());
is_correct &= (aclmat.type() == mat.type());
is_correct &= (aclmat.elemSize() == mat.elemSize());
Mat mat_dest(mat.rows, mat.cols, mat.type());
aclmat.download(mat_dest, MEMORY_ALIGN);
is_correct &= Test_Diff(mat, mat_dest);
}
return is_correct;
}
bool Common_Test::Test_Diff(const aclMat& aclmat, const aclMat& aclmat_other) {
bool is_correct;
is_correct = (aclmat.flags == aclmat_other.flags);
is_correct &= (aclmat.rows == aclmat_other.rows);
is_correct &= (aclmat.cols == aclmat_other.cols);
is_correct &= (aclmat.type() == aclmat_other.type());
is_correct &= (aclmat.step == aclmat_other.step);
is_correct &= (aclmat.data == aclmat_other.data);
is_correct &= (aclmat.refcount == aclmat_other.refcount);
is_correct &= (aclmat.datastart == aclmat_other.datastart);
is_correct &= (aclmat.dataend == aclmat_other.dataend);
is_correct &= (aclmat.offset == aclmat_other.offset);
is_correct &= (aclmat.wholerows == aclmat_other.wholerows);
is_correct &= (aclmat.wholecols == aclmat_other.wholecols);
is_correct &= (aclmat.acl_context == aclmat_other.acl_context);
is_correct &= (aclmat.totalSize == aclmat_other.totalSize);
return is_correct;
}
bool Common_Test::Test_Diff(const Mat &mat, const Mat &mat_other)
{
bool is_correct;
is_correct = (mat.rows == mat_other.rows);
is_correct &= (mat.cols == mat_other.cols);
is_correct &= (mat.type() == mat_other.type());
is_correct &= (mat.channels() == mat.channels());
is_correct &= (mat.step == mat_other.step);
is_correct &= (mat.elemSize() == mat_other.elemSize());
is_correct &= (mat.total() == mat_other.total());
switch (mat.depth())
{
case CV_8U:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int j = 0; j < mat.channels(); ++j)
is_correct &= ((mat.data)[i+j] == (mat_other.data)[i+j]);
}
return is_correct;
case CV_16U:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int j = 0; j < mat.channels(); ++j)
is_correct &= (((unsigned short *)mat.data)[i+j] == ((unsigned short *)mat_other.data)[i+j]);
}
return is_correct;
case CV_32S:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int j = 0; j < mat.channels(); ++j)
is_correct &= (((int *)(mat.data))[i+j] == (((int *)mat_other.data))[i+j]);
}
return is_correct;
case CV_32F:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int j = 0; j < mat.channels(); ++j)
is_correct &= ((((float *)(mat.data))[i+j] - (((float *)mat_other.data))[i+j] >= -0.00001) || \
(((float *)(mat.data))[i+j] - (((float *)mat_other.data))[i+j] <= 0.00001));
}
return is_correct;
case CV_64F:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int j = 0; j < mat.channels(); ++j)
is_correct &= ((((double *)(mat.data))[i+j] - (((double *)mat_other.data))[i+j] >= -0.00001) || \
(((double *)(mat.data))[i+j] - (((double *)mat_other.data))[i+j] <= 0.00001));
}
return is_correct;
}
return is_correct;
}
void Common_Test::MatShow(cv::Mat &m, string str)
{
cout << str.c_str() << endl;
cout << m;
cout << endl
<< endl
<< endl;
}
void Common_Test::StatShow(cv::Mat &mat_src, aclMat &aclmat_dst)
{
cout << "//////////////////////////////// MatStat ////////////////////////////////" << endl;
cout << "type: " << mat_src.type() << endl;
cout << "elemSize: " << mat_src.elemSize() << endl;
cout << "channels: " << mat_src.channels() << endl;
cout << "step: " << mat_src.step << endl;
cout << "totalSize: " << mat_src.rows * mat_src.cols * mat_src.elemSize() << endl;
cout << "totalSize: " << mat_src.total() * mat_src.elemSize() << endl;
cout << "dataend - datastart: " << mat_src.dataend - mat_src.datastart << endl;
cout << "//////////////////////////////// aclMatStat ////////////////////////////////" << endl;
cout << "type: " << aclmat_dst.type() << endl;
cout << "elemSize: " << aclmat_dst.elemSize() << endl;
cout << "channels: " << aclmat_dst.channels() << endl;
cout << "step: " << aclmat_dst.step << endl;
cout << "totalSize: " << aclmat_dst.rows * aclmat_dst.step << endl;
cout << "totalSize: " << aclmat_dst.totalSize << endl;
cout << "dataend - datastart: " << aclmat_dst.dataend - aclmat_dst.datastart << endl;
cout << "wholerows: " << aclmat_dst.wholerows << endl;
cout << "wholecols: " << aclmat_dst.wholecols << endl;
cout << "offset : " << aclmat_dst.offset << endl;
}
void Common_Test::PrintLog(const string& funcname, int type)
{
switch (type)
{
case CV_8UC1:
cout << funcname << "\t"
<< "Type: CV_8UC1" << endl;
break;
case CV_8UC3:
cout << funcname << "\t"
<< "Type: CV_8UC3" << endl;
break;
case CV_32FC1:
cout << funcname << "\t"
<< "Type: CV_32FC1" << endl;
break;
case CV_32FC3:
cout << funcname << "\t"
<< "Type: CV_32FC3" << endl;
break;
case CV_32SC1:
cout << funcname << "\t"
<< "Type: CV_32SC1" << endl;
break;
case CV_32SC3:
cout << funcname << "\t"
<< "Type: CV_32SC3" << endl;
break;
case CV_64FC1:
cout << funcname << "\t"
<< "Type: CV_64FC1" << endl;
break;
default:
break;
}
}
/* srand((unsigned)time(NULL)) in constructor */
size_t Common_Test::RandDom_(int config) {
return static_cast<size_t>(rand() % config);
}
bool Common_Test::SetDataRange(Mat &src, int dataRange)
{
switch (src.depth())
{
case CV_8U:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int j = 0; j < src.channels(); ++j)
(src.data)[i+j] = RandDom_(dataRange);
}
return true;
case CV_16U:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int j = 0; j < src.channels(); ++j)
((unsigned short *)src.data)[i+j] = RandDom_(dataRange);
}
return true;
case CV_32S:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int j = 0; j < src.channels(); ++j)
((int *)src.data)[i+j] = RandDom_(dataRange);
}
return true;
case CV_32F:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int j = 0; j < src.channels(); ++j)
((float *)src.data)[i+j] = RandDom_(dataRange) / 1.0;
}
return true;
case CV_64F:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int j = 0; j < src.channels(); ++j)
((double *)src.data)[i+j] = RandDom_(dataRange) / 1.0;
}
return true;
default:
return false;
}
}

27
acl/test/test_common.hpp Normal file
View File

@@ -0,0 +1,27 @@
#ifndef __OPENCV_TEST_COMMON_HPP__
#define __OPENCV_TEST_COMMON_HPP__
#include "test_precomp.hpp"
typedef enum TestDatatype {
INT = 1,
FLOAT
} TestDatatype;
class CV_EXPORTS Common_Test {
public:
Common_Test();
~Common_Test();
CV_EXPORTS bool Test_Diff(const aclMat& aclmat, const Mat& mat, ALIGNMENT config = ALIGNMENT::MEMORY_UNALIGNED);
CV_EXPORTS bool Test_Diff(const aclMat& aclmat, const aclMat& aclmat_other);
CV_EXPORTS bool Test_Diff(const Mat& mat, const Mat& mat_other);
CV_EXPORTS void MatShow(Mat &m, string str);
CV_EXPORTS void StatShow(Mat &mat_src, aclMat &aclmat_dst);
CV_EXPORTS void PrintLog(const string& funcname, int type);
CV_EXPORTS size_t RandDom_(int config = 0xff);
CV_EXPORTS bool SetDataRange(Mat &src, int dataRange = 0xff);
};
#endif

View File

@@ -0,0 +1,691 @@
///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#include "test_common.hpp"
#include "test_correctness.hpp"
AclMat_Test::AclMat_Test() {
}
AclMat_Test::~AclMat_Test() {
}
/* thread function */
void thread_handler(void) {
aclCxt *acl_context_0 = set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 0, 1);
release_device(acl_context_0);
}
void AclMat_Test::Test_set_device() {
/* Current thread */
aclCxt *acl_context_0 = set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 0, 1);
/* Different scope */
{
aclCxt *acl_context_1 = set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 2, 3);
release_device(acl_context_1);
}
release_device(acl_context_0);
/* Different thread */
thread t(thread_handler);
t.join();
}
void AclMat_Test::Test_constructor_UNALIGNED(aclCxt *acl_context) {
Common_Test test;
int rows, cols, type;
bool ret;
const int rowsMax = 128;
const int colsMax = 128;
const int typeMax = 7;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
aclMat aclmat_src(rows, cols, type, acl_context);
test.SetDataRange(mat_src, 32);
aclmat_src.upload(mat_src);
ret = test.Test_Diff(aclmat_src, mat_src);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor_UNALIGNED: -> aclMat(rows, cols, type, acl_context, config, policy) <- is success" << endl;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
Mat mat_src(cv::Size(cols, rows), type);
test.SetDataRange(mat_src, 32);
aclMat aclmat_src(cv::Size(cols, rows), type, acl_context);
aclmat_src.upload(mat_src);
ret = test.Test_Diff(aclmat_src, mat_src);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor_UNALIGNED: -> aclMat(size, type, acl_context, config, policy) <- is success" << endl;
}
void AclMat_Test::Test_constructor_ALIGN(aclCxt *acl_context) {
Common_Test test;
int rows, cols, type;
bool ret;
const int rowsMax = 128;
const int colsMax = 128;
const int typeMax = 7;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
test.SetDataRange(mat_src, 32);
aclMat aclmat_src(rows, cols, type, acl_context, MEMORY_ALIGN);
aclmat_src.upload(mat_src, MEMORY_ALIGN);
ret = test.Test_Diff(aclmat_src, mat_src, MEMORY_ALIGN);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor_ALIGN: -> aclMat(rows, cols, type, acl_context, config, policy) <- is success" << endl;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
Mat mat_src(cv::Size(cols, rows), type);
test.SetDataRange(mat_src, 32);
aclMat aclmat_src(cv::Size(cols, rows), type, acl_context, MEMORY_ALIGN);
aclmat_src.upload(mat_src, MEMORY_ALIGN);
ret = test.Test_Diff(aclmat_src, mat_src, MEMORY_ALIGN);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor_ALIGN: -> aclMat(size, type, acl_context, config, policy) <- is success" << endl;
}
void AclMat_Test::Test_constructor(aclCxt *acl_context_0) {
Common_Test test;
int rows, cols, type;
bool ret;
const int rowsMax = 128;
const int colsMax = 128;
const int typeMax = 7;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
aclMat aclmat_src(rows, cols, type, acl_context_0);
aclMat aclmat_dest(aclmat_src);
ret = test.Test_Diff(aclmat_src, aclmat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor: -> aclMat(aclmat_src) <- is success" << endl;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
aclMat aclmat_src(cv::Size(cols, rows), type, acl_context_0, MEMORY_ALIGN);
aclMat aclmat_dest(aclmat_src);
ret = test.Test_Diff(aclmat_src, aclmat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor: -> aclMat(const aclMat& other) <- is success" << endl;
}
void AclMat_Test::Test_constructor_DATA(aclCxt *acl_context_0) {
Common_Test test;
int rows, cols, type;
bool ret;
const int rowsMax = 128;
const int colsMax = 128;
const int typeMax = 7;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
aclMat aclmat_src(rows, cols, type, mat_src.data, acl_context_0);
aclmat_src.download(mat_dest);
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
}
}
}
cerr << "Test_constructor_DATA: -> aclMat(rows, cols, type, data, acl_context)) <- is success" << endl;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
Mat mat_src(cv::Size(cols, rows), type);
Mat mat_dest(cv::Size(cols, rows), type);
test.SetDataRange(mat_src);
aclMat aclmat_src(cv::Size(cols, rows), type, mat_src.data, acl_context_0);
aclmat_src.download(mat_dest);
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
}
}
}
cerr << "Test_constructor_DATA: -> aclMat(size, type, data, acl_context)) <- is success" << endl;
}
void AclMat_Test::Test_constructor_RANGE(aclCxt *acl_context_0) {
Common_Test test;
int type;
bool ret;
int rangerows, rangecols;
int rows = 64, cols = 64;
const int rangerowsMax = 64;
const int rangecolsMax = 64;
const int typeMax = 7;
for (type = 0; type < typeMax; type++) {
for (rangerows = 4; rangerows < rangerowsMax; rangerows++) {
for (rangecols = 4; rangecols < rangecolsMax; rangecols++) {
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
Mat mat_rangesrc(mat_src, cv::Range(2, rangerows), cv::Range(2, rangecols));
Mat mat_rangedest(mat_dest, cv::Range(2, rangerows), cv::Range(2, rangecols));
aclMat aclmat_src(rows, cols, type, mat_src.data, acl_context_0);
aclMat aclmat_range(aclmat_src, cv::Range(2, rangerows), cv::Range(2, rangecols));
aclmat_range.download(mat_rangedest);
ret = test.Test_Diff(mat_rangesrc, mat_rangedest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor_RANGE: -> aclMat(aclmat_src, rowragne, colrange)) <- is success" << endl;
}
void AclMat_Test::Test_constructor_ROI(aclCxt *acl_context_0) {
Common_Test test;
{
int rows = 6, cols = 8;
int type = CV_8UC1;
cv::Rect roi(2, 2, 1, 1);
bool ret;
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
Mat mat_roi1(mat_src, roi);
Mat mat_roi(mat_dest, roi);
aclMat aclmat_src(rows, cols, type, mat_src.data, acl_context_0);
aclMat aclmat_roi(aclmat_src, roi);
aclmat_roi.download(mat_roi);
ret = test.Test_Diff(mat_roi1, mat_roi);
ASSERT_TRUE(ret);
}
{
int rows = 12, cols = 61;
int type = CV_16UC3;
cv::Rect roi(8, 8, 2, 2);
bool ret;
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
Mat mat_roi1(mat_src, roi);
Mat mat_roi(mat_dest, roi);
aclMat aclmat_src(rows, cols, type, mat_src.data, acl_context_0);
aclMat aclmat_roi(aclmat_src, roi);
aclmat_roi.download(mat_roi);
ret = test.Test_Diff(mat_roi1, mat_roi);
ASSERT_TRUE(ret);
}
{
int rows = 16, cols = 80;
int type = CV_32FC3;
cv::Rect roi(8, 4, 1, 3);
bool ret;
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
Mat mat_roi1(mat_src, roi);
Mat mat_roi(mat_dest, roi);
aclMat aclmat_src(rows, cols, type, mat_src.data, acl_context_0);
aclMat aclmat_roi(aclmat_src, roi);
aclmat_roi.download(mat_roi);
ret = test.Test_Diff(mat_roi1, mat_roi);
ASSERT_TRUE(ret);
}
clog << "Test_constructor_ROI: -> aclMat(aclmat_src, roi)) <- is success" << endl;
}
void AclMat_Test::Test_constructor_MAT(aclCxt *acl_context_0) {
Common_Test test;
int rows, cols, type;
bool ret;
const int rowsMax = 1048;
const int colsMax = 1048;
const int typeMax = 7;
for (type = 0; type < typeMax; type++) {
for (rows = 1000; rows < rowsMax; rows++) {
for (cols = 1000; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
aclMat aclmat_src(mat_src, acl_context_0);
aclmat_src.download(mat_dest);
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor_MAT: -> aclMat(mat_src, acl_context_0)) <- is success" << endl;
}
void AclMat_Test::Test_DATA_TRANSFER(aclCxt *acl_context_0) {
Common_Test test;
int rows, cols, type;
bool ret;
const int rowsMax = 1048;
const int colsMax = 1048;
const int typeMax = 7;
for (type = 0; type < typeMax; type++)
{
for (rows = 1000; rows < rowsMax; rows++)
{
for (cols = 1000; cols < colsMax; cols++)
{
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
aclMat aclmat_src(rows, cols, type, acl_context_0);
aclmat_src.upload(mat_src);
aclmat_src.download(mat_dest);
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_DATA_TRANSFER_UNALIGNED: -> upload(), download() <- is success" << endl;
for (type = 0; type < typeMax; type++)
{
for (rows = 1000; rows < rowsMax; rows++)
{
for (cols = 1000; cols < colsMax; cols++)
{
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
aclMat aclmat_src(rows, cols, type, acl_context_0, MEMORY_ALIGN);
aclmat_src.upload(mat_src, MEMORY_ALIGN);
aclmat_src.download(mat_dest, MEMORY_ALIGN);
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_DATA_TRANSFER_ALIGN: -> upload(), download() <- is success" << endl;
}
void AclMat_Test::Test_DATA_TRANSFERASYNC(aclCxt *acl_context_0) {
Common_Test test;
int rows, cols, type;
bool ret;
const int rowsMax = 1048;
const int colsMax = 1048;
const int typeMax = 7;
for (type = 0; type < typeMax; type++)
{
for (rows = 1000; rows < rowsMax; rows++)
{
for (cols = 1000; cols < colsMax; cols++)
{
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
aclMat aclmat_src(rows, cols, type, acl_context_0);
aclmat_src.upload(mat_src, aclmat_src.acl_context->get_stream(0));
aclmat_src.download(mat_dest, aclmat_src.acl_context->get_stream(0));
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_DATA_TRANSFERASYNC_UNALIGNED: -> upload(), download() <- is success" << endl;
for (type = 0; type < typeMax; type++)
{
for (rows = 1000; rows < rowsMax; rows++)
{
for (cols = 1000; cols < colsMax; cols++)
{
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
aclMat aclmat_src(rows, cols, type, acl_context_0, MEMORY_ALIGN);
aclmat_src.upload(mat_src, aclmat_src.acl_context->get_stream(0), MEMORY_ALIGN);
aclmat_src.download(mat_dest, aclmat_src.acl_context->get_stream(0), MEMORY_ALIGN);
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_DATA_TRANSFERASYNC_ALIGN: -> upload(), download() <- is success" << endl;
}
static inline void dataSwap(int& data1, int& data2) {
Common_Test test;
int temp;
if (data1 < data2) {
temp = data1;
data1 = data2;
data2 = temp;
}
}
void AclMat_Test::Test_locateROI(aclCxt *acl_context_0) {
Common_Test test;
int rows = 256, cols = 256;
int type = CV_8UC1;
int rangex, rangey;
int rangex1, rangey1;
cv::Size size, size1;
cv::Point ofs, ofs1;
for (int x = 0; x < rows * cols; ++x)
{
rangex = (rangex = test.RandDom_()) > 0 ? rangex : 1;
rangey = (rangey = test.RandDom_()) > 0 ? rangey : 1;
rangex1 = (rangex1 = test.RandDom_()) > 0 ? rangex1 : 1;
rangey1 = (rangey1 = test.RandDom_()) > 0 ? rangey1 : 1;
dataSwap(rangex, rangex1);
dataSwap(rangey, rangey1);
Mat mat_src(rows, cols, type);
Mat mat_range(mat_src, cv::Range(rangex1, rangex+1), cv::Range(rangey1, rangey+1));
mat_range.locateROI(size, ofs);
aclMat aclmat_src(rows, cols, type, acl_context_0);
aclMat aclmat_range(aclmat_src, cv::Range(rangex1, rangex+1), cv::Range(rangey1, rangey+1));
aclmat_range.locateROI(size1, ofs1);
ASSERT_EQ(size.height, size1.height);
ASSERT_EQ(size.width, size1.width);
ASSERT_EQ(ofs.x, ofs1.x);
ASSERT_EQ(ofs.y, ofs1.y);
}
clog << "Test_loacteROI: -> locateROI() <- is success" << endl;
}
void AclMat_Test::Test_swap(aclCxt *acl_context_0) {
Common_Test test;
int rows, cols, type;
bool ret;
const int rowsMax = 1048;
const int colsMax = 1048;
const int typeMax = 7;
for (type = 0; type < typeMax; type++)
{
for (rows = 1024; rows < rowsMax; rows++)
{
for (cols = 1024; cols < colsMax; cols++)
{
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
Mat mat_dest1(rows, cols, type);
Mat mat_dest2(rows, cols, type);
aclMat aclmat_src(rows, cols, type, mat_src.data, acl_context_0);
aclMat aclmat_src1(rows, cols, type, mat_dest.data, acl_context_0);
aclmat_src.swap(aclmat_src1);
aclmat_src.download(mat_dest1);
aclmat_src1.download(mat_dest2);
ret = test.Test_Diff(mat_dest1, mat_dest);
ASSERT_TRUE(ret);
ret = test.Test_Diff(mat_dest2, mat_src);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_Swap: -> swap() <- is success" << endl;
}
void AclMat_Test::Test_operator_add(aclCxt *acl_context) {
Common_Test test;
int rows, cols;
bool ret;
const int rowsMax = 1048;
const int colsMax = 1048;
vector<int> type{CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3, CV_32SC1, CV_32SC3};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Correctness test: Functoin: operator+=()", type[i]);
for (rows = 1024; rows < rowsMax; rows++)
{
for (cols = 1024; cols < colsMax; cols++)
{
Mat mat_src(rows, cols, type[i]);
Mat mat_dest(rows, cols, type[i]);
Mat mat_dest1(rows, cols, type[i]);
test.SetDataRange(mat_src, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context, MEMORY_ALIGN);
mat_dest += mat_src;
aclmat_dest += aclmat_src;
aclmat_dest.download(mat_dest1, MEMORY_ALIGN);
ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
}
}
}
}
void AclMat_Test::Test_operator_sub(aclCxt *acl_context) {
Common_Test test;
int rows, cols;
bool ret;
const int rowsMax = 1048;
const int colsMax = 1048;
vector<int> type{CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3, CV_32SC1, CV_32SC3, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Correctness test: Functoin: operator-=()", type[i]);
for (rows = 1024; rows < rowsMax; rows++)
{
for (cols = 1024; cols < colsMax; cols++)
{
Mat mat_src(rows, cols, type[i], Scalar(1, 2, 3));
Mat mat_dest(rows, cols, type[i], Scalar(4, 6, 8));
Mat mat_dest1(rows, cols, type[i]);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context, MEMORY_ALIGN);
mat_dest -= mat_src;
aclmat_dest -= aclmat_src;
aclmat_dest.download(mat_dest1, MEMORY_ALIGN);
ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
}
}
}
}
void AclMat_Test::Test_operator_div(aclCxt *acl_context) {
Common_Test test;
int rows, cols;
bool ret;
const int rowsMax = 1048;
const int colsMax = 1048;
vector<int> type{CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3, CV_32SC1, CV_32SC3, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Correctness test: Functoin: operator/=()", type[i]);
for (rows = 1024; rows < rowsMax; rows++)
{
for (cols = 1024; cols < colsMax; cols++)
{
Mat mat_src(rows, cols, type[i], Scalar(1, 2, 4));
Mat mat_dest(rows, cols, type[i], Scalar(4, 6, 8));
Mat mat_dest1(rows, cols, type[i]);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context, MEMORY_ALIGN);
mat_dest /= mat_src;
aclmat_dest /= aclmat_src;
aclmat_dest.download(mat_dest1, MEMORY_ALIGN);
ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
}
}
}
}
void AclMat_Test::Test_operator_mul(aclCxt *acl_context) {
Common_Test test;
int val;
bool ret;
const int valMax = 1048;
vector<int> type{CV_32FC1};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Correctness test: Functoin: operator*=()", type[i]);
for (val = 1024; val < valMax; val++)
{
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
Mat mat_dest1(val, val, type[i]);
test.SetDataRange(mat_src, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src(val, val, type[i], mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
mat_dest *= mat_src;
aclmat_dest *= aclmat_src;
aclmat_dest.download(mat_dest1);
ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
}
}
}

View File

@@ -0,0 +1,42 @@
#ifndef __OPENCV_CORRECTNESS_HPP__
#define __OPENCV_CORRECTNESS_HPP__
#include "test_precomp.hpp"
class CV_EXPORTS AclMat_Test {
public:
AclMat_Test();
~AclMat_Test();
/* test set_device() */
CV_EXPORTS void Test_set_device();
/* test aclMat(int rows, int cols, int type, aclCxt *acl_context, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST) */
CV_EXPORTS void Test_constructor_UNALIGNED(aclCxt *acl_context);
CV_EXPORTS void Test_constructor_ALIGN(aclCxt *acl_context);
/* test aclMat(const aclMat &m) */
CV_EXPORTS void Test_constructor(aclCxt *acl_context);
/* test aclMat(int rows, int cols, int type, void *data, aclCxt* acl_context, size_t step = Mat::AUTO_STEP) */
CV_EXPORTS void Test_constructor_DATA(aclCxt *acl_context);
/* test aclMat(const aclMat &m, const Range &rowRange, const Range &colRange = Range::all()) */
CV_EXPORTS void Test_constructor_RANGE(aclCxt *acl_context);
/* test aclMat(const aclMat &m, const Rect &roi) */
CV_EXPORTS void Test_constructor_ROI(aclCxt *acl_context);
/* test aclMat (const Mat &m, aclCxt* acl_context, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST) */
CV_EXPORTS void Test_constructor_MAT(aclCxt *acl_context);
/* test upload download*/
CV_EXPORTS void Test_DATA_TRANSFER(aclCxt *acl_context);
/* test upload_2d download_2d */
CV_EXPORTS void Test_DATA_TRANSFERASYNC(aclCxt *acl_context);
/* test locateROI adjustROI */
CV_EXPORTS void Test_locateROI(aclCxt *acl_context);
/* test swap */
CV_EXPORTS void Test_swap(aclCxt *acl_context);
CV_EXPORTS void Test_operator_add(aclCxt *acl_context);
CV_EXPORTS void Test_operator_sub(aclCxt *acl_context);
CV_EXPORTS void Test_operator_mul(aclCxt *acl_context);
CV_EXPORTS void Test_operator_div(aclCxt *acl_context);
};
void thread_handler(void);
#endif

102
acl/test/test_gemm.cpp Normal file
View File

@@ -0,0 +1,102 @@
#include "test_common.hpp"
#include "test_perf.hpp"
void PERF_TEST::Test_MatMul(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
Mat mat_src(val, val, type);
Mat mat_src1(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src, 32);
test.SetDataRange(mat_src1, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src(val, val, type, mat_src.data, acl_context);
aclMat aclmat_src1(val, val, type, mat_src1.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
int n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest = mat_src * mat_src1;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
MatMul(aclmat_src1, aclmat_src, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Convolution(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
Mat mat_src(val, val, type, Scalar{1, 2});
Mat mat_kernel(3, 3, type, Scalar(1, 4));
Mat mat_dest(val, val, type, Scalar{6});
aclMat aclmat_src(val, val, type, mat_src.data, acl_context);
aclMat aclmat_kernel(3, 3, type, mat_kernel.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
int n = 1;
begin = static_cast<double>(getTickCount());
while (n--)
filter2D(mat_src, mat_dest, -1, mat_kernel);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 1;
begin = static_cast<double>(getTickCount());
vector<int64_t> strides{1, 1, 1, 1};
vector<int64_t> pads{1, 1, 1, 1};
while (n--)
Convolution(aclmat_src, aclmat_kernel, aclmat_dest, strides, pads);
end = static_cast<double>(getTickCount());
Mat mat_dest1(aclmat_dest.rows, aclmat_dest.cols, type);
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
cout << mat_dest << endl;
cout << mat_dest1 << endl;
/*
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
*/
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}

10
acl/test/test_main.cpp Normal file
View File

@@ -0,0 +1,10 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#if defined(HAVE_HPX)
#include <hpx/hpx_main.hpp>
#endif
CV_TEST_MAIN("cv")

418
acl/test/test_mathfuncs.cpp Normal file
View File

@@ -0,0 +1,418 @@
#include "test_common.hpp"
#include "test_perf.hpp"
void PERF_TEST::Test_Abs(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type, Scalar{-2});
Mat mat_dest(val, val, type, Scalar{-4});
Mat mat_dest1(val, val, type, Scalar{-6});
aclMat aclmat_src(val, val, type, mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest = abs(mat_src);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest = abs(aclmat_src);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Pow(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
int power = test.RandDom_(6);
Mat mat_src(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src(val, val, type, mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
pow(mat_src, power, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
pow(aclmat_src, power, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Sqrt(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src(val, val, type, mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
sqrt(mat_src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
sqrt(aclmat_src, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Add(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
Common_Test test;
int n = 100;
Mat mat_src1(val, val, type);
Mat mat_src2(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src1, 32);
test.SetDataRange(mat_src2, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src1(val, val, type, mat_src1.data, acl_context);
aclMat aclmat_src2(val, val, type, mat_src2.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
add(mat_src1, mat_src2, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
add(aclmat_src1, aclmat_src2, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Divide(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
Common_Test test;
int n = 100;
Mat mat_src1(val, val, type);
Mat mat_src2(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src1, 32);
test.SetDataRange(mat_src2, 2);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src1(val, val, type, mat_src1.data, acl_context);
aclMat aclmat_src2(val, val, type, mat_src2.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
divide(mat_src1, mat_src2, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
divide(aclmat_src1, aclmat_src2, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Exp(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src, 32);
test.SetDataRange(mat_dest, 2);
aclMat aclmat_src(val, val, type, mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
exp(mat_src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
exp(aclmat_src, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Log(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
type = CV_32FC1;
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src(val, val, type, mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
log(mat_src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
log(aclmat_src, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Max(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
type = CV_32FC2;
for (val = 8; val <= valmax; val *= 2)
{
Common_Test test;
int n = 100;
Mat mat_src1(val, val, type);
Mat mat_src2(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src1, 32);
test.SetDataRange(mat_src2, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src1(val, val, type, mat_src2.data, acl_context);
aclMat aclmat_src2(val, val, type, mat_src1.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
cv::max(mat_src1, mat_src2, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
cv::acl::max(aclmat_src1, aclmat_src2, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
void PERF_TEST::Test_Min(aclCxt *acl_context)
{
int val, type;
int valmax = 8192;
double begin, end, time, acltime;
type = CV_32FC3;
for (val = 8; val <= valmax; val *= 2)
{
Common_Test test;
int n = 100;
Mat mat_src1(val, val, type);
Mat mat_src2(val, val, type);
Mat mat_dest(val, val, type);
Mat mat_dest1(val, val, type);
test.SetDataRange(mat_src1, 32);
test.SetDataRange(mat_src2, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src1(val, val, type, mat_src2.data, acl_context);
aclMat aclmat_src2(val, val, type, mat_src1.data, acl_context);
aclMat aclmat_dest(val, val, type, mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
cv::min(mat_src1, mat_src2, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
cv::acl::min(aclmat_src1, aclmat_src2, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}

259
acl/test/test_matrices.cpp Normal file
View File

@@ -0,0 +1,259 @@
#include "test_common.hpp"
#include "test_perf.hpp"
/*
//disable
void PERF_TEST::Test_Lookuptable(aclCxt *acl_context_0)
{
int type = CV_8UC1;
Common_Test test;
Mat mat_src(1, 256, type);
Mat mat_dest(1, 256, type);
Mat lookuptable(1, 256, type);
test.SetDataRange(mat_src, 32);
test.SetDataRange(lookuptable, 32);
aclMat aclmat_src(1, 256, type, mat_src.data, acl_context_0);
aclMat aclmat_dest(1, 256, type, mat_dest.data, acl_context_0);
aclMat lut(1, 256, type, lookuptable.data, acl_context_0);
// LUT(mat_src, lookuptable, mat_dest);
lookUpTable(aclmat_src, lut, aclmat_dest);
cout << mat_src << endl;
cout << lookuptable << endl;
cout << mat_dest << endl;
}
*/
void PERF_TEST::Test_Merge(aclCxt *acl_context)
{
int val;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
vector<int> srcType{CV_32FC1};
vector<int> destType{CV_32FC3};
for (size_t i = 0; i < srcType.size(); ++i)
{
test.PrintLog("Perf test : Function: merge()", srcType[i]);
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src1(val, val, srcType[i], Scalar(1));
Mat mat_src2(val, val, srcType[i], Scalar(2));
Mat mat_src3(val, val, srcType[i], Scalar(3));
Mat mat_dest(val, val, destType[i]);
Mat mat_dest1(val, val, destType[i]);
test.SetDataRange(mat_src1, 32);
test.SetDataRange(mat_src2, 32);
test.SetDataRange(mat_src3, 32);
aclMat aclmat_src1(val, val, srcType[i], mat_src1.data, acl_context);
aclMat aclmat_src2(val, val, srcType[i], mat_src2.data, acl_context);
aclMat aclmat_src3(val, val, srcType[i], mat_src3.data, acl_context);
aclMat aclmat_dest(val, val, destType[i], mat_dest.data, acl_context);
vector<Mat> src;
src.emplace_back(mat_src1);
src.emplace_back(mat_src2);
src.emplace_back(mat_src3);
vector<aclMat> acl_src;
acl_src.emplace_back(aclmat_src1);
acl_src.emplace_back(aclmat_src2);
acl_src.emplace_back(aclmat_src3);
begin = static_cast<double>(getTickCount());
while (n--)
merge(src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
merge(acl_src, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Transpose(aclCxt *acl_context)
{
int val;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
vector<int> type{CV_32FC1, CV_32SC1};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Perf test : Function: transpose()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
Mat mat_dest1(val, val, type[i]);
test.SetDataRange(mat_src, 32);
aclMat aclmat_src(val, val, type[i], mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
transpose(mat_src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
transpose(aclmat_src, aclmat_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Split(aclCxt *acl_context)
{
int val;
int valmax = 8;
double begin, end, time, acltime;
Common_Test test;
vector<int> srcType{CV_32FC3};
vector<int> destType{CV_32FC1};
for (size_t i = 0; i < srcType.size(); ++i)
{
test.PrintLog("Perf test : Function: split()", srcType[i]);
for (val = 8; val <= valmax; val *= 2)
{
int n = 1;
Mat mat_src(val, val, srcType[i]);
Mat mat_dest1(val, val, destType[i]);
Mat mat_dest2(val, val, destType[i]);
Mat mat_dest3(val, val, destType[i]);
test.SetDataRange(mat_src, 32);
aclMat aclmat_src(val, val, srcType[i], mat_src.data, acl_context);
aclMat aclmat_dest1(val, val, destType[i], mat_dest1.data, acl_context);
aclMat aclmat_dest2(val, val, destType[i], mat_dest2.data, acl_context);
aclMat aclmat_dest3(val, val, destType[i], mat_dest3.data, acl_context);
vector<Mat> dest;
dest.emplace_back(mat_dest1);
dest.emplace_back(mat_dest2);
dest.emplace_back(mat_dest3);
vector<aclMat> acl_dest;
acl_dest.emplace_back(aclmat_dest1);
acl_dest.emplace_back(aclmat_dest2);
acl_dest.emplace_back(aclmat_dest3);
begin = static_cast<double>(getTickCount());
while (n--)
split(mat_src, dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 1;
begin = static_cast<double>(getTickCount());
while (n--)
split(aclmat_src, acl_dest);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
(acl_dest.data())[0].download(mat_dest1);
(acl_dest.data())[1].download(mat_dest2);
(acl_dest.data())[2].download(mat_dest3);
bool ret = test.Test_Diff((dest.data())[0], mat_dest1);
ret &= test.Test_Diff((dest.data())[1], mat_dest2);
ret &= test.Test_Diff((dest.data())[2], mat_dest3);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Flip(aclCxt *acl_context)
{
int val;
int valmax = 8192;
double begin, end, time, acltime;
Common_Test test;
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
test.PrintLog("Perf test : Function: flip()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
int n = 100;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
Mat mat_dest1(val, val, type[i]);
test.SetDataRange(mat_src, 32);
aclMat aclmat_src(val, val, type[i], mat_src.data, acl_context);
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
flip(mat_src, mat_dest, 0);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency();
n = 100;
begin = static_cast<double>(getTickCount());
while (n--)
flip(aclmat_src, aclmat_dest, 0);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency();
aclmat_dest.download(mat_dest1);
bool ret = test.Test_Diff(mat_dest, mat_dest1);
ASSERT_TRUE(ret);
if (val < 128)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
}
}
}

34
acl/test/test_perf.hpp Normal file
View File

@@ -0,0 +1,34 @@
#ifndef __OPENCV_TEST_PERF_HPP__
#define __OPENCV_TEST_PERF_HPP__
#include "test_precomp.hpp"
class PERF_TEST
{
public:
CV_EXPORTS void Test_operator_add_perf(aclCxt *acl_context);
CV_EXPORTS void Test_operator_sub_perf(aclCxt *acl_context);
CV_EXPORTS void Test_operator_div_perf(aclCxt *acl_context);
CV_EXPORTS void Test_operator_mul_perf(aclCxt *acl_context);
CV_EXPORTS void Test_Abs(aclCxt *acl_context);
CV_EXPORTS void Test_Pow(aclCxt *acl_context);
CV_EXPORTS void Test_Sqrt(aclCxt *acl_context);
CV_EXPORTS void Test_Add(aclCxt *acl_context);
CV_EXPORTS void Test_Divide(aclCxt *acl_context);
CV_EXPORTS void Test_Exp(aclCxt *acl_context);
CV_EXPORTS void Test_Log(aclCxt *acl_context);
CV_EXPORTS void Test_Max(aclCxt *acl_context);
CV_EXPORTS void Test_Min(aclCxt *acl_context);
CV_EXPORTS void Test_MatMul(aclCxt *acl_context);
CV_EXPORTS void Test_Convolution(aclCxt *acl_context);
CV_EXPORTS void Test_Lookuptable(aclCxt *acl_context);
CV_EXPORTS void Test_Merge(aclCxt *acl_context);
CV_EXPORTS void Test_Split(aclCxt *acl_context);
CV_EXPORTS void Test_Transpose(aclCxt *acl_context);
CV_EXPORTS void Test_Flip(aclCxt *acl_context);
};
#endif

25
acl/test/test_precomp.hpp Normal file
View File

@@ -0,0 +1,25 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__
#include <iostream>
#include <mutex>
#include <thread>
#include <iomanip>
#include "opencv2/core.hpp"
#include "opencv2/ts.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/videoio.hpp"
#include "sys/time.h"
#include "opencv2/acl/acl.hpp"
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
#endif

33
run.sh Executable file
View File

@@ -0,0 +1,33 @@
#! /bin/bash
opencv_directory=./opencv
acl_directory=./acl
if [ -d $opencv_directory -o -d $acl_directory ]
then
mv $acl_directory $opencv_directory/modules/
fi
cd $opencv_directory
build_directory=$PWD/build
if [ ! -d $build_directory ]
then
mkdir -p build
fi
cd build
cmake ..
make -j
while [ $? != 0 ]
do
make -j
done
for var in $@
do
if [ $var == "ACLTEST" ]
then
cd bin
./opencv_test_acl
fi
done