update version

This commit is contained in:
luoliang
2022-10-10 16:49:04 +08:00
parent be79c3e5c3
commit 83d85cc751
31 changed files with 3739 additions and 3850 deletions

View File

@@ -2,7 +2,8 @@
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// By downloading, copying, installing or using the software you agree to this
license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
@@ -10,28 +11,35 @@
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science,
all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// Redistribution and use in source and binary forms, with or without
modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// * Redistribution's in binary form must reproduce the above copyright
notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote
products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// This software is provided by the copyright holders and contributors "as is"
and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// warranties of merchantability and fitness for a particular purpose are
disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any
direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
@@ -44,14 +52,14 @@
#ifndef OPENCV_ACL_HPP
#define OPENCV_ACL_HPP
#include "acl_type.hpp"
#include "acl_init.hpp"
#include "acl_mat.hpp"
#include "operator_desc.hpp"
#include "acl_type.hpp"
#include "gemm.hpp"
#include "init_core.hpp"
#include "mat_core.hpp"
#include "mathfuncs.hpp"
#include "matrices.hpp"
#include "gemm.hpp"
#include "mat_core.hpp"
#include "init_core.hpp"
#include "operator_desc.hpp"
#endif

View File

@@ -4,19 +4,14 @@
#include <memory>
#include <vector>
#include "opencv2/core.hpp"
#include "acl_type.hpp"
#include "opencv2/core.hpp"
using namespace std;
namespace cv
{
namespace acl
{
namespace cv {
namespace acl {
CV_EXPORTS Mutex &getInitMutex();
//////////////////////////////// aclEnv ////////////////////////////////
class CV_EXPORTS aclEnv
{
class CV_EXPORTS aclEnv {
public:
aclEnv();
aclEnv(const char *config_path);
@@ -24,13 +19,13 @@ namespace cv
int get_device_count();
int *refcount;
~aclEnv();
private:
uint32_t _device_count;
};
//////////////////////////////// aclCxt ////////////////////////////////
class CV_EXPORTS aclCxt
{
class CV_EXPORTS aclCxt {
public:
aclCxt();
aclCxt(int device_id);
@@ -41,6 +36,7 @@ namespace cv
void create_stream(int count = 1);
aclStream get_stream(const size_t index = 0);
~aclCxt();
private:
int32_t _device_id;
aclrtContext *_context;
@@ -49,7 +45,8 @@ namespace cv
CV_EXPORTS void wait_stream(aclCxt *context, const int stream_id = 0);
//////////////////////////////// device ////////////////////////////////
CV_EXPORTS aclCxt *set_device(const char* config_path, int device_id = 0, int stream_count = 1);
CV_EXPORTS aclCxt *set_device(const char *config_path, int device_id = 0,
int stream_count = 1);
CV_EXPORTS void release_device(aclCxt *context);
} /* end of namespace acl */

View File

@@ -2,34 +2,39 @@
#define OPENCV_ACL_MAT_HPP
#include "acl/acl.h"
#include "opencv2/core.hpp"
#include "acl_type.hpp"
#include "acl_init.hpp"
#include "acl_type.hpp"
#include "opencv2/core.hpp"
namespace cv
{
namespace acl
{
namespace cv {
namespace acl {
//////////////////////////////// aclMat ////////////////////////////////
class CV_EXPORTS aclMat
{
class CV_EXPORTS aclMat {
public:
//! default constructor
aclMat();
//! constructs aclMatrix of the specified size and type (_type is CV_8UC1, CV_16FC1 etc.)
aclMat(int rows, int cols, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
aclMat(Size size, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
//! constructs aclMatrix of the specified size and type (_type is CV_8UC1,
//! CV_16FC1 etc.)
aclMat(int rows, int cols, int type, aclCxt *acl_context,
ALIGNMENT config = MEMORY_UNALIGNED,
MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
aclMat(Size size, int type, aclCxt *acl_context,
ALIGNMENT config = MEMORY_UNALIGNED,
MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
//! copy constructor
aclMat(const aclMat &m);
//! constructor for aclMatrix headers pointing to user-allocated data
aclMat(int rows, int cols, int type, void *data, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
aclMat(Size size, int type, void *data, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
aclMat(int rows, int cols, int type, void *data, aclCxt *acl_context,
ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
aclMat(Size size, int type, void *data, aclCxt *acl_context,
ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
//! creates a matrix header for a part of the bigger matrix
aclMat(const aclMat &m, const Range &rowRange, const Range &colRange = Range::all());
aclMat(const aclMat &m, const Range &rowRange,
const Range &colRange = Range::all());
aclMat(const aclMat &m, const Rect &roi);
//! builds aclMat from Mat. Perfom blocking upload to device.
aclMat (const Mat &m, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
aclMat(const Mat &m, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED,
MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
//! destructor - calls release()
~aclMat();
@@ -40,10 +45,12 @@ namespace cv
//! pefroms blocking upload data to aclMat.
void upload(const Mat &m, ALIGNMENT config = MEMORY_UNALIGNED);
void upload(const Mat &m, aclStream stream, ALIGNMENT config = MEMORY_UNALIGNED);
void upload(const Mat &m, aclStream stream,
ALIGNMENT config = MEMORY_UNALIGNED);
//! downloads data from device to host memory. Blocking calls.
void download(Mat &m, ALIGNMENT config = MEMORY_UNALIGNED) const;
void download(Mat &m, aclStream stream, ALIGNMENT config = MEMORY_UNALIGNED) const;
void download(Mat &m, aclStream stream,
ALIGNMENT config = MEMORY_UNALIGNED) const;
operator Mat() const;
aclMat clone() const;
@@ -65,14 +72,20 @@ namespace cv
//! moves/resizes the current aclMatrix ROI inside the parent aclMatrix.
aclMat &adjustROI(int dtop, int dbottom, int dleft, int dright);
//! allocates new aclMatrix data unless the aclMatrix already has specified size and type.
//! allocates new aclMatrix data unless the aclMatrix already has specified
//! size and type.
// previous data is unreferenced if needed.
void create(int rows, int cols, int type, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
void create(Size size, int type, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
void create(int rows, int cols, int type, ALIGNMENT config = MEMORY_UNALIGNED,
MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
void create(Size size, int type, ALIGNMENT config = MEMORY_UNALIGNED,
MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
//! allocates new aclMatrix with specified device memory type.
void createEx(int rows, int cols, int type, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
void createEx(Size size, int type, ALIGNMENT config = MEMORY_UNALIGNED, MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
void createEx(int rows, int cols, int type,
ALIGNMENT config = MEMORY_UNALIGNED,
MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
void createEx(Size size, int type, ALIGNMENT config = MEMORY_UNALIGNED,
MemMallocPolicy policy = MALLOC_NORMAL_ONLY);
//! decreases reference counter;
// deallocate the data when reference counter reaches 0.
@@ -91,7 +104,6 @@ namespace cv
aclMat &operator/=(const aclMat &m);
aclMat &operator*=(const aclMat &m);
//! returns true if the aclMatrix data is continuous
// (i.e. when there are no gaps between successive rows).
// similar to CV_IS_aclMat_CONT(cvaclMat->type)
@@ -126,8 +138,10 @@ namespace cv
bool empty() const;
friend void swap(aclMat &a, aclMat &b);
friend void ensureSizeIsEnough(int rows, int cols, int type, aclMat &m, ALIGNMENT config = MEMORY_UNALIGNED);
friend void ensureSizeIsEnough(Size size, int type, aclMat &m, ALIGNMENT config = MEMORY_UNALIGNED);
friend void ensureSizeIsEnough(int rows, int cols, int type, aclMat &m,
ALIGNMENT config = MEMORY_UNALIGNED);
friend void ensureSizeIsEnough(Size size, int type, aclMat &m,
ALIGNMENT config = MEMORY_UNALIGNED);
/*! includes several bit-fields:
- the magic signature
@@ -157,17 +171,16 @@ namespace cv
// add offset for handle ROI, calculated in byte
int offset;
//add wholerows and wholecols for the whole matrix, datastart and dataend are no longer used
// add wholerows and wholecols for the whole matrix, datastart and dataend are
// no longer used
int wholerows;
int wholecols;
aclCxt *acl_context;
size_t totalSize;
};
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -2,7 +2,8 @@
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// By downloading, copying, installing or using the software you agree to this
license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
@@ -10,28 +11,35 @@
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science,
all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// Redistribution and use in source and binary forms, with or without
modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// * Redistribution's in binary form must reproduce the above copyright
notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote
products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// This software is provided by the copyright holders and contributors "as is"
and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// warranties of merchantability and fitness for a particular purpose are
disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any
direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
@@ -48,22 +56,22 @@
#define AclVerifyCall(expr) __aclSafeCall(res, __FILE__, __LINE__, __func__)
#include <iostream>
#include "opencv2/core.hpp"
#include "acl/acl.h"
namespace cv
{
namespace acl
{
#include "acl/acl.h"
#include "opencv2/core.hpp"
namespace cv {
namespace acl {
/**
* An error is reported if the expression value is not 0
*/
static inline void __aclSafeCall(int err, const char* file, const int line, const char *func="")
{
if(0 != err)
{
static inline void __aclSafeCall(int err, const char *file, const int line,
const char *func = "") {
if (0 != err) {
const char *function = func ? func : "unknown function";
std::cerr << "Acl Called Error: " << "file " << file << ", func " << function << ", line " << line << " errorCode: " << err << std::endl;
std::cerr << "Acl Called Error: "
<< "file " << file << ", func " << function << ", line " << line
<< " errorCode: " << err << std::endl;
std::cerr.flush();
}
}
@@ -71,30 +79,27 @@ namespace cv
/* Memory alignment */
enum ALIGNMENT { MEMORY_UNALIGNED = 0, MEMORY_ALIGN = 1 };
enum { MAGIC_VAL = 0x42FF0000, AUTO_STEP = 0, CONTINUOUS_FLAG = CV_MAT_CONT_FLAG, SUBMATRIX_FLAG = CV_SUBMAT_FLAG };
enum {
MAGIC_VAL = 0x42FF0000,
AUTO_STEP = 0,
CONTINUOUS_FLAG = CV_MAT_CONT_FLAG,
SUBMATRIX_FLAG = CV_SUBMAT_FLAG
};
enum { MAGIC_MASK = 0xFFFF0000, TYPE_MASK = 0x00000FFF, DEPTH_MASK = 7 };
typedef aclrtStream aclStream;
typedef enum Opdims { TWO_DIMS = 1, FOUR_DIMS } Opdims;
enum DeviceType
{
enum DeviceType {
ACL_DEVICE_TYPE_DEFAULT = (1 << 0),
ACL_DEVICE_TYPE_200 = (1 << 1),
ACL_DEVICE_TYPE_ACCELERATOR = (1 << 3),
};
enum AttrType
{
OP_BOOL = 1,
OP_INT,
OP_FLOAT,
OP_STRING
};
enum AttrType { OP_BOOL = 1, OP_INT, OP_FLOAT, OP_STRING };
typedef enum MemMallocPolicy
{
typedef enum MemMallocPolicy {
MALLOC_HUGE_FIRST = 1,
MALLOC_HUGE_ONLY,
MALLOC_NORMAL_ONLY,
@@ -103,14 +108,11 @@ namespace cv
MALLOC_NORMAL_ONLY_P2P
} MemMallocPolicy;
CV_EXPORTS aclDataType type_transition(int depth);
CV_EXPORTS aclrtMemMallocPolicy type_transition(MemMallocPolicy type);
inline aclDataType type_transition(int depth)
{
switch (depth)
{
inline aclDataType type_transition(int depth) {
switch (depth) {
case CV_8U:
return ACL_UINT8;
case CV_8S:
@@ -131,10 +133,8 @@ namespace cv
return ACL_DT_UNDEFINED;
}
inline aclrtMemMallocPolicy type_transition(MemMallocPolicy type)
{
switch (type)
{
inline aclrtMemMallocPolicy type_transition(MemMallocPolicy type) {
switch (type) {
case MALLOC_HUGE_FIRST:
return ACL_MEM_MALLOC_HUGE_FIRST;
case MALLOC_HUGE_ONLY:

View File

@@ -3,19 +3,20 @@
#include "acl_mat.hpp"
namespace cv
{
namespace acl
{
namespace cv {
namespace acl {
// matrix multiplication
CV_EXPORTS void MatMul(const aclMat& src1, const aclMat& src2, aclMat& dest, int stream_id = 0);
CV_EXPORTS void MatMul(const aclMat &src1, const aclMat &src2, aclMat &dest,
int stream_id = 0);
// convolution
CV_EXPORTS void Convolution(const aclMat& src, const aclMat& kernel, aclMat& dest, \
const vector<int64_t>& stridesList = vector<int64_t> {1, 1, 1, 1}, const vector<int64_t>& padsList = vector<int64_t> {0, 0, 0, 0}, int stream_id = 0);
CV_EXPORTS void Convolution(
const aclMat &src, const aclMat &kernel, aclMat &dest,
const std::vector<int64_t> &stridesList = std::vector<int64_t>{1, 1, 1, 1},
const std::vector<int64_t> &padsList = std::vector<int64_t>{0, 0, 0, 0},
int stream_id = 0);
} /* end of namespace acl */
} /* end of namespace cv */
#endif

View File

@@ -3,19 +3,15 @@
#include "acl_init.hpp"
namespace cv
{
namespace acl
{
namespace cv {
namespace acl {
///////////////////////////aclEnv//////////////////////////////////
/**
* acl init
*/
inline aclEnv::aclEnv()
{}
inline aclEnv::aclEnv() {}
inline aclEnv::aclEnv(const char* config_path)
{
inline aclEnv::aclEnv(const char *config_path) {
uint32_t device_count;
AclSafeCall(aclInit(config_path));
@@ -27,63 +23,50 @@ namespace cv
refcount = static_cast<int *>(fastMalloc(sizeof(*refcount)));
*refcount = 0;
clog << "aclInit() is success" << endl;
std::clog << "aclInit() is success" << std::endl;
}
inline int aclEnv::get_device_count()
{
return _device_count;
}
inline int aclEnv::get_device_count() { return _device_count; }
inline aclEnv::~aclEnv()
{
inline aclEnv::~aclEnv() {
AclSafeCall(aclFinalize());
clog << "aclFinalize() is success" << endl;
std::clog << "aclFinalize() is success" << std::endl;
}
/////////////////////////////////////////aclCxt////////////////////////////
inline aclCxt::aclCxt(){};
inline aclCxt::aclCxt(int device_id) : _device_id(device_id)
{
inline aclCxt::aclCxt(int device_id) : _device_id(device_id) {
_context = static_cast<aclrtContext *>(fastMalloc(sizeof(*_context)));
AclSafeCall(aclrtCreateContext(_context, _device_id));
clog << "aclrtCreateContext() is success" << endl;
std::clog << "aclrtCreateContext() is success" << std::endl;
}
inline aclrtContext* aclCxt::get_context()
{
return _context;
}
inline aclrtContext *aclCxt::get_context() { return _context; }
/**
* set current context
*/
inline void aclCxt::set_current_context()
{
inline void aclCxt::set_current_context() {
AclSafeCall(aclrtSetCurrentContext(*_context));
}
inline void aclCxt::create_stream(int count)
{
inline void aclCxt::create_stream(int count) {
CV_Assert(count > 0);
int i;
for(i = 0; i <count; i++)
{
for (i = 0; i < count; i++) {
aclStream stream;
AclSafeCall(aclrtCreateStream(&stream));
_acl_streams.push_back(stream);
}
clog << "aclrtCreateStream() is success" << endl;
std::clog << "aclrtCreateStream() is success" << std::endl;
}
inline aclrtStream aclCxt::get_stream(const size_t index)
{
inline aclrtStream aclCxt::get_stream(const size_t index) {
CV_Assert(index < _acl_streams.size());
return _acl_streams[index];
}
@@ -91,24 +74,22 @@ namespace cv
/**
* destroy stream and context
*/
inline aclCxt::~aclCxt()
{
inline aclCxt::~aclCxt() {
size_t i = 0;
AclSafeCall(aclrtSetCurrentContext(*_context));
for (i = 0; i < _acl_streams.size(); i++)
{
for (i = 0; i < _acl_streams.size(); i++) {
aclStream acl_stream = _acl_streams[i];
AclSafeCall(aclrtDestroyStream(acl_stream));
}
clog << "aclrtDestroyStream() is success" << endl;
std::clog << "aclrtDestroyStream() is success" << std::endl;
// empty vector
std::vector<aclrtStream>().swap(_acl_streams);
AclSafeCall(aclrtDestroyContext(*_context));
clog << "aclrtDestroyContext() is success" << endl;
std::clog << "aclrtDestroyContext() is success" << std::endl;
}
} /* end of namespace acl */

View File

@@ -3,67 +3,120 @@
#include "acl_type.hpp"
namespace cv
{
namespace acl
{
////////////////////////////////////////////////////////////////////////
namespace cv {
namespace acl {
//////////////////////////////// aclMat ////////////////////////////////
////////////////////////////////////////////////////////////////////////
inline aclMat::aclMat()
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr),
datastart(nullptr), dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(0), totalSize(0)
{
}
: flags(0),
rows(0),
cols(0),
step(0),
data(nullptr),
refcount(nullptr),
datastart(nullptr),
dataend(nullptr),
offset(0),
wholerows(0),
wholecols(0),
acl_context(0),
totalSize(0) {}
/**
* @param [in] _acl_context: Acl context
* @param [in] config: Byte aligned or not, Default MEMORY_UNALIGNED
* @param [in] policy: Acl Memory Application mode, Default ACL_MEM_MALLOC_NORMAL_ONLY
* @param [in] policy: Acl Memory Application mode, Default
* ACL_MEM_MALLOC_NORMAL_ONLY
*/
inline aclMat::aclMat(int _rows, int _cols, int _type, aclCxt *_acl_context, ALIGNMENT config, MemMallocPolicy policy)
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
if (_rows > 0 && _cols > 0)
create(_rows, _cols, _type, config, policy);
inline aclMat::aclMat(int _rows, int _cols, int _type, aclCxt *_acl_context,
ALIGNMENT config, MemMallocPolicy policy)
: flags(0),
rows(0),
cols(0),
step(0),
data(nullptr),
refcount(nullptr),
datastart(nullptr),
dataend(nullptr),
offset(0),
wholerows(0),
wholecols(0),
acl_context(_acl_context),
totalSize(0) {
if (_rows > 0 && _cols > 0) create(_rows, _cols, _type, config, policy);
}
inline aclMat::aclMat(Size _size, int _type, aclCxt *_acl_context, ALIGNMENT config, MemMallocPolicy policy)
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
if (_size.height > 0 && _size.width > 0)
create(_size, _type, config, policy);
inline aclMat::aclMat(Size _size, int _type, aclCxt *_acl_context,
ALIGNMENT config, MemMallocPolicy policy)
: flags(0),
rows(0),
cols(0),
step(0),
data(nullptr),
refcount(nullptr),
datastart(nullptr),
dataend(nullptr),
offset(0),
wholerows(0),
wholecols(0),
acl_context(_acl_context),
totalSize(0) {
if (_size.height > 0 && _size.width > 0) create(_size, _type, config, policy);
}
inline aclMat::aclMat(const aclMat &m)
: flags(m.flags), rows(m.rows), cols(m.cols), step(m.step), data(m.data), refcount(m.refcount),
datastart(m.datastart), dataend(m.dataend), offset(m.offset), wholerows(m.wholerows), wholecols(m.wholecols),
acl_context(m.acl_context), totalSize(m.totalSize)
{
if (refcount)
CV_XADD(refcount, 1);
: flags(m.flags),
rows(m.rows),
cols(m.cols),
step(m.step),
data(m.data),
refcount(m.refcount),
datastart(m.datastart),
dataend(m.dataend),
offset(m.offset),
wholerows(m.wholerows),
wholecols(m.wholecols),
acl_context(m.acl_context),
totalSize(m.totalSize) {
if (refcount) CV_XADD(refcount, 1);
}
inline aclMat::aclMat(int _rows, int _cols, int _type, void *_data, aclCxt *_acl_context, ALIGNMENT config, size_t _step)
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
inline aclMat::aclMat(int _rows, int _cols, int _type, void *_data,
aclCxt *_acl_context, ALIGNMENT config, size_t _step)
: flags(0),
rows(0),
cols(0),
step(0),
data(nullptr),
refcount(nullptr),
datastart(nullptr),
dataend(nullptr),
offset(0),
wholerows(0),
wholecols(0),
acl_context(_acl_context),
totalSize(0) {
cv::Mat m(_rows, _cols, _type, _data, _step);
if (m.rows > 0 && m.cols > 0)
create(m.rows, m.cols, m.type(), config);
if (m.rows > 0 && m.cols > 0) create(m.rows, m.cols, m.type(), config);
upload(m, config);
}
inline aclMat::aclMat(Size _size, int _type, void *_data, aclCxt *_acl_context, ALIGNMENT config, size_t _step)
: flags(0), rows(0), cols(0), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
inline aclMat::aclMat(Size _size, int _type, void *_data, aclCxt *_acl_context,
ALIGNMENT config, size_t _step)
: flags(0),
rows(0),
cols(0),
step(0),
data(nullptr),
refcount(nullptr),
datastart(nullptr),
dataend(nullptr),
offset(0),
wholerows(0),
wholecols(0),
acl_context(_acl_context),
totalSize(0) {
cv::Mat m(_size, _type, _data, _step);
if (m.rows > 0 && m.cols > 0)
create(m.rows, m.cols, m.type(), config);
if (m.rows > 0 && m.cols > 0) create(m.rows, m.cols, m.type(), config);
upload(m, config);
}
@@ -72,35 +125,39 @@ namespace cv
* @param [in] cRange: cols begin to end, Range(start, end)
*/
inline aclMat::aclMat(const aclMat &m, const Range &rRange, const Range &cRange)
: flags(m.flags), step(m.step), refcount(m.refcount), datastart(m.datastart), dataend(m.dataend),
offset(m.offset), wholerows(m.wholerows), wholecols(m.wholecols), acl_context(m.acl_context), totalSize(m.totalSize)
{
: flags(m.flags),
step(m.step),
refcount(m.refcount),
datastart(m.datastart),
dataend(m.dataend),
offset(m.offset),
wholerows(m.wholerows),
wholecols(m.wholecols),
acl_context(m.acl_context),
totalSize(m.totalSize) {
if (rRange == Range::all())
rows = m.rows;
else
{
CV_Assert(0 <= rRange.start && rRange.start <= rRange.end && rRange.end <= m.rows);
else {
CV_Assert(0 <= rRange.start && rRange.start <= rRange.end &&
rRange.end <= m.rows);
rows = rRange.size();
offset += step * rRange.start;
}
if (cRange == Range::all())
cols = m.cols;
else
{
CV_Assert(0 <= cRange.start && cRange.start <= cRange.end && cRange.end <= m.cols);
else {
CV_Assert(0 <= cRange.start && cRange.start <= cRange.end &&
cRange.end <= m.cols);
cols = cRange.size();
offset += cRange.start * elemSize();
flags &= cols < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
}
if (rows == 1)
flags |= Mat::CONTINUOUS_FLAG;
if (rows == 1) flags |= Mat::CONTINUOUS_FLAG;
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
if (refcount) CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0) rows = cols = 0;
data = static_cast<void *>((static_cast<uchar *>(m.data) + offset));
}
@@ -110,44 +167,55 @@ namespace cv
*
*/
inline aclMat::aclMat(const aclMat &m, const Rect &roi)
: flags(m.flags), rows(roi.height), cols(roi.width), step(m.step), refcount(m.refcount), datastart(m.datastart),
dataend(m.dataend), offset(m.offset), wholerows(m.wholerows), wholecols(m.wholecols), acl_context(m.acl_context),
totalSize(m.totalSize)
{
: flags(m.flags),
rows(roi.height),
cols(roi.width),
step(m.step),
refcount(m.refcount),
datastart(m.datastart),
dataend(m.dataend),
offset(m.offset),
wholerows(m.wholerows),
wholecols(m.wholecols),
acl_context(m.acl_context),
totalSize(m.totalSize) {
flags &= roi.width < m.cols ? ~Mat::CONTINUOUS_FLAG : -1;
offset += roi.y * step + roi.x * elemSize();
CV_Assert(0 <= roi.x && 0 <= roi.width && roi.x + roi.width <= m.wholecols &&
0 <= roi.y && 0 <= roi.height && roi.y + roi.height <= m.wholerows);
if (refcount)
CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0)
rows = cols = 0;
if (refcount) CV_XADD(refcount, 1);
if (rows <= 0 || cols <= 0) rows = cols = 0;
data = static_cast<void *>((static_cast<uchar *>(m.data) + offset));
}
inline aclMat::aclMat(const Mat &m, aclCxt *_acl_context, ALIGNMENT config, MemMallocPolicy policy)
: flags(0), rows(m.rows), cols(m.cols), step(0), data(nullptr), refcount(nullptr), datastart(nullptr),
dataend(nullptr), offset(0), wholerows(0), wholecols(0), acl_context(_acl_context), totalSize(0)
{
inline aclMat::aclMat(const Mat &m, aclCxt *_acl_context, ALIGNMENT config,
MemMallocPolicy policy)
: flags(0),
rows(m.rows),
cols(m.cols),
step(0),
data(nullptr),
refcount(nullptr),
datastart(nullptr),
dataend(nullptr),
offset(0),
wholerows(0),
wholecols(0),
acl_context(_acl_context),
totalSize(0) {
if (m.rows > 0 && m.cols > 0)
create(m.rows, m.cols, m.type(), config, policy);
upload(m, config);
}
inline aclMat::~aclMat()
{
if (refcount)
release();
inline aclMat::~aclMat() {
if (refcount) release();
}
inline aclMat &aclMat::operator=(const aclMat &m)
{
if (this != &m)
{
if (refcount)
release();
inline aclMat &aclMat::operator=(const aclMat &m) {
if (this != &m) {
if (refcount) release();
flags = m.flags;
rows = m.rows;
cols = m.cols;
@@ -161,36 +229,30 @@ namespace cv
acl_context = m.acl_context;
totalSize = m.totalSize;
data = m.data;
if (m.refcount)
CV_XADD(m.refcount, 1);
if (m.refcount) CV_XADD(m.refcount, 1);
}
return *this;
}
inline aclMat& aclMat::operator=(const Mat &m)
{
inline aclMat &aclMat::operator=(const Mat &m) {
upload(m);
return *this;
}
inline aclMat::operator Mat() const
{
inline aclMat::operator Mat() const {
Mat m(rows, cols, type());
download(m);
return m;
}
inline aclMat aclMat::clone() const
{
inline aclMat aclMat::clone() const {
aclMat m;
copyTo(m);
return m;
}
inline void aclMat::copyTo(aclMat& dest) const
{
if (this != &dest)
{
inline void aclMat::copyTo(aclMat &dest) const {
if (this != &dest) {
dest.rows = rows;
dest.cols = cols;
dest.step = step;
@@ -201,8 +263,10 @@ namespace cv
dest.totalSize = totalSize;
void *dev_ptr;
AclSafeCall(aclrtMalloc(&dev_ptr, totalSize, type_transition(MALLOC_NORMAL_ONLY)));
AclSafeCall(aclrtMemcpy(dev_ptr, totalSize, data, totalSize, ACL_MEMCPY_DEVICE_TO_DEVICE));
AclSafeCall(
aclrtMalloc(&dev_ptr, totalSize, type_transition(MALLOC_NORMAL_ONLY)));
AclSafeCall(aclrtMemcpy(dev_ptr, totalSize, data, totalSize,
ACL_MEMCPY_DEVICE_TO_DEVICE));
dest.data = dev_ptr;
dest.datastart = static_cast<uchar *>(data);
@@ -214,44 +278,36 @@ namespace cv
}
}
inline aclMat aclMat::row(int y) const
{
inline aclMat aclMat::row(int y) const {
return aclMat(*this, Range(y, y + 1), Range::all());
}
inline aclMat aclMat::col(int x) const
{
inline aclMat aclMat::col(int x) const {
return aclMat(*this, Range::all(), Range(x, x + 1));
}
inline aclMat aclMat::rowRange(int startrow, int endrow) const
{
inline aclMat aclMat::rowRange(int startrow, int endrow) const {
return aclMat(*this, Range(startrow, endrow), Range::all());
}
inline aclMat aclMat::rowRange(const Range &r) const
{
inline aclMat aclMat::rowRange(const Range &r) const {
return aclMat(*this, r, Range::all());
}
inline aclMat aclMat::colRange(int startcol, int endcol) const
{
inline aclMat aclMat::colRange(int startcol, int endcol) const {
return aclMat(*this, Range::all(), Range(startcol, endcol));
}
inline aclMat aclMat::colRange(const Range &r) const
{
inline aclMat aclMat::colRange(const Range &r) const {
return aclMat(*this, Range::all(), r);
}
inline void aclMat::locateROI( Size &wholeSize, Point &ofs ) const
{
inline void aclMat::locateROI(Size &wholeSize, Point &ofs) const {
size_t esz = elemSize();
CV_DbgAssert(step > 0);
if (offset == 0)
ofs.x = ofs.y = 0;
else
{
else {
ofs.y = (int)(offset / step);
ofs.x = (int)((offset - step * ofs.y) / esz);
CV_DbgAssert(data == (datastart + ofs.y * step + ofs.x * esz));
@@ -260,14 +316,15 @@ namespace cv
wholeSize.width = wholecols;
}
inline aclMat &aclMat::adjustROI( int dtop, int dbottom, int dleft, int dright )
{
inline aclMat &aclMat::adjustROI(int dtop, int dbottom, int dleft, int dright) {
Size wholeSize;
Point ofs;
size_t esz = elemSize();
locateROI(wholeSize, ofs);
int row1 = std::max(ofs.y - dtop, 0), row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
int col1 = std::max(ofs.x - dleft, 0), col2 = std::min(ofs.x + cols + dright, wholeSize.width);
int row1 = std::max(ofs.y - dtop, 0),
row2 = std::min(ofs.y + rows + dbottom, wholeSize.height);
int col1 = std::max(ofs.x - dleft, 0),
col2 = std::min(ofs.x + cols + dright, wholeSize.width);
offset += (row1 - ofs.y) * step + (col1 - ofs.x) * esz;
rows = row2 - row1;
cols = col2 - col1;
@@ -280,8 +337,7 @@ namespace cv
return *this;
}
inline void aclMat::swap(aclMat &b)
{
inline void aclMat::swap(aclMat &b) {
std::swap(flags, b.flags);
std::swap(rows, b.rows);
std::swap(cols, b.cols);
@@ -297,86 +353,56 @@ namespace cv
std::swap(totalSize, b.totalSize);
}
inline aclMat aclMat::operator()( Range rRange, Range cRange ) const
{
inline aclMat aclMat::operator()(Range rRange, Range cRange) const {
return aclMat(*this, rRange, cRange);
}
inline aclMat aclMat::operator()( const Rect &roi ) const
{
inline aclMat aclMat::operator()(const Rect &roi) const {
return aclMat(*this, roi);
}
inline bool aclMat::isContinuous() const
{
inline bool aclMat::isContinuous() const {
return (flags & Mat::CONTINUOUS_FLAG) != 0;
}
inline size_t aclMat::elemSize() const
{
inline size_t aclMat::elemSize() const {
return CV_ELEM_SIZE((CV_MAKE_TYPE(type(), channels())));
}
inline size_t aclMat::elemSize1() const
{
return CV_ELEM_SIZE1(flags);
}
inline size_t aclMat::elemSize1() const { return CV_ELEM_SIZE1(flags); }
inline int aclMat::type() const
{
return CV_MAT_TYPE(flags);
}
inline int aclMat::type() const { return CV_MAT_TYPE(flags); }
inline int aclMat::acltype() const
{
inline int aclMat::acltype() const {
return CV_MAKE_TYPE(depth(), aclchannels());
}
inline int aclMat::depth() const
{
return CV_MAT_DEPTH(flags);
}
inline int aclMat::depth() const { return CV_MAT_DEPTH(flags); }
inline int aclMat::channels() const
{
return CV_MAT_CN(flags);
}
inline int aclMat::channels() const { return CV_MAT_CN(flags); }
inline int aclMat::aclchannels() const
{
inline int aclMat::aclchannels() const {
return (CV_MAT_CN(flags)) == 3 ? 4 : (CV_MAT_CN(flags));
}
inline size_t aclMat::step1() const
{
return step / elemSize1();
}
inline size_t aclMat::step1() const { return step / elemSize1(); }
inline Size aclMat::size() const
{
return Size(cols, rows);
}
inline Size aclMat::size() const { return Size(cols, rows); }
inline bool aclMat::empty() const
{
return data == 0;
}
inline bool aclMat::empty() const { return data == 0; }
inline void swap( aclMat &a, aclMat &b )
{
a.swap(b);
}
inline void swap(aclMat &a, aclMat &b) { a.swap(b); }
inline void ensureSizeIsEnough(int rows, int cols, int type, aclMat &m, ALIGNMENT config)
{
inline void ensureSizeIsEnough(int rows, int cols, int type, aclMat &m,
ALIGNMENT config) {
if (m.type() == type && m.rows >= rows && m.cols >= cols)
m = m(Rect(0, 0, cols, rows));
else
m.create(rows, cols, type, config);
}
inline void ensureSizeIsEnough(Size size, int type, ALIGNMENT config, aclMat &m)
{
inline void ensureSizeIsEnough(Size size, int type, ALIGNMENT config,
aclMat &m) {
ensureSizeIsEnough(size.height, size.width, type, m, config);
}

View File

@@ -7,19 +7,22 @@
* mathfunctions;
*/
namespace cv
{
namespace acl
{
namespace cv {
namespace acl {
CV_EXPORTS aclMat abs(const aclMat &src, int stream_id = 0);
CV_EXPORTS void pow(const aclMat &src, double power, aclMat &dest, int stream_id = 0);
CV_EXPORTS void pow(const aclMat &src, double power, aclMat &dest,
int stream_id = 0);
CV_EXPORTS void sqrt(const aclMat &src, aclMat &dest, int stream_id = 0);
CV_EXPORTS void add(const aclMat &src, const aclMat &other_src, aclMat &dest, int stream_id = 0);
CV_EXPORTS void divide(const aclMat &src, const aclMat &other_src, aclMat &dest, int stream_id = 0);
CV_EXPORTS void add(const aclMat &src, const aclMat &other_src, aclMat &dest,
int stream_id = 0);
CV_EXPORTS void divide(const aclMat &src, const aclMat &other_src, aclMat &dest,
int stream_id = 0);
CV_EXPORTS void exp(const aclMat &src, aclMat &dest, int stream_id = 0);
CV_EXPORTS void log(const aclMat &src, aclMat &dest, int stream_id = 0);
CV_EXPORTS void max(const aclMat &src, const aclMat &other_src, aclMat &dest, int stream_id = 0);
CV_EXPORTS void min(const aclMat &src, const aclMat &other_src, aclMat &dest, int stream_id = 0);
CV_EXPORTS void max(const aclMat &src, const aclMat &other_src, aclMat &dest,
int stream_id = 0);
CV_EXPORTS void min(const aclMat &src, const aclMat &other_src, aclMat &dest,
int stream_id = 0);
} /* end of namespace acl */
} /* end of namespace cv */

View File

@@ -3,19 +3,16 @@
#include "acl_mat.hpp"
namespace cv
{
namespace acl
{
// Matrix lookup table
//CV_EXPORTS void lookUpTable(const aclMat& src, const aclMat& lut, aclMat& dst);
namespace cv {
namespace acl {
// Multiple channel merge
CV_EXPORTS void merge(const vector<aclMat>& mv, aclMat& dst, int stream_id = 0);
CV_EXPORTS void merge(const std::vector<aclMat> &mv, aclMat &dst, int stream_id = 0);
// Split into channels
CV_EXPORTS void split(const aclMat& src, vector<aclMat>& mv, int stream_id = 0);
CV_EXPORTS void split(const aclMat &src, std::vector<aclMat> &mv, int stream_id = 0);
// Matrix transpose
CV_EXPORTS void transpose(const aclMat &src, aclMat &dest, int stream_id = 0);
CV_EXPORTS void flip(const aclMat& src, aclMat& dest, int flipCode = 0, int stream_id = 0);
CV_EXPORTS void flip(const aclMat &src, aclMat &dest, int flipCode = 0,
int stream_id = 0);
} /* end of namespace acl */
} /* end of namespace cv */

View File

@@ -4,17 +4,14 @@
#include <string>
#include <vector>
#include "acl_type.hpp"
#include "acl/acl.h"
#include "acl_init.hpp"
#include "acl_mat.hpp"
#include "acl/acl.h"
#include "acl_type.hpp"
namespace cv
{
namespace acl
{
class CV_EXPORTS OperatorDesc
{
namespace cv {
namespace acl {
class CV_EXPORTS OperatorDesc {
public:
/**
* Constructor
@@ -35,7 +32,8 @@ namespace cv
* @param [in] format: format
* @return OperatorDesc
*/
OperatorDesc &AddInputTensorDesc(aclDataType dataType, int numDims, const int64_t *dims, aclFormat format);
OperatorDesc &AddInputTensorDesc(aclDataType dataType, int numDims,
const int64_t *dims, aclFormat format);
/**
* Add an output tensor description
@@ -45,15 +43,13 @@ namespace cv
* @param [in] format: format
* @return OperatorDesc
*/
OperatorDesc &AddOutputTensorDesc(aclDataType dataType, int numDims, const int64_t *dims, aclFormat format);
OperatorDesc &AddOutputTensorDesc(aclDataType dataType, int numDims,
const int64_t *dims, aclFormat format);
template <typename T>
bool AddTensorAttr(const char *attrName, AttrType type, T vaule)
{
if (opAttr == nullptr)
return false;
switch (type)
{
bool AddTensorAttr(const char *attrName, AttrType type, T vaule) {
if (opAttr == nullptr) return false;
switch (type) {
case OP_BOOL:
aclopSetAttrBool(opAttr, attrName, vaule);
break;
@@ -74,17 +70,27 @@ namespace cv
aclopAttr *opAttr;
};
// Create operator description
CV_EXPORTS OperatorDesc CreateOpDesc(const string opType, const vector<aclMat> &input_Mat, vector<aclMat> &output_Mat, aclFormat format = ACL_FORMAT_NHWC, Opdims config = FOUR_DIMS);
CV_EXPORTS OperatorDesc CreateOpDesc(const std::string opType,
const std::vector<aclMat> &input_Mat,
std::vector<aclMat> &output_Mat,
aclFormat format = ACL_FORMAT_NHWC,
Opdims config = FOUR_DIMS);
// Compile and run the operator
CV_EXPORTS void compileAndRunop(OperatorDesc &opDesc, vector<aclDataBuffer *> &inputBuffers_, vector<aclDataBuffer *> &outputBuffers_, aclCxt *acl_context, int stream_id);
CV_EXPORTS void compileAndRunop(OperatorDesc &opDesc,
std::vector<aclDataBuffer *> &inputBuffers_,
std::vector<aclDataBuffer *> &outputBuffers_,
aclCxt *acl_context, int stream_id);
// Suitable for one input and one output
CV_EXPORTS void OneInAndOneOut(const aclMat &input, aclMat &output, const string opType, int stream_id = 0);
CV_EXPORTS void OneInAndOneOut(const aclMat &input, aclMat &output,
const std::string opType, int stream_id = 0);
// Suitable for tow input and one output
CV_EXPORTS void TwoInAndOneOut(const aclMat &inputMat, const aclMat &inputMatOther, aclMat &outputMat, const string opType, int stream_id = 0);
CV_EXPORTS void TwoInAndOneOut(const aclMat &inputMat,
const aclMat &inputMatOther, aclMat &outputMat,
const std::string opType, int stream_id = 0);
// run the operator
CV_EXPORTS void Runop(vector<aclMat> &input, vector<aclMat> &output, OperatorDesc &opDesc, int stream_id);
CV_EXPORTS void Runop(std::vector<aclMat> &input, std::vector<aclMat> &output,
OperatorDesc &opDesc, int stream_id);
} /* end of namespace acl */

View File

@@ -2,7 +2,8 @@
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// By downloading, copying, installing or using the software you agree to this
license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
@@ -10,28 +11,35 @@
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science,
all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// Redistribution and use in source and binary forms, with or without
modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// * Redistribution's in binary form must reproduce the above copyright
notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote
products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// This software is provided by the copyright holders and contributors "as is"
and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// warranties of merchantability and fitness for a particular purpose are
disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any
direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
@@ -42,35 +50,28 @@
//M */
#include "precomp.hpp"
namespace cv
{
namespace acl
{
using namespace std;
using namespace cv;
using namespace cv::acl;
namespace cv {
namespace acl {
///////////////////////////aclEnv//////////////////////////////////
static Mutex *__initmutex = NULL;
Mutex &getInitMutex()
{
if (__initmutex == NULL)
__initmutex = new Mutex();
Mutex &getInitMutex() {
if (__initmutex == NULL) __initmutex = new Mutex();
return *__initmutex;
}
aclEnv *global_aclenv = nullptr;
aclEnv* aclEnv::get_acl_env(const char* config_path)
{
if (nullptr == global_aclenv)
{
aclEnv *aclEnv::get_acl_env(const char *config_path) {
if (nullptr == global_aclenv) {
AutoLock lock(getInitMutex());
if (nullptr == global_aclenv)
global_aclenv = new aclEnv(config_path);
if (nullptr == global_aclenv) global_aclenv = new aclEnv(config_path);
}
return global_aclenv;
}
void wait_stream(aclCxt * acl_context, const int stream_id)
{
void wait_stream(aclCxt *acl_context, const int stream_id) {
aclrtSynchronizeStream(acl_context->get_stream(stream_id));
}
@@ -81,8 +82,7 @@ namespace cv
* @param [in] device_id: device id
* @param [in] stream_count: stream count
*/
aclCxt *set_device(const char* config_path, int device_id, int stream_count)
{
aclCxt *set_device(const char *config_path, int device_id, int stream_count) {
aclEnv *acl_env = aclEnv::get_acl_env(config_path);
if (global_aclenv->refcount) {
AutoLock lock(getInitMutex());
@@ -99,18 +99,15 @@ namespace cv
return acl_context;
}
void release_device(aclCxt* context)
{
void release_device(aclCxt *context) {
CV_Assert(context);
delete context;
context = nullptr;
if (global_aclenv->refcount)
{
if (global_aclenv->refcount) {
AutoLock lock(getInitMutex());
CV_XADD(global_aclenv->refcount, -1);
if (*(global_aclenv->refcount) == 0)
{
if (*(global_aclenv->refcount) == 0) {
delete global_aclenv;
global_aclenv = nullptr;
}

View File

@@ -1,111 +1,111 @@
#include "precomp.hpp"
#define ALIGN 64
namespace cv
{
namespace acl
{
using namespace std;
using namespace cv;
using namespace cv::acl;
namespace cv {
namespace acl {
/* Memory alignment */
static inline size_t alignSize(size_t sz, int n = ALIGN);
void aclMat::upload(const Mat &m, ALIGNMENT config)
{
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) || (config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy((void *)this->data, (m.step * m.rows), (void *)m.data, (m.step * m.rows), ACL_MEMCPY_HOST_TO_DEVICE);
}
else if (config == ALIGNMENT::MEMORY_ALIGN)
{
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy2d((void *)this->data, this->step, (void *)m.data, m.step, m.cols * m.elemSize(), m.rows, ACL_MEMCPY_HOST_TO_DEVICE);
void aclMat::upload(const Mat &m, ALIGNMENT config) {
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) ||
(config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED) {
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) &&
(this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy((void *)this->data, (m.step * m.rows), (void *)m.data,
(m.step * m.rows), ACL_MEMCPY_HOST_TO_DEVICE);
} else if (config == ALIGNMENT::MEMORY_ALIGN) {
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) &&
(this->type() == m.type()));
aclrtMemcpy2d((void *)this->data, this->step, (void *)m.data, m.step,
m.cols * m.elemSize(), m.rows, ACL_MEMCPY_HOST_TO_DEVICE);
}
}
void aclMat::upload(const Mat &m, aclStream stream, ALIGNMENT config)
{
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) || (config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpyAsync((void *)this->data, this->totalSize, (void *)m.data, (m.step * m.rows), ACL_MEMCPY_HOST_TO_DEVICE, stream);
}
else if (config == ALIGNMENT::MEMORY_ALIGN)
{
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy2dAsync((void *)this->data, this->step, (void *)m.data, m.step, m.cols * m.elemSize(), m.rows, ACL_MEMCPY_HOST_TO_DEVICE, stream);
void aclMat::upload(const Mat &m, aclStream stream, ALIGNMENT config) {
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) ||
(config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED) {
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) &&
(this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpyAsync((void *)this->data, this->totalSize, (void *)m.data,
(m.step * m.rows), ACL_MEMCPY_HOST_TO_DEVICE, stream);
} else if (config == ALIGNMENT::MEMORY_ALIGN) {
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) &&
(this->type() == m.type()));
aclrtMemcpy2dAsync((void *)this->data, this->step, (void *)m.data, m.step,
m.cols * m.elemSize(), m.rows, ACL_MEMCPY_HOST_TO_DEVICE,
stream);
}
AclSafeCall(aclrtSynchronizeStream(stream));
}
void aclMat::download(Mat &m, ALIGNMENT config) const
{
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) || (config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy((void *)m.data, (m.step * m.rows), (void *)(this->data), (m.step * m.rows), ACL_MEMCPY_DEVICE_TO_HOST);
}
else if (config == ALIGNMENT::MEMORY_ALIGN)
{
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy2d((void *)m.data, m.step, (void *)(this->data), this->step, this->cols * this->elemSize(), this->rows, ACL_MEMCPY_DEVICE_TO_HOST);
void aclMat::download(Mat &m, ALIGNMENT config) const {
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) ||
(config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED) {
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) &&
(this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy((void *)m.data, (m.step * m.rows), (void *)(this->data),
(m.step * m.rows), ACL_MEMCPY_DEVICE_TO_HOST);
} else if (config == ALIGNMENT::MEMORY_ALIGN) {
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) &&
(this->type() == m.type()));
aclrtMemcpy2d((void *)m.data, m.step, (void *)(this->data), this->step,
this->cols * this->elemSize(), this->rows,
ACL_MEMCPY_DEVICE_TO_HOST);
}
return;
}
void aclMat::download(Mat &m, aclStream stream, ALIGNMENT config) const
{
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) || (config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpyAsync((void *)m.data, (m.step * m.rows), (void *)(this->data), this->totalSize, ACL_MEMCPY_DEVICE_TO_HOST, stream);
}
else if (config == ALIGNMENT::MEMORY_ALIGN)
{
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpy2dAsync((void *)m.data, m.step, (void *)(this->data), this->step, this->cols * this->elemSize(), this->rows, ACL_MEMCPY_DEVICE_TO_HOST, stream);
void aclMat::download(Mat &m, aclStream stream, ALIGNMENT config) const {
CV_Assert((config == ALIGNMENT::MEMORY_ALIGN) ||
(config == ALIGNMENT::MEMORY_UNALIGNED));
if (config == ALIGNMENT::MEMORY_UNALIGNED) {
CV_Assert(m.data && (this->step == m.step) && (this->rows == m.rows) &&
(this->cols == m.cols) && (this->type() == m.type()));
aclrtMemcpyAsync((void *)m.data, (m.step * m.rows), (void *)(this->data),
this->totalSize, ACL_MEMCPY_DEVICE_TO_HOST, stream);
} else if (config == ALIGNMENT::MEMORY_ALIGN) {
CV_Assert(m.data && (this->rows == m.rows) && (this->cols == m.cols) &&
(this->type() == m.type()));
aclrtMemcpy2dAsync((void *)m.data, m.step, (void *)(this->data), this->step,
this->cols * this->elemSize(), this->rows,
ACL_MEMCPY_DEVICE_TO_HOST, stream);
}
AclSafeCall(aclrtSynchronizeStream(stream));
return;
}
void aclMat::create(int _rows, int _cols, int _type, ALIGNMENT config, MemMallocPolicy policy)
{
void aclMat::create(int _rows, int _cols, int _type, ALIGNMENT config,
MemMallocPolicy policy) {
createEx(_rows, _cols, _type, config, policy);
}
void aclMat::create(Size size, int type, ALIGNMENT config, MemMallocPolicy policy)
{
void aclMat::create(Size size, int type, ALIGNMENT config,
MemMallocPolicy policy) {
createEx(size, type, config, policy);
}
inline size_t alignSize(size_t sz, int n)
{
return (((sz) + n - 1) / n ) * n;
}
inline size_t alignSize(size_t sz, int n) { return (((sz) + n - 1) / n) * n; }
/* core logic */
void aclMat::createEx(int _rows, int _cols, int _type, ALIGNMENT config, MemMallocPolicy policy)
{
void aclMat::createEx(int _rows, int _cols, int _type, ALIGNMENT config,
MemMallocPolicy policy) {
/* TO ENSURE */
//_type &= CV_MAT_TYPE_MASK;
_type &= TYPE_MASK;
if (rows == _rows && cols == _cols && type() == _type && data)
return;
if (rows == _rows && cols == _cols && type() == _type && data) return;
if (data)
release();
if (data) release();
CV_DbgAssert(_rows >= 0 && _cols >= 0);
if (_rows > 0 && _cols > 0)
{
if (_rows > 0 && _cols > 0) {
/* TO ENSURE */
// flags = (_type & CV_MAT_TYPE_MASK) | MAGIC_VAL;
flags = Mat::MAGIC_VAL + _type;
@@ -115,14 +115,12 @@ namespace cv
wholecols = _cols;
size_t esz = elemSize();
void *dev_ptr;
if (config == ALIGNMENT::MEMORY_ALIGN)
{
if (config == ALIGNMENT::MEMORY_ALIGN) {
if (channels() == 3)
step = alignSize(cols * esz, ALIGN * channels());
else
step = alignSize(cols * esz);
}
else
} else
step = cols * esz;
totalSize = step * rows;
@@ -138,16 +136,14 @@ namespace cv
}
}
void aclMat::createEx(Size size, int type, ALIGNMENT config, MemMallocPolicy policy)
{
void aclMat::createEx(Size size, int type, ALIGNMENT config,
MemMallocPolicy policy) {
createEx(size.height, size.width, type, config, policy);
}
void aclMat::release()
{
void aclMat::release() {
CV_XADD(refcount, -1);
if (data && (*refcount == 0))
{
if (data && (*refcount == 0)) {
aclrtFree(data);
}
data = nullptr;
@@ -155,29 +151,28 @@ namespace cv
dataend = nullptr;
}
aclMat &aclMat::operator+=(const aclMat &m)
{
CV_Assert(this->rows == m.rows && this->cols == m.cols && this->type() == m.type());
aclMat &aclMat::operator+=(const aclMat &m) {
CV_Assert(this->rows == m.rows && this->cols == m.cols &&
this->type() == m.type());
TwoInAndOneOut(*this, m, *this, "Add");
return *this;
}
aclMat &aclMat::operator-=(const aclMat &m)
{
CV_Assert(this->rows == m.rows && this->cols == m.cols && this->type() == m.type());
aclMat &aclMat::operator-=(const aclMat &m) {
CV_Assert(this->rows == m.rows && this->cols == m.cols &&
this->type() == m.type());
TwoInAndOneOut(*this, m, *this, "Sub");
return *this;
}
aclMat &aclMat::operator/=(const aclMat &m)
{
CV_Assert(this->rows == m.rows && this->cols == m.cols && this->type() == m.type());
aclMat &aclMat::operator/=(const aclMat &m) {
CV_Assert(this->rows == m.rows && this->cols == m.cols &&
this->type() == m.type());
TwoInAndOneOut(*this, m, *this, "Div");
return *this;
}
aclMat &aclMat::operator*=(const aclMat &m)
{
aclMat &aclMat::operator*=(const aclMat &m) {
CV_Assert(this->cols == m.rows && this->type() == m.type());
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
@@ -189,7 +184,8 @@ namespace cv
input_Mat.emplace_back(m);
output_Mat.emplace_back(newMat);
OperatorDesc opDesc = CreateOpDesc("MatMul", input_Mat, output_Mat, ACL_FORMAT_NHWC, TWO_DIMS);
OperatorDesc opDesc =
CreateOpDesc("MatMul", input_Mat, output_Mat, ACL_FORMAT_NHWC, TWO_DIMS);
opDesc.AddInputTensorDesc(ACL_DT_UNDEFINED, 0, nullptr, ACL_FORMAT_UNDEFINED);
opDesc.AddTensorAttr("transpose_x1", OP_BOOL, false);
opDesc.AddTensorAttr("transpose_x2", OP_BOOL, false);
@@ -197,7 +193,8 @@ namespace cv
inputBuffers_.emplace_back(aclCreateDataBuffer(this->data, this->totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(m.data, m.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(nullptr, 0));
outputBuffers_.emplace_back(aclCreateDataBuffer(newMat.data, newMat.totalSize));
outputBuffers_.emplace_back(
aclCreateDataBuffer(newMat.data, newMat.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, this->acl_context, 0);

View File

@@ -1,15 +1,16 @@
#include "precomp.hpp"
namespace cv
{
namespace acl
{
using namespace std;
using namespace cv;
using namespace cv::acl;
namespace cv {
namespace acl {
/**
* @brief: matrix multiplication
*
*/
void MatMul(const aclMat& src1, const aclMat& src2, aclMat& dest, int stream_id)
{
void MatMul(const aclMat& src1, const aclMat& src2, aclMat& dest,
int stream_id) {
CV_Assert(src1.cols == src2.rows && src1.type() == src2.type());
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
@@ -25,11 +26,13 @@ namespace cv
inputBuffers_.emplace_back(aclCreateDataBuffer(nullptr, 0));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
OperatorDesc opDesc = CreateOpDesc("MatMul", input_Mat, output_Mat, ACL_FORMAT_NHWC, TWO_DIMS);
OperatorDesc opDesc =
CreateOpDesc("MatMul", input_Mat, output_Mat, ACL_FORMAT_NHWC, TWO_DIMS);
opDesc.AddInputTensorDesc(ACL_DT_UNDEFINED, 0, nullptr, ACL_FORMAT_UNDEFINED);
opDesc.AddTensorAttr("transpose_x1", OP_BOOL, false);
opDesc.AddTensorAttr("transpose_x2", OP_BOOL, false);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context, stream_id);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context,
stream_id);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
@@ -45,14 +48,21 @@ namespace cv
* @param [in] stridesList: strides, The N and C dimensions must be set to 1
* @param [in] padSList: pads, vector<int64_t>(top, bottom, left, right)
*/
void Convolution(const aclMat& src, const aclMat& kernel, aclMat& dest, const vector<int64_t>& stridesList, const vector<int64_t>& padsList, int stream_id)
{
void Convolution(const aclMat& src, const aclMat& kernel, aclMat& dest,
const vector<int64_t>& stridesList,
const vector<int64_t>& padsList, int stream_id) {
vector<aclDataBuffer*> inputBuffers_;
vector<aclDataBuffer*> outputBuffers_;
vector<int64_t> dilationsList{1, 1, 1, 1};
string opType = "Conv2D";
int dest_rows = (src.rows + padsList[0] + padsList[1] - (1 * (kernel.rows - 1) + 1)) / stridesList[2] + 1;
int dest_cols = (src.cols + padsList[2] + padsList[3] - (1 * (kernel.cols - 1) + 1)) / stridesList[3] + 1;
int dest_rows =
(src.rows + padsList[0] + padsList[1] - (1 * (kernel.rows - 1) + 1)) /
stridesList[2] +
1;
int dest_cols =
(src.cols + padsList[2] + padsList[3] - (1 * (kernel.cols - 1) + 1)) /
stridesList[3] +
1;
aclMat acl_dest{dest_rows, dest_cols, src.type(), src.acl_context};
vector<int64_t> shape{1, 1, src.rows, src.cols};
@@ -67,14 +77,19 @@ namespace cv
opDesc.AddOutputTensorDesc(dataType, shape2.size(), shape2.data(), format);
auto opAttr = opDesc.opAttr;
aclopSetAttrListInt(opAttr, "strides", stridesList.size(), stridesList.data());
aclopSetAttrListInt(opAttr, "strides", stridesList.size(),
stridesList.data());
aclopSetAttrListInt(opAttr, "pads", padsList.size(), padsList.data());
aclopSetAttrListInt(opAttr, "dilations", dilationsList.size(), dilationsList.data());
aclopSetAttrListInt(opAttr, "dilations", dilationsList.size(),
dilationsList.data());
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(kernel.data, kernel.totalSize));
outputBuffers_.emplace_back(aclCreateDataBuffer(acl_dest.data, acl_dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, src.acl_context, stream_id);
inputBuffers_.emplace_back(
aclCreateDataBuffer(kernel.data, kernel.totalSize));
outputBuffers_.emplace_back(
aclCreateDataBuffer(acl_dest.data, acl_dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, src.acl_context,
stream_id);
acl_dest.data = aclGetDataBufferAddr(outputBuffers_[0]);
dest = acl_dest;

View File

@@ -1,72 +1,68 @@
#include "precomp.hpp"
namespace cv
{
namespace acl
{
aclMat abs(const aclMat& a, int stream_id)
{
using namespace std;
using namespace cv;
using namespace cv::acl;
namespace cv {
namespace acl {
aclMat abs(const aclMat &a, int stream_id) {
aclMat dest(a.rows, a.cols, a.type(), a.acl_context);
OneInAndOneOut(a, dest, "Abs", stream_id);
return dest;
}
static void *power_data(double power, aclDataType type, size_t powersize)
{
static void *power_data(double power, aclDataType type, size_t powersize) {
void *dev_ptr;
switch(type)
{
case ACL_UINT8:
{
switch (type) {
case ACL_UINT8: {
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
uchar power_8u = uchar(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_8u), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_8u), powersize,
ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_INT8:
{
case ACL_INT8: {
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
char power_8s = char(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_8s), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_8s), powersize,
ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_FLOAT16:
{
case ACL_FLOAT16: {
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
float16_t power_16f = float16_t(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_16f), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_16f),
powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_INT32:
{
case ACL_INT32: {
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
int power_32s = int(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_32s), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_32s),
powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_FLOAT:
{
case ACL_FLOAT: {
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
float power_32f = float(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_32f), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_32f),
powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
case ACL_DOUBLE:
{
case ACL_DOUBLE: {
aclrtMalloc(&dev_ptr, powersize, ACL_MEM_MALLOC_NORMAL_ONLY);
double power_64f = double(power);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_64f), powersize, ACL_MEMCPY_HOST_TO_DEVICE);
aclrtMemcpy(dev_ptr, powersize, static_cast<void *>(&power_64f),
powersize, ACL_MEMCPY_HOST_TO_DEVICE);
return dev_ptr;
}
default:
return nullptr;
}
}
void pow(const aclMat& src, double power, aclMat& dest, int stream_id)
{
void pow(const aclMat &src, double power, aclMat &dest, int stream_id) {
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
vector<aclDataBuffer *> inputBuffers_;
@@ -79,7 +75,8 @@ namespace cv
OperatorDesc opDesc = CreateOpDesc("Pow", input_Mat, output_Mat);
vector<int64_t> shape2{1};
opDesc.AddInputTensorDesc(dataType, shape2.size(), shape2.data(), ACL_FORMAT_NHWC);
opDesc.AddInputTensorDesc(dataType, shape2.size(), shape2.data(),
ACL_FORMAT_NHWC);
size_t size = aclGetTensorDescSize(opDesc.inputDesc[1]);
void *power_dev = power_data(power, dataType, size);
@@ -89,7 +86,8 @@ namespace cv
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context, stream_id);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context,
stream_id);
aclrtFree(power_dev);
for (size_t i = 0; i < inputBuffers_.size(); i++)
@@ -98,8 +96,8 @@ namespace cv
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
void add(const aclMat& src, const aclMat& other_src, aclMat& dest, int stream_id)
{
void add(const aclMat &src, const aclMat &other_src, aclMat &dest,
int stream_id) {
bool is_correct;
is_correct = (src.rows == other_src.rows);
@@ -113,8 +111,8 @@ namespace cv
TwoInAndOneOut(src, other_src, dest, "Add", stream_id);
}
void divide(const aclMat& src, const aclMat& other_src, aclMat& dest, int stream_id)
{
void divide(const aclMat &src, const aclMat &other_src, aclMat &dest,
int stream_id) {
bool is_correct;
is_correct = (src.rows == other_src.rows);
@@ -128,9 +126,9 @@ namespace cv
TwoInAndOneOut(src, other_src, dest, "Div", stream_id);
}
void exp(const aclMat& src, aclMat& dest, int stream_id)
{
CV_Assert(src.rows == dest.rows && src.cols == dest.cols && src.type() == dest.type());
void exp(const aclMat &src, aclMat &dest, int stream_id) {
CV_Assert(src.rows == dest.rows && src.cols == dest.cols &&
src.type() == dest.type());
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
@@ -149,15 +147,16 @@ namespace cv
opDesc.AddTensorAttr("scale", OP_FLOAT, 1.0);
opDesc.AddTensorAttr("shift", OP_FLOAT, 0.0);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context, stream_id);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context,
stream_id);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[0]));
}
void log(const aclMat &src, aclMat &dest, int stream_id)
{
CV_Assert(src.rows == dest.rows && src.cols == dest.cols && src.type() == dest.type());
void log(const aclMat &src, aclMat &dest, int stream_id) {
CV_Assert(src.rows == dest.rows && src.cols == dest.cols &&
src.type() == dest.type());
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
@@ -176,14 +175,15 @@ namespace cv
opDesc.AddTensorAttr("scale", OP_FLOAT, 1.0);
opDesc.AddTensorAttr("shift", OP_FLOAT, 0.0);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context, stream_id);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context,
stream_id);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[0]));
}
void max(const aclMat &src, const aclMat &other_src, aclMat &dest, int stream_id)
{
void max(const aclMat &src, const aclMat &other_src, aclMat &dest,
int stream_id) {
bool is_correct;
is_correct = (src.rows == other_src.rows);
@@ -197,8 +197,8 @@ namespace cv
TwoInAndOneOut(src, other_src, dest, "Maximum", stream_id);
}
void min(const aclMat &src, const aclMat &other_src, aclMat &dest, int stream_id)
{
void min(const aclMat &src, const aclMat &other_src, aclMat &dest,
int stream_id) {
bool is_correct;
is_correct = (src.rows == other_src.rows);
@@ -212,9 +212,9 @@ namespace cv
TwoInAndOneOut(src, other_src, dest, "Minimum", stream_id);
}
void sqrt(const aclMat &src, aclMat &dest, int stream_id)
{
CV_Assert(src.rows == dest.rows && src.cols == dest.cols && src.type() == dest.type());
void sqrt(const aclMat &src, aclMat &dest, int stream_id) {
CV_Assert(src.rows == dest.rows && src.cols == dest.cols &&
src.type() == dest.type());
OneInAndOneOut(src, dest, "Sqrt", stream_id);
}

View File

@@ -1,60 +1,11 @@
#include "precomp.hpp"
namespace cv
{
namespace acl
{
/*
//disable
void lookUpTable(const aclMat& src, const aclMat& lut, aclMat& dest)
{
bool is_correct;
is_correct = ((src.depth() == CV_8U) || (src.depth() == CV_8S));
is_correct &= ((lut.depth() == CV_8U) || (lut.depth() == CV_8S));
is_correct &= (lut.totalSize == 256);
CV_Assert(is_correct);
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
uchar keyValue[256];
for (int i = 0; i < 256; ++i)
keyValue[i] = i;
aclMat key(1, 256, src.type(), keyValue, src.acl_context);
input_Mat.emplace_back(src);
input_Mat.emplace_back(key);
input_Mat.emplace_back(lut);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(key.data, key.totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(lut.data, lut.totalSize));
aclDataType dataType = type_transition(input_Mat[0].depth());
aclFormat format = ACL_FORMAT_NHWC;
OperatorDesc opDesc("LookupTableImport");
vector<int64_t> shape1{src.rows, src.cols * src.channels()};
vector<int64_t> shape2{lut.rows, lut.cols * lut.channels()};
vector<int64_t> shape3{dest.rows, dest.cols * dest.channels()};
opDesc.AddInputTensorDesc(dataType, shape1.size(), shape1.data(), format);
opDesc.AddInputTensorDesc(dataType, shape2.size(), shape2.data(), format);
opDesc.AddInputTensorDesc(dataType, shape3.size(), shape3.data(), format);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
dest.data = aclGetDataBufferAddr(inputBuffers_[0]);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
*/
/*
using namespace std;
using namespace cv;
using namespace cv::acl;
namespace cv {
namespace acl {
#if 0
void merge(const vector<aclMat>& mv, aclMat& dest)
{
vector<aclDataBuffer *> inputBuffers_;
@@ -66,34 +17,38 @@ namespace cv
for (size_t i = 0; i < mv.size(); ++i)
{
int cols = mv[i].step/mv[i].elemSize();
vector<int64_t> inputShape{1, mv[i].rows, cols, mv[i].channels()};
opDesc.AddInputTensorDesc(dataType, inputShape.size(), inputShape.data(), ACL_FORMAT_ND);
vector<int64_t> inputShape{1, mv[i].rows, cols,
mv[i].channels()}; opDesc.AddInputTensorDesc(dataType, inputShape.size(),
inputShape.data(), ACL_FORMAT_ND);
}
int cols = dest.step/dest.elemSize();
vector<int64_t> outputShape{1, dest.rows, cols, dest.channels()};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
opDesc.AddOutputTensorDesc(dataType, outputShape.size(),
outputShape.data(), ACL_FORMAT_ND);
for (size_t i = 0; i < opDesc.inputDesc.size(); ++i)
{
inputBuffers_.emplace_back(aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
inputBuffers_.emplace_back(aclCreateDataBuffer(mv[i].data,
mv[i].totalSize));
}
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data,
dest.totalSize));
aclopSetAttrInt(opDesc.opAttr, "N", mv.size());
aclopSetAttrInt(opDesc.opAttr, "concat_dim", 3);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_,
dest.acl_context);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
for (size_t i = 0; i < outputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
*/
static int merge_type(int depth, int channels)
{
switch (depth)
{
#endif
static int merge_type(int depth, int channels) {
switch (depth) {
case CV_8U:
return CV_8UC(channels);
case CV_8S:
@@ -108,8 +63,7 @@ namespace cv
return -1;
}
void merge(const vector<aclMat>& mv, aclMat& dest, int stream_id)
{
void merge(const vector<aclMat> &mv, aclMat &dest, int stream_id) {
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
@@ -117,19 +71,21 @@ namespace cv
aclDataType dataType = type_transition(mv[0].depth());
vector<int64_t> inputShape{};
opDesc.AddInputTensorDesc(ACL_INT32, inputShape.size(), inputShape.data(), ACL_FORMAT_ND);
opDesc.AddInputTensorDesc(ACL_INT32, inputShape.size(), inputShape.data(),
ACL_FORMAT_ND);
for (size_t i = 0; i < mv.size(); ++i)
{
for (size_t i = 0; i < mv.size(); ++i) {
int cols = mv[i].step / mv[i].elemSize();
vector<int64_t> inputShape{1, mv[i].rows, cols, mv[i].channels()};
opDesc.AddInputTensorDesc(dataType, inputShape.size(), inputShape.data(), ACL_FORMAT_NHWC);
opDesc.AddInputTensorDesc(dataType, inputShape.size(), inputShape.data(),
ACL_FORMAT_NHWC);
}
int cols = mv[0].step / mv[0].elemSize();
int channels = mv.size();
vector<int64_t> outputShape{1, mv[0].rows, cols, channels};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_NHWC);
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(),
ACL_FORMAT_NHWC);
ino64_t N = mv.size();
aclopSetAttrInt(opDesc.opAttr, "N", N);
@@ -152,14 +108,16 @@ namespace cv
inputBuffers_.emplace_back(aclCreateDataBuffer(dev, size));
for (size_t i = 0; i < mv.size(); ++i)
inputBuffers_.emplace_back(aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
inputBuffers_.emplace_back(
aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
int type = merge_type(mv[0].depth(), channels);
aclMat temp(mv[0].rows, mv[0].cols, type, mv[0].acl_context);
dest = temp;
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context, stream_id);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context,
stream_id);
for (size_t i = 0; i < inputBuffers_.size(); i++)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
@@ -169,16 +127,12 @@ namespace cv
aclrtFree(dev);
}
/**
* @brief : Dynamic shape reasoning
*
*/
void transpose(const aclMat& src, aclMat& dest, int stream_id)
{
void transpose(const aclMat &src, aclMat &dest, int stream_id) {
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
vector<aclDataBuffer *> inputBuffers_host;
@@ -187,13 +141,16 @@ namespace cv
aclDataType dataType = type_transition(src.depth());
vector<int64_t> inputShape1{1, src.rows, src.cols, src.channels()};
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(), ACL_FORMAT_ND);
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(),
ACL_FORMAT_ND);
vector<int64_t> inputShape2{4};
opDesc.AddInputTensorDesc(ACL_INT32, inputShape2.size(), inputShape2.data(), ACL_FORMAT_ND);
opDesc.AddInputTensorDesc(ACL_INT32, inputShape2.size(), inputShape2.data(),
ACL_FORMAT_ND);
vector<int64_t> outputShape{-1, -1, -1, -1};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(),
ACL_FORMAT_ND);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
@@ -210,35 +167,29 @@ namespace cv
aclrtMemcpy(dev, size, perm, size, ACL_MEMCPY_HOST_TO_DEVICE);
inputBuffers_.emplace_back(aclCreateDataBuffer(dev, size));
AclSafeCall(aclopCompile(opDesc.opType.c_str(),
opDesc.inputDesc.size(),
opDesc.inputDesc.data(),
opDesc.outputDesc.size(),
opDesc.outputDesc.data(),
opDesc.opAttr,
ACL_ENGINE_SYS,
ACL_COMPILE_SYS,
nullptr));
AclSafeCall(aclopCompile(opDesc.opType.c_str(), opDesc.inputDesc.size(),
opDesc.inputDesc.data(), opDesc.outputDesc.size(),
opDesc.outputDesc.data(), opDesc.opAttr,
ACL_ENGINE_SYS, ACL_COMPILE_SYS, nullptr));
void *host_data;
size_t host_size = src.totalSize;
aclrtMallocHost(&host_data, host_size);
aclrtMemcpy(host_data, host_size, src.data, host_size, ACL_MEMCPY_DEVICE_TO_HOST);
aclrtMemcpy(host_data, host_size, src.data, host_size,
ACL_MEMCPY_DEVICE_TO_HOST);
inputBuffers_host.emplace_back(aclCreateDataBuffer(host_data, host_size));
inputBuffers_host.emplace_back(aclCreateDataBuffer(perm, size));
AclSafeCall(aclopInferShape("Transpose", opDesc.inputDesc.size(), opDesc.inputDesc.data(), \
inputBuffers_host.data(), opDesc.outputDesc.size(), opDesc.outputDesc.data(), opDesc.opAttr));
AclSafeCall(aclopInferShape("Transpose", opDesc.inputDesc.size(),
opDesc.inputDesc.data(), inputBuffers_host.data(),
opDesc.outputDesc.size(),
opDesc.outputDesc.data(), opDesc.opAttr));
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
AclSafeCall(aclopExecuteV2(opDesc.opType.c_str(),
inputBuffers_.size(),
opDesc.inputDesc.data(),
inputBuffers_.data(),
outputBuffers_.size(),
opDesc.outputDesc.data(),
outputBuffers_.data(),
opDesc.opAttr,
AclSafeCall(aclopExecuteV2(opDesc.opType.c_str(), inputBuffers_.size(),
opDesc.inputDesc.data(), inputBuffers_.data(),
outputBuffers_.size(), opDesc.outputDesc.data(),
outputBuffers_.data(), opDesc.opAttr,
dest.acl_context->get_stream(stream_id)));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
@@ -251,7 +202,6 @@ namespace cv
AclSafeCall(aclrtFreeHost(host_data));
}
/* transposeD */
#if 0
void transpose(const aclMat& src, aclMat& dest)
@@ -281,10 +231,8 @@ namespace cv
}
#endif
static int split_type(int depth)
{
switch (depth)
{
static int split_type(int depth) {
switch (depth) {
case CV_8U:
return CV_8UC1;
case CV_8S:
@@ -299,8 +247,7 @@ namespace cv
return -1;
}
void split(const aclMat& src, vector<aclMat>& mv, int stream_id)
{
void split(const aclMat &src, vector<aclMat> &mv, int stream_id) {
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
int split_dim = 3;
@@ -311,12 +258,13 @@ namespace cv
int cols = src.step / src.elemSize();
vector<int64_t> inputShape1{1, src.rows, cols, src.channels()};
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(), ACL_FORMAT_ND);
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(),
ACL_FORMAT_ND);
for (int i = 0; i < num_split; ++i)
{
for (int i = 0; i < num_split; ++i) {
vector<int64_t> outputShape{1, src.rows, cols, 1};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(),
ACL_FORMAT_ND);
}
auto opAttr = opDesc.opAttr;
@@ -326,21 +274,21 @@ namespace cv
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
int type = split_type(src.depth());
for (int i = 0; i < num_split; ++i)
{
for (int i = 0; i < num_split; ++i) {
aclMat tmp(src.rows, src.cols, type, src.acl_context);
mv[i] = tmp;
outputBuffers_.emplace_back(aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
outputBuffers_.emplace_back(
aclCreateDataBuffer(mv[i].data, mv[i].totalSize));
}
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, src.acl_context, stream_id);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, src.acl_context,
stream_id);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
for (int i = 0; i < num_split; ++i)
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
#if 0
//disable
@@ -429,8 +377,7 @@ namespace cv
}
#endif
static void flip_(const aclMat& src, aclMat& dest, int axis, int stream_id)
{
static void flip_(const aclMat &src, aclMat &dest, int axis, int stream_id) {
vector<aclDataBuffer *> inputBuffers_;
vector<aclDataBuffer *> outputBuffers_;
@@ -438,13 +385,16 @@ namespace cv
aclDataType dataType = type_transition(src.depth());
vector<int64_t> inputShape1{1, src.rows, src.cols, src.channels()};
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(), ACL_FORMAT_ND);
opDesc.AddInputTensorDesc(dataType, inputShape1.size(), inputShape1.data(),
ACL_FORMAT_ND);
vector<int64_t> inputShape2{1};
opDesc.AddInputTensorDesc(ACL_INT32, inputShape2.size(), inputShape2.data(), ACL_FORMAT_ND);
opDesc.AddInputTensorDesc(ACL_INT32, inputShape2.size(), inputShape2.data(),
ACL_FORMAT_ND);
vector<int64_t> outputShape{1, dest.rows, dest.cols, dest.channels()};
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(), ACL_FORMAT_ND);
opDesc.AddOutputTensorDesc(dataType, outputShape.size(), outputShape.data(),
ACL_FORMAT_ND);
inputBuffers_.emplace_back(aclCreateDataBuffer(src.data, src.totalSize));
@@ -456,7 +406,8 @@ namespace cv
outputBuffers_.emplace_back(aclCreateDataBuffer(dest.data, dest.totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context, stream_id);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, dest.acl_context,
stream_id);
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[0]));
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[1]));
@@ -464,18 +415,16 @@ namespace cv
AclSafeCall(aclrtFree(dev));
}
void flip(const aclMat& src, aclMat& dest, int filpCode, int stream_id)
{
void flip(const aclMat &src, aclMat &dest, int filpCode, int stream_id) {
if (filpCode == 0) {
flip_(src, dest, 1, stream_id);
}
else if (filpCode > 0) {
} else if (filpCode > 0) {
flip_(src, dest, 2, stream_id);
}
else {
} else {
flip_(src, dest, 2, stream_id);
aclMat tmp(dest.rows, dest.cols, dest.type(), dest.acl_context);
aclrtMemcpy(tmp.data, dest.totalSize, dest.data, dest.totalSize, ACL_MEMCPY_DEVICE_TO_DEVICE);
aclrtMemcpy(tmp.data, dest.totalSize, dest.data, dest.totalSize,
ACL_MEMCPY_DEVICE_TO_DEVICE);
flip_(tmp, dest, 1, stream_id);
}
}

View File

@@ -12,25 +12,20 @@
#include "precomp.hpp"
using namespace std;
namespace cv
{
namespace acl
{
OperatorDesc::OperatorDesc(std::string opType) : opType(std::move(opType))
{
using namespace cv;
using namespace cv::acl;
namespace cv {
namespace acl {
OperatorDesc::OperatorDesc(std::string opType) : opType(std::move(opType)) {
opAttr = aclopCreateAttr();
}
OperatorDesc::~OperatorDesc()
{
for (auto *desc : inputDesc)
{
OperatorDesc::~OperatorDesc() {
for (auto* desc : inputDesc) {
aclDestroyTensorDesc(desc);
}
for (auto *desc : outputDesc)
{
for (auto* desc : outputDesc) {
aclDestroyTensorDesc(desc);
}
@@ -38,10 +33,8 @@ namespace cv
}
OperatorDesc& OperatorDesc::AddInputTensorDesc(aclDataType dataType,
int numDims,
const int64_t *dims,
aclFormat format)
{
int numDims, const int64_t* dims,
aclFormat format) {
aclTensorDesc* desc = aclCreateTensorDesc(dataType, numDims, dims, format);
CV_Assert(desc);
inputDesc.emplace_back(desc);
@@ -51,8 +44,7 @@ namespace cv
OperatorDesc& OperatorDesc::AddOutputTensorDesc(aclDataType dataType,
int numDims,
const int64_t* dims,
aclFormat format)
{
aclFormat format) {
aclTensorDesc* desc = aclCreateTensorDesc(dataType, numDims, dims, format);
CV_Assert(desc);
outputDesc.emplace_back(desc);
@@ -63,8 +55,9 @@ namespace cv
* @brief create operator describe
*
*/
OperatorDesc CreateOpDesc(const string opType, const vector<aclMat>& input_Mat, vector<aclMat>& output_Mat, aclFormat format, Opdims config)
{
OperatorDesc CreateOpDesc(const string opType, const vector<aclMat>& input_Mat,
vector<aclMat>& output_Mat, aclFormat format,
Opdims config) {
CV_Assert(config == TWO_DIMS || config == FOUR_DIMS);
size_t i;
@@ -72,31 +65,27 @@ namespace cv
OperatorDesc opDesc(opType);
for (i = 0; i < input_Mat.size(); ++i) {
if (config == TWO_DIMS)
{
if (config == TWO_DIMS) {
int cols = input_Mat[i].step / input_Mat[i].elemSize();
vector<int64_t> shape{input_Mat[i].rows, cols};
opDesc.AddInputTensorDesc(dataType, shape.size(), shape.data(), format);
}
else if(config == FOUR_DIMS)
{
} else if (config == FOUR_DIMS) {
int cols = input_Mat[i].step / input_Mat[i].elemSize();
vector<int64_t> shape{1, input_Mat[i].rows, cols, input_Mat[i].channels()};
vector<int64_t> shape{1, input_Mat[i].rows, cols,
input_Mat[i].channels()};
opDesc.AddInputTensorDesc(dataType, shape.size(), shape.data(), format);
}
}
for (i = 0; i < output_Mat.size(); ++i) {
if (config == TWO_DIMS)
{
if (config == TWO_DIMS) {
int cols = output_Mat[i].step / output_Mat[i].elemSize();
vector<int64_t> shape{output_Mat[i].rows, cols};
opDesc.AddOutputTensorDesc(dataType, shape.size(), shape.data(), format);
}
else if(config == FOUR_DIMS)
{
} else if (config == FOUR_DIMS) {
int cols = output_Mat[i].step / output_Mat[i].elemSize();
vector<int64_t> shape{1, output_Mat[i].rows, cols, output_Mat[i].channels()};
vector<int64_t> shape{1, output_Mat[i].rows, cols,
output_Mat[i].channels()};
opDesc.AddOutputTensorDesc(dataType, shape.size(), shape.data(), format);
}
}
@@ -108,42 +97,38 @@ namespace cv
* @brief compile and run operator
*
*/
void compileAndRunop(OperatorDesc& opDesc, vector<aclDataBuffer *>& inputBuffers_, vector<aclDataBuffer *>& outputBuffers_, aclCxt *acl_context, int stream_id)
{
AclSafeCall(aclopCompile(opDesc.opType.c_str(),
opDesc.inputDesc.size(),
opDesc.inputDesc.data(),
opDesc.outputDesc.size(),
opDesc.outputDesc.data(),
opDesc.opAttr,
ACL_ENGINE_SYS,
ACL_COMPILE_SYS,
nullptr));
void compileAndRunop(OperatorDesc& opDesc,
vector<aclDataBuffer*>& inputBuffers_,
vector<aclDataBuffer*>& outputBuffers_,
aclCxt* acl_context, int stream_id) {
AclSafeCall(aclopCompile(opDesc.opType.c_str(), opDesc.inputDesc.size(),
opDesc.inputDesc.data(), opDesc.outputDesc.size(),
opDesc.outputDesc.data(), opDesc.opAttr,
ACL_ENGINE_SYS, ACL_COMPILE_SYS, nullptr));
AclSafeCall(aclopExecuteV2(opDesc.opType.c_str(),
inputBuffers_.size(),
opDesc.inputDesc.data(),
inputBuffers_.data(),
outputBuffers_.size(),
opDesc.outputDesc.data(),
outputBuffers_.data(),
opDesc.opAttr,
AclSafeCall(aclopExecuteV2(opDesc.opType.c_str(), inputBuffers_.size(),
opDesc.inputDesc.data(), inputBuffers_.data(),
outputBuffers_.size(), opDesc.outputDesc.data(),
outputBuffers_.data(), opDesc.opAttr,
acl_context->get_stream(stream_id)));
}
void Runop(vector<aclMat>& input, vector<aclMat>& output, OperatorDesc& opDesc, int stream_id)
{
void Runop(vector<aclMat>& input, vector<aclMat>& output, OperatorDesc& opDesc,
int stream_id) {
size_t i;
vector<aclDataBuffer*> inputBuffers_;
vector<aclDataBuffer*> outputBuffers_;
for (i = 0; i < input.size(); ++i)
inputBuffers_.emplace_back(aclCreateDataBuffer(input[i].data, input[i].totalSize));
inputBuffers_.emplace_back(
aclCreateDataBuffer(input[i].data, input[i].totalSize));
for (i = 0; i < output.size(); ++i)
outputBuffers_.emplace_back(aclCreateDataBuffer(output[i].data, output[i].totalSize));
outputBuffers_.emplace_back(
aclCreateDataBuffer(output[i].data, output[i].totalSize));
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, output[0].acl_context, stream_id);
compileAndRunop(opDesc, inputBuffers_, outputBuffers_, output[0].acl_context,
stream_id);
for (i = 0; i < input.size(); ++i)
AclSafeCall(aclDestroyDataBuffer(inputBuffers_[i]));
@@ -151,8 +136,8 @@ namespace cv
AclSafeCall(aclDestroyDataBuffer(outputBuffers_[i]));
}
void OneInAndOneOut(const aclMat& inputMat, aclMat& outputMat, const string opType, int stream_id)
{
void OneInAndOneOut(const aclMat& inputMat, aclMat& outputMat,
const string opType, int stream_id) {
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;
@@ -163,8 +148,8 @@ namespace cv
Runop(input_Mat, output_Mat, opDesc, stream_id);
}
void TwoInAndOneOut(const aclMat& inputMat, const aclMat& inputMatOther, aclMat& outputMat, const string opType, int stream_id)
{
void TwoInAndOneOut(const aclMat& inputMat, const aclMat& inputMatOther,
aclMat& outputMat, const string opType, int stream_id) {
vector<aclMat> input_Mat;
vector<aclMat> output_Mat;

View File

@@ -2,7 +2,8 @@
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// By downloading, copying, installing or using the software you agree to this
license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
@@ -14,23 +15,29 @@
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// Redistribution and use in source and binary forms, with or without
modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// * Redistribution's in binary form must reproduce the above copyright
notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote
products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// This software is provided by the copyright holders and contributors "as is"
and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// warranties of merchantability and fitness for a particular purpose are
disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any
direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
@@ -43,7 +50,6 @@
#ifndef OPENCV_ACL_PRECOMP_HPP__
#define OPENCV_ACL_PRECOMP_HPP__
#include <assert.h>
#include <ctype.h>
#include <float.h>
@@ -52,19 +58,16 @@
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <memory>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/acl/acl.hpp"
#include "opencv2/core/utility.hpp"
#include "opencv2/acl/operator_desc.hpp"
#include "acl/acl.h"
#include "acl/acl_op_compiler.h"
#include "opencv2/acl/acl.hpp"
#include "opencv2/acl/operator_desc.hpp"
#include "opencv2/core.hpp"
#include "opencv2/core/utility.hpp"
using namespace std;
using namespace cv;
using namespace cv::acl;
#endif

View File

@@ -1,24 +1,28 @@
#include "test_common.hpp"
#include "test_correctness.hpp"
#include "test_perf.hpp"
#include "test_common.hpp"
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
namespace opencv_test
{
namespace
{
namespace opencv_test {
namespace {
aclCxt *acl_context_0 = set_device("../../modules/acl/test/acl.json", 2, 3);
////////////////////////////////////////////////////Correctness_test////////////////////////////////////////////////////////
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* config: MEMORY_ALIGN
* aclMat(int rows, int cols, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(Size size, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(int rows, int cols, int type, aclCxt *acl_context, ALIGNMENT config =
* MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(Size size, int type, aclCxt *acl_context, ALIGNMENT config =
* MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(const aclMat &m);
*
*/
TEST(ACLMAT_CONSTRUCTOR, MEMORY_ALIGN)
{
TEST(ACLMAT_CONSTRUCTOR, MEMORY_ALIGN) {
AclMat_Test test;
test.Test_constructor_ALIGN(acl_context_0);
}
@@ -26,12 +30,13 @@ namespace opencv_test
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* config: MEMORY_UNALIGNED
* aclMat(int rows, int cols, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(Size size, int type, aclCxt *acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(int rows, int cols, int type, aclCxt *acl_context, ALIGNMENT config =
* MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat(Size size, int type, aclCxt *acl_context, ALIGNMENT config =
* MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
*
*/
TEST(ACLMAT_CONSTRUCTOR, MEMORY_UNALIGNED)
{
TEST(ACLMAT_CONSTRUCTOR, MEMORY_UNALIGNED) {
AclMat_Test test;
test.Test_constructor_UNALIGNED(acl_context_0);
}
@@ -40,30 +45,30 @@ namespace opencv_test
* test function:
* aclMat(const aclMat &m);
*/
TEST(ACLMAT_CONSTRUCTOR, COPY_CONSTRUCTOR)
{
TEST(ACLMAT_CONSTRUCTOR, COPY_CONSTRUCTOR) {
AclMat_Test test;
test.Test_constructor(acl_context_0);
}
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* aclMat(int rows, int cols, int type, void *data, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
* aclMat(Size size, int type, void *data, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
* aclMat(int rows, int cols, int type, void *data, aclCxt* acl_context,
* ALIGNMENT config = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
* aclMat(Size size, int type, void *data, aclCxt* acl_context, ALIGNMENT config
* = MEMORY_UNALIGNED, size_t step = Mat::AUTO_STEP);
*/
TEST(ACLMAT_CONSTRUCTOR, DATA)
{
TEST(ACLMAT_CONSTRUCTOR, DATA) {
AclMat_Test test;
test.Test_constructor_DATA(acl_context_0);
}
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* aclMat(const aclMat &m, const Range &rowRange, const Range &colRange = Range::all());
* aclMat(const aclMat &m, const Range &rowRange, const Range &colRange =
* Range::all());
*
*/
TEST(ACLMAT_CONSTRUCTOR, RANGE)
{
TEST(ACLMAT_CONSTRUCTOR, RANGE) {
AclMat_Test test;
test.Test_constructor_RANGE(acl_context_0);
}
@@ -73,18 +78,17 @@ namespace opencv_test
* aclMat(const aclMat &m, const Rect &roi);
*
*/
TEST(ACLMAT_CONSTRUCTOR, ROI)
{
TEST(ACLMAT_CONSTRUCTOR, ROI) {
AclMat_Test test;
test.Test_constructor_ROI(acl_context_0);
}
/*
* test function:
* aclMat (const Mat &m, aclCxt* acl_context, ALIGNMENT config = MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
* aclMat (const Mat &m, aclCxt* acl_context, ALIGNMENT config =
* MEMORY_UNALIGNED, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST);
*/
TEST(ACLMAT_CONSTRUCTOR, MAT)
{
TEST(ACLMAT_CONSTRUCTOR, MAT) {
AclMat_Test test;
test.Test_constructor_MAT(acl_context_0);
}
@@ -92,11 +96,11 @@ namespace opencv_test
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* CV_EXPORTS void upload(const Mat &m, ALIGNMENT config = MEMORY_UNALIGNED);
* CV_EXPORTS void upload(const Mat &m, aclStream stream, ALIGNMENT config = MEMORY_UNALIGNED);
* CV_EXPORTS void upload(const Mat &m, aclStream stream, ALIGNMENT config =
* MEMORY_UNALIGNED);
*
*/
TEST(ACLMAT_FUNCTION, DATA_TRANSFER)
{
TEST(ACLMAT_FUNCTION, DATA_TRANSFER) {
AclMat_Test test;
test.Test_DATA_TRANSFER(acl_context_0);
}
@@ -104,11 +108,11 @@ namespace opencv_test
/* range: rows: 1 ~ 64, cols: 1 ~ 64, type: 0 ~ 7
* test function:
* CV_EXPORTS void download(Mat &m, ALIGNMENT config = MEMORY_UNALIGNED) const;
* CV_EXPORTS void download(Mat &m, aclStream stream, ALIGNMENT config = MEMORY_UNALIGNED) const;
* CV_EXPORTS void download(Mat &m, aclStream stream, ALIGNMENT config =
* MEMORY_UNALIGNED) const;
*
*/
TEST(ACLMAT_FUNCTION, DATA_TRANSFERASYNC)
{
TEST(ACLMAT_FUNCTION, DATA_TRANSFERASYNC) {
AclMat_Test test;
test.Test_DATA_TRANSFERASYNC(acl_context_0);
}
@@ -117,8 +121,7 @@ namespace opencv_test
* test function:
* void locateROI(Size &wholeSize, Point &ofs) const;
*/
TEST(ACLMAT_FUNCTION, LOCATEROI)
{
TEST(ACLMAT_FUNCTION, LOCATEROI) {
AclMat_Test test;
test.Test_locateROI(acl_context_0);
}
@@ -128,8 +131,7 @@ namespace opencv_test
* void swap(aclMat &mat);
*
*/
TEST(ACLMAT_FUNCTION, SWAP)
{
TEST(ACLMAT_FUNCTION, SWAP) {
AclMat_Test test;
test.Test_swap(acl_context_0);
}
@@ -139,8 +141,7 @@ namespace opencv_test
* operator+=()
*
*/
TEST(ACLMAT_FUNCTION, OPERATOR_ADD)
{
TEST(ACLMAT_FUNCTION, OPERATOR_ADD) {
AclMat_Test test;
test.Test_operator_add(acl_context_0);
}
@@ -150,8 +151,7 @@ namespace opencv_test
* operator-=()
*
*/
TEST(ACLMAT_FUNCTION, OPERATOR_SUB)
{
TEST(ACLMAT_FUNCTION, OPERATOR_SUB) {
AclMat_Test test;
test.Test_operator_sub(acl_context_0);
}
@@ -161,8 +161,7 @@ namespace opencv_test
* operator*=()
*
*/
TEST(ACLMAT_FUNCTION, OPERATOR_MUL)
{
TEST(ACLMAT_FUNCTION, OPERATOR_MUL) {
AclMat_Test test;
test.Test_operator_mul(acl_context_0);
}
@@ -172,128 +171,107 @@ namespace opencv_test
* operator/=()
*
*/
TEST(ACLMAT_FUNCTION, OPERATOR_DIV)
{
TEST(ACLMAT_FUNCTION, OPERATOR_DIV) {
AclMat_Test test;
test.Test_operator_div(acl_context_0);
}
////////////////////////////////////////////////////Perf_test////////////////////////////////////////////////////////
TEST(Operator, add)
{
TEST(Operator, add) {
PERF_TEST test;
test.Test_operator_add_perf(acl_context_0);
}
TEST(Operator, sub)
{
TEST(Operator, sub) {
PERF_TEST test;
test.Test_operator_sub_perf(acl_context_0);
}
TEST(Operator, div)
{
TEST(Operator, div) {
PERF_TEST test;
test.Test_operator_div_perf(acl_context_0);
}
TEST(Operator, mul)
{
TEST(Operator, mul) {
PERF_TEST test;
test.Test_operator_mul_perf(acl_context_0);
}
TEST(Mathfunction, abs)
{
TEST(Mathfunction, abs) {
PERF_TEST test;
test.Test_Abs(acl_context_0);
}
TEST(Mathfunction, pow)
{
TEST(Mathfunction, pow) {
PERF_TEST test;
test.Test_Pow(acl_context_0);
}
TEST(Mathfunction, sqrt)
{
TEST(Mathfunction, sqrt) {
PERF_TEST test;
test.Test_Sqrt(acl_context_0);
}
TEST(Mathfunction, add)
{
TEST(Mathfunction, add) {
PERF_TEST test;
test.Test_Add(acl_context_0);
}
TEST(Mathfunction, divide)
{
TEST(Mathfunction, divide) {
PERF_TEST test;
test.Test_Divide(acl_context_0);
}
TEST(Mathfunction, exp)
{
TEST(Mathfunction, exp) {
PERF_TEST test;
test.Test_Exp(acl_context_0);
}
TEST(Mathfunction, log)
{
TEST(Mathfunction, log) {
PERF_TEST test;
test.Test_Log(acl_context_0);
}
TEST(Mathfunction, max)
{
TEST(Mathfunction, max) {
PERF_TEST test;
test.Test_Max(acl_context_0);
}
TEST(Mathfunction, min)
{
TEST(Mathfunction, min) {
PERF_TEST test;
test.Test_Min(acl_context_0);
}
TEST(Gemm, MatMul)
{
TEST(Gemm, MatMul) {
PERF_TEST test;
test.Test_MatMul(acl_context_0);
}
TEST(Gemm, Convolution)
{
TEST(Gemm, Convolution) {
PERF_TEST test;
test.Test_Convolution(acl_context_0);
}
TEST(Matrices, merge)
{
TEST(Matrices, merge) {
PERF_TEST test;
test.Test_Merge(acl_context_0);
}
TEST(Matrices, split)
{
TEST(Matrices, split) {
PERF_TEST test;
test.Test_Split(acl_context_0);
}
TEST(Matrices, transpose)
{
TEST(Matrices, transpose) {
PERF_TEST test;
test.Test_Transpose(acl_context_0);
}
TEST(Matrices, flip)
{
TEST(Matrices, flip) {
PERF_TEST test;
test.Test_Flip(acl_context_0);
release_device(acl_context_0);
}
}
}
} // namespace
} // namespace opencv_test

View File

@@ -1,2 +1 @@
{
}
{}

View File

@@ -1,9 +1,13 @@
#include "test_common.hpp"
#include "test_perf.hpp"
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
void PERF_TEST::Test_operator_add_perf(aclCxt *acl_context)
{
void PERF_TEST::Test_operator_add_perf(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -11,11 +15,9 @@ void PERF_TEST::Test_operator_add_perf(aclCxt *acl_context)
Common_Test test;
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Perf test : Function: operator+=()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -28,8 +30,7 @@ void PERF_TEST::Test_operator_add_perf(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest += mat_src;
while (n--) mat_dest += mat_src;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -37,8 +38,7 @@ void PERF_TEST::Test_operator_add_perf(aclCxt *acl_context)
aclmat_dest += aclmat_src;
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest += aclmat_src;
while (n--) aclmat_dest += aclmat_src;
wait_stream(acl_context);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -50,13 +50,13 @@ void PERF_TEST::Test_operator_add_perf(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_operator_sub_perf(aclCxt *acl_context)
{
void PERF_TEST::Test_operator_sub_perf(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -65,11 +65,9 @@ void PERF_TEST::Test_operator_sub_perf(aclCxt *acl_context)
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
// vector<int> type{CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Perf test : Function: operator-=()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -82,8 +80,7 @@ void PERF_TEST::Test_operator_sub_perf(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest -= mat_src;
while (n--) mat_dest -= mat_src;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -91,8 +88,7 @@ void PERF_TEST::Test_operator_sub_perf(aclCxt *acl_context)
aclmat_dest -= aclmat_src;
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest -= aclmat_src;
while (n--) aclmat_dest -= aclmat_src;
wait_stream(acl_context);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -104,14 +100,13 @@ void PERF_TEST::Test_operator_sub_perf(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
}
void PERF_TEST::Test_operator_div_perf(aclCxt *acl_context)
{
void PERF_TEST::Test_operator_div_perf(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -120,11 +115,9 @@ void PERF_TEST::Test_operator_div_perf(aclCxt *acl_context)
// vector<int> type{CV_32FC1};
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Perf test : Function: operator/=()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i], Scalar(1, 2, 4));
Mat mat_dest(val, val, type[i], Scalar(2, 4, 8));
@@ -134,8 +127,7 @@ void PERF_TEST::Test_operator_div_perf(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest /= mat_src;
while (n--) mat_dest /= mat_src;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -143,8 +135,7 @@ void PERF_TEST::Test_operator_div_perf(aclCxt *acl_context)
aclmat_dest /= aclmat_src;
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest /= aclmat_src;
while (n--) aclmat_dest /= aclmat_src;
wait_stream(acl_context);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -156,14 +147,13 @@ void PERF_TEST::Test_operator_div_perf(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
}
void PERF_TEST::Test_operator_mul_perf(aclCxt *acl_context)
{
void PERF_TEST::Test_operator_mul_perf(aclCxt *acl_context) {
int val, n;
int valmax = 4096;
int cycle_index = 10;
@@ -171,10 +161,8 @@ void PERF_TEST::Test_operator_mul_perf(aclCxt *acl_context)
Common_Test test;
vector<int> type{CV_32FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -187,8 +175,7 @@ void PERF_TEST::Test_operator_mul_perf(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest *= mat_src;
while (n--) mat_dest *= mat_src;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -196,8 +183,7 @@ void PERF_TEST::Test_operator_mul_perf(aclCxt *acl_context)
aclmat_dest *= aclmat_src;
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest *= aclmat_src;
while (n--) aclmat_dest *= aclmat_src;
wait_stream(acl_context);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -209,8 +195,8 @@ void PERF_TEST::Test_operator_mul_perf(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}

View File

@@ -1,18 +1,20 @@
#include "test_common.hpp"
Common_Test::Common_Test() {
srand((unsigned)time(NULL));
}
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
Common_Test::~Common_Test() {
Common_Test::Common_Test() { srand((unsigned)time(NULL)); }
}
Common_Test::~Common_Test() {}
bool Common_Test::Test_Diff(const aclMat& aclmat, const Mat& mat, ALIGNMENT config) {
bool Common_Test::Test_Diff(const aclMat &aclmat, const Mat &mat,
ALIGNMENT config) {
bool is_correct;
if (config == ALIGNMENT::MEMORY_UNALIGNED)
{
if (config == ALIGNMENT::MEMORY_UNALIGNED) {
is_correct = (aclmat.rows == mat.rows);
is_correct &= (aclmat.cols == mat.cols);
is_correct &= (aclmat.channels() == mat.channels());
@@ -20,14 +22,13 @@ bool Common_Test::Test_Diff(const aclMat& aclmat, const Mat& mat, ALIGNMENT conf
is_correct &= (aclmat.step == mat.step);
is_correct &= (aclmat.elemSize() == mat.elemSize());
is_correct &= (aclmat.totalSize == mat.total() * mat.elemSize());
is_correct &= ((aclmat.dataend - aclmat.datastart) == (mat.dataend - mat.datastart));
is_correct &=
((aclmat.dataend - aclmat.datastart) == (mat.dataend - mat.datastart));
Mat mat_dest(mat.rows, mat.cols, mat.type());
aclmat.download(mat_dest);
is_correct &= Test_Diff(mat, mat_dest);
}
else
{
} else {
is_correct = (aclmat.rows == mat.rows);
is_correct &= (aclmat.cols == mat.cols);
is_correct &= (aclmat.channels() == mat.channels());
@@ -63,8 +64,7 @@ bool Common_Test::Test_Diff(const aclMat& aclmat, const aclMat& aclmat_other) {
return is_correct;
}
bool Common_Test::Test_Diff(const Mat &mat, const Mat &mat_other)
{
bool Common_Test::Test_Diff(const Mat &mat, const Mat &mat_other) {
bool is_correct;
is_correct = (mat.rows == mat_other.rows);
@@ -75,86 +75,101 @@ bool Common_Test::Test_Diff(const Mat &mat, const Mat &mat_other)
is_correct &= (mat.elemSize() == mat_other.elemSize());
is_correct &= (mat.total() == mat_other.total());
switch (mat.depth())
{
switch (mat.depth()) {
case CV_8U:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int i = 0;
(is_correct == true) && (i < mat.rows * mat.cols * mat.channels());
i += mat.channels()) {
for (int j = 0; j < mat.channels(); ++j)
is_correct &= ((mat.data)[i + j] == (mat_other.data)[i + j]);
}
return is_correct;
case CV_16U:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int i = 0;
(is_correct == true) && (i < mat.rows * mat.cols * mat.channels());
i += mat.channels()) {
for (int j = 0; j < mat.channels(); ++j)
is_correct &= (((unsigned short *)mat.data)[i+j] == ((unsigned short *)mat_other.data)[i+j]);
is_correct &= (((unsigned short *)mat.data)[i + j] ==
((unsigned short *)mat_other.data)[i + j]);
}
return is_correct;
case CV_32S:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int i = 0;
(is_correct == true) && (i < mat.rows * mat.cols * mat.channels());
i += mat.channels()) {
for (int j = 0; j < mat.channels(); ++j)
is_correct &= (((int *)(mat.data))[i+j] == (((int *)mat_other.data))[i+j]);
is_correct &=
(((int *)(mat.data))[i + j] == (((int *)mat_other.data))[i + j]);
}
return is_correct;
case CV_32F:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int i = 0;
(is_correct == true) && (i < mat.rows * mat.cols * mat.channels());
i += mat.channels()) {
for (int j = 0; j < mat.channels(); ++j)
is_correct &= ((((float *)(mat.data))[i+j] - (((float *)mat_other.data))[i+j] >= -0.00001) || \
(((float *)(mat.data))[i+j] - (((float *)mat_other.data))[i+j] <= 0.00001));
is_correct &= ((((float *)(mat.data))[i + j] -
(((float *)mat_other.data))[i + j] >=
-0.00001) ||
(((float *)(mat.data))[i + j] -
(((float *)mat_other.data))[i + j] <=
0.00001));
}
return is_correct;
case CV_64F:
for (int i = 0; (is_correct == true) && (i < mat.rows * mat.cols * mat.channels()); i += mat.channels())
{
for (int i = 0;
(is_correct == true) && (i < mat.rows * mat.cols * mat.channels());
i += mat.channels()) {
for (int j = 0; j < mat.channels(); ++j)
is_correct &= ((((double *)(mat.data))[i+j] - (((double *)mat_other.data))[i+j] >= -0.00001) || \
(((double *)(mat.data))[i+j] - (((double *)mat_other.data))[i+j] <= 0.00001));
is_correct &= ((((double *)(mat.data))[i + j] -
(((double *)mat_other.data))[i + j] >=
-0.00001) ||
(((double *)(mat.data))[i + j] -
(((double *)mat_other.data))[i + j] <=
0.00001));
}
return is_correct;
}
return is_correct;
}
void Common_Test::MatShow(cv::Mat &m, string str)
{
void Common_Test::MatShow(cv::Mat &m, string str) {
cout << str.c_str() << endl;
cout << m;
cout << endl
<< endl
<< endl;
cout << endl << endl << endl;
}
void Common_Test::StatShow(cv::Mat &mat_src, aclMat &aclmat_dst)
{
cout << "//////////////////////////////// MatStat ////////////////////////////////" << endl;
void Common_Test::StatShow(cv::Mat &mat_src, aclMat &aclmat_dst) {
cout << "//////////////////////////////// MatStat "
"////////////////////////////////"
<< endl;
cout << "type: " << mat_src.type() << endl;
cout << "elemSize: " << mat_src.elemSize() << endl;
cout << "channels: " << mat_src.channels() << endl;
cout << "step: " << mat_src.step << endl;
cout << "totalSize: " << mat_src.rows * mat_src.cols * mat_src.elemSize() << endl;
cout << "totalSize: " << mat_src.rows * mat_src.cols * mat_src.elemSize()
<< endl;
cout << "totalSize: " << mat_src.total() * mat_src.elemSize() << endl;
cout << "dataend - datastart: " << mat_src.dataend - mat_src.datastart << endl;
cout << "dataend - datastart: " << mat_src.dataend - mat_src.datastart
<< endl;
cout << "//////////////////////////////// aclMatStat ////////////////////////////////" << endl;
cout << "//////////////////////////////// aclMatStat "
"////////////////////////////////"
<< endl;
cout << "type: " << aclmat_dst.type() << endl;
cout << "elemSize: " << aclmat_dst.elemSize() << endl;
cout << "channels: " << aclmat_dst.channels() << endl;
cout << "step: " << aclmat_dst.step << endl;
cout << "totalSize: " << aclmat_dst.rows * aclmat_dst.step << endl;
cout << "totalSize: " << aclmat_dst.totalSize << endl;
cout << "dataend - datastart: " << aclmat_dst.dataend - aclmat_dst.datastart << endl;
cout << "dataend - datastart: " << aclmat_dst.dataend - aclmat_dst.datastart
<< endl;
cout << "wholerows: " << aclmat_dst.wholerows << endl;
cout << "wholecols: " << aclmat_dst.wholecols << endl;
cout << "offset : " << aclmat_dst.offset << endl;
}
void Common_Test::PrintLog(const string& funcname, int type)
{
switch (type)
{
void Common_Test::PrintLog(const string &funcname, int type) {
switch (type) {
case CV_8UC1:
cout << funcname << "\t"
<< "Type: CV_8UC1" << endl;
@@ -261,41 +276,39 @@ size_t Common_Test::RandDom_(int config) {
return static_cast<size_t>(rand() % config);
}
bool Common_Test::SetDataRange(Mat &src, int dataRange)
{
switch (src.depth())
{
bool Common_Test::SetDataRange(Mat &src, int dataRange) {
switch (src.depth()) {
case CV_8U:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int i = 0; i < src.rows * src.cols * src.channels();
i += src.channels()) {
for (int j = 0; j < src.channels(); ++j)
(src.data)[i + j] = RandDom_(dataRange) + 1;
}
return true;
case CV_16U:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int i = 0; i < src.rows * src.cols * src.channels();
i += src.channels()) {
for (int j = 0; j < src.channels(); ++j)
((unsigned short *)src.data)[i + j] = RandDom_(dataRange) + 1;
}
return true;
case CV_32S:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int i = 0; i < src.rows * src.cols * src.channels();
i += src.channels()) {
for (int j = 0; j < src.channels(); ++j)
((int *)src.data)[i + j] = RandDom_(dataRange) + 1;
}
return true;
case CV_32F:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int i = 0; i < src.rows * src.cols * src.channels();
i += src.channels()) {
for (int j = 0; j < src.channels(); ++j)
((float *)src.data)[i + j] = RandDom_(dataRange) / 1.0 + 1;
}
return true;
case CV_64F:
for (int i = 0; i < src.rows * src.cols * src.channels(); i += src.channels())
{
for (int i = 0; i < src.rows * src.cols * src.channels();
i += src.channels()) {
for (int j = 0; j < src.channels(); ++j)
((double *)src.data)[i + j] = RandDom_(dataRange) / 1.0 + 1;
}

View File

@@ -3,25 +3,24 @@
#include "test_precomp.hpp"
typedef enum TestDatatype {
INT = 1,
FLOAT
} TestDatatype;
typedef enum TestDatatype { INT = 1, FLOAT } TestDatatype;
class CV_EXPORTS Common_Test {
public:
Common_Test();
~Common_Test();
CV_EXPORTS bool Test_Diff(const aclMat& aclmat, const Mat& mat, ALIGNMENT config = ALIGNMENT::MEMORY_UNALIGNED);
CV_EXPORTS bool Test_Diff(const aclMat& aclmat, const aclMat& aclmat_other);
CV_EXPORTS bool Test_Diff(const Mat& mat, const Mat& mat_other);
CV_EXPORTS void MatShow(Mat &m, string str);
CV_EXPORTS void StatShow(Mat &mat_src, aclMat &aclmat_dst);
CV_EXPORTS void PrintLog(const string& funcname, int type);
CV_EXPORTS bool Test_Diff(
const cv::acl::aclMat& aclmat, const cv::Mat& mat,
cv::acl::ALIGNMENT config = cv::acl::ALIGNMENT::MEMORY_UNALIGNED);
CV_EXPORTS bool Test_Diff(const cv::acl::aclMat& aclmat,
const cv::acl::aclMat& aclmat_other);
CV_EXPORTS bool Test_Diff(const cv::Mat& mat, const cv::Mat& mat_other);
CV_EXPORTS void MatShow(cv::Mat& m, std::string str);
CV_EXPORTS void StatShow(cv::Mat& mat_src, cv::acl::aclMat& aclmat_dst);
CV_EXPORTS void PrintLog(const std::string& funcname, int type);
CV_EXPORTS size_t RandDom_(int config = 0xff);
CV_EXPORTS bool SetDataRange(Mat &src, int dataRange = 0xff);
CV_EXPORTS bool SetDataRange(cv::Mat& src, int dataRange = 0xff);
};
#endif

View File

@@ -1,73 +1,80 @@
///////////////////////////////////////////////////////////////////////////////////////
/* M/////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
// By downloading, copying, installing or using the software you agree to this
// license. If you do not agree to this license, do not download, install, copy
// or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science, all rights reserved.
// Copyright (C) 2010-2012, Advanced Micro Devices, Inc., all rights reserved.
// Copyright (C) 2010-2012, Multicoreware, Inc., all rights reserved.
// Third party copyrights are property of their respective owners.
// Copyright (C) 2010-2012, Institute Of Software Chinese Academy Of Science,
// all rights reserved. Copyright (C) 2010-2012, Advanced Micro Devices, Inc.,
// all rights reserved. Copyright (C) 2010-2012, Multicoreware, Inc., all rights
// reserved. Third party copyrights are property of their respective owners.
//
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// * Redistribution's in binary form must reproduce the above copyright
// notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// * The name of the copyright holders may not be used to endorse or promote
// products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
// This software is provided by the copyright holders and contributors "as is"
// and any express or implied warranties, including, but not limited to, the
// implied warranties of merchantability and fitness for a particular purpose
// are disclaimed. In no event shall the Intel Corporation or contributors be
// liable for any direct, indirect, incidental, special, exemplary, or
// consequential damages (including, but not limited to, procurement of
// substitute goods or services; loss of use, data, or profits; or business
// interruption) however caused and on any theory of liability, whether in
// contract, strict liability, or tort (including negligence or otherwise)
// arising in any way out of the use of this software, even if advised of the
// possibility of such damage.
//
// M*/
#include "test_common.hpp"
#include "test_correctness.hpp"
AclMat_Test::AclMat_Test() {
#include "test_common.hpp"
}
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
AclMat_Test::~AclMat_Test() {
AclMat_Test::AclMat_Test() {}
}
AclMat_Test::~AclMat_Test() {}
/* thread function */
void thread_handler(void) {
aclCxt *acl_context_0 = set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 0, 1);
aclCxt *acl_context_0 =
set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 0, 1);
release_device(acl_context_0);
}
void AclMat_Test::Test_set_device() {
/* Current thread */
aclCxt *acl_context_0 = set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 0, 1);
aclCxt *acl_context_0 =
set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 0, 1);
/* Different scope */
{
aclCxt *acl_context_1 = set_device("/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 2, 3);
aclCxt *acl_context_1 = set_device(
"/home/perfxlab4/OpenCV_ACL/modules/acl/test/acl.json", 2, 3);
release_device(acl_context_1);
}
@@ -97,7 +104,9 @@ void AclMat_Test::Test_constructor_UNALIGNED(aclCxt *acl_context) {
}
}
}
clog << "Test_constructor_UNALIGNED: -> aclMat(rows, cols, type, acl_context, config, policy) <- is success" << endl;
clog << "Test_constructor_UNALIGNED: -> aclMat(rows, cols, type, "
"acl_context, config, policy) <- is success"
<< endl;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
@@ -111,7 +120,9 @@ void AclMat_Test::Test_constructor_UNALIGNED(aclCxt *acl_context) {
}
}
}
clog << "Test_constructor_UNALIGNED: -> aclMat(size, type, acl_context, config, policy) <- is success" << endl;
clog << "Test_constructor_UNALIGNED: -> aclMat(size, type, acl_context, "
"config, policy) <- is success"
<< endl;
}
void AclMat_Test::Test_constructor_ALIGN(aclCxt *acl_context) {
@@ -134,23 +145,26 @@ void AclMat_Test::Test_constructor_ALIGN(aclCxt *acl_context) {
}
}
}
clog << "Test_constructor_ALIGN: -> aclMat(rows, cols, type, acl_context, config, policy) <- is success" << endl;
clog << "Test_constructor_ALIGN: -> aclMat(rows, cols, type, acl_context, "
"config, policy) <- is success"
<< endl;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
Mat mat_src(cv::Size(cols, rows), type);
test.SetDataRange(mat_src, 32);
aclMat aclmat_src(cv::Size(cols, rows), type, acl_context, MEMORY_ALIGN);
aclMat aclmat_src(cv::Size(cols, rows), type, acl_context,
MEMORY_ALIGN);
aclmat_src.upload(mat_src, MEMORY_ALIGN);
ret = test.Test_Diff(aclmat_src, mat_src, MEMORY_ALIGN);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor_ALIGN: -> aclMat(size, type, acl_context, config, policy) <- is success" << endl;
clog << "Test_constructor_ALIGN: -> aclMat(size, type, acl_context, config, "
"policy) <- is success"
<< endl;
}
void AclMat_Test::Test_constructor(aclCxt *acl_context_0) {
@@ -176,14 +190,16 @@ void AclMat_Test::Test_constructor(aclCxt *acl_context_0) {
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
for (cols = 1; cols < colsMax; cols++) {
aclMat aclmat_src(cv::Size(cols, rows), type, acl_context_0, MEMORY_ALIGN);
aclMat aclmat_src(cv::Size(cols, rows), type, acl_context_0,
MEMORY_ALIGN);
aclMat aclmat_dest(aclmat_src);
ret = test.Test_Diff(aclmat_src, aclmat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor: -> aclMat(const aclMat& other) <- is success" << endl;
clog << "Test_constructor: -> aclMat(const aclMat& other) <- is success"
<< endl;
}
void AclMat_Test::Test_constructor_DATA(aclCxt *acl_context_0) {
@@ -208,7 +224,9 @@ void AclMat_Test::Test_constructor_DATA(aclCxt *acl_context_0) {
}
}
}
cerr << "Test_constructor_DATA: -> aclMat(rows, cols, type, data, acl_context)) <- is success" << endl;
cerr << "Test_constructor_DATA: -> aclMat(rows, cols, type, data, "
"acl_context)) <- is success"
<< endl;
for (type = 0; type < typeMax; type++) {
for (rows = 1; rows < rowsMax; rows++) {
@@ -217,7 +235,8 @@ void AclMat_Test::Test_constructor_DATA(aclCxt *acl_context_0) {
Mat mat_dest(cv::Size(cols, rows), type);
test.SetDataRange(mat_src);
aclMat aclmat_src(cv::Size(cols, rows), type, mat_src.data, acl_context_0);
aclMat aclmat_src(cv::Size(cols, rows), type, mat_src.data,
acl_context_0);
aclmat_src.download(mat_dest);
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
@@ -225,7 +244,9 @@ void AclMat_Test::Test_constructor_DATA(aclCxt *acl_context_0) {
}
}
cerr << "Test_constructor_DATA: -> aclMat(size, type, data, acl_context)) <- is success" << endl;
cerr << "Test_constructor_DATA: -> aclMat(size, type, data, acl_context)) <- "
"is success"
<< endl;
}
void AclMat_Test::Test_constructor_RANGE(aclCxt *acl_context_0) {
@@ -246,18 +267,22 @@ void AclMat_Test::Test_constructor_RANGE(aclCxt *acl_context_0) {
test.SetDataRange(mat_src);
test.SetDataRange(mat_dest);
Mat mat_rangesrc(mat_src, cv::Range(2, rangerows), cv::Range(2, rangecols));
Mat mat_rangedest(mat_dest, cv::Range(2, rangerows), cv::Range(2, rangecols));
Mat mat_rangesrc(mat_src, cv::Range(2, rangerows),
cv::Range(2, rangecols));
Mat mat_rangedest(mat_dest, cv::Range(2, rangerows),
cv::Range(2, rangecols));
aclMat aclmat_src(rows, cols, type, mat_src.data, acl_context_0);
aclMat aclmat_range(aclmat_src, cv::Range(2, rangerows), cv::Range(2, rangecols));
aclMat aclmat_range(aclmat_src, cv::Range(2, rangerows),
cv::Range(2, rangecols));
aclmat_range.download(mat_rangedest);
ret = test.Test_Diff(mat_rangesrc, mat_rangedest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_constructor_RANGE: -> aclMat(aclmat_src, rowragne, colrange)) <- is success" << endl;
clog << "Test_constructor_RANGE: -> aclMat(aclmat_src, rowragne, colrange)) "
"<- is success"
<< endl;
}
void AclMat_Test::Test_constructor_ROI(aclCxt *acl_context_0) {
@@ -325,7 +350,8 @@ void AclMat_Test::Test_constructor_ROI(aclCxt *acl_context_0) {
ASSERT_TRUE(ret);
}
clog << "Test_constructor_ROI: -> aclMat(aclmat_src, roi)) <- is success" << endl;
clog << "Test_constructor_ROI: -> aclMat(aclmat_src, roi)) <- is success"
<< endl;
}
void AclMat_Test::Test_constructor_MAT(aclCxt *acl_context_0) {
@@ -350,8 +376,9 @@ void AclMat_Test::Test_constructor_MAT(aclCxt *acl_context_0) {
}
}
}
clog << "Test_constructor_MAT: -> aclMat(mat_src, acl_context_0)) <- is success" << endl;
clog << "Test_constructor_MAT: -> aclMat(mat_src, acl_context_0)) <- is "
"success"
<< endl;
}
void AclMat_Test::Test_DATA_TRANSFER(aclCxt *acl_context_0) {
@@ -362,12 +389,9 @@ void AclMat_Test::Test_DATA_TRANSFER(aclCxt *acl_context_0) {
const int colsMax = 1048;
const int typeMax = 7;
for (type = 0; type < typeMax; type++)
{
for (rows = 1000; rows < rowsMax; rows++)
{
for (cols = 1000; cols < colsMax; cols++)
{
for (type = 0; type < typeMax; type++) {
for (rows = 1000; rows < rowsMax; rows++) {
for (cols = 1000; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
@@ -382,14 +406,12 @@ void AclMat_Test::Test_DATA_TRANSFER(aclCxt *acl_context_0) {
}
}
}
clog << "Test_DATA_TRANSFER_UNALIGNED: -> upload(), download() <- is success" << endl;
clog << "Test_DATA_TRANSFER_UNALIGNED: -> upload(), download() <- is success"
<< endl;
for (type = 0; type < typeMax; type++)
{
for (rows = 1000; rows < rowsMax; rows++)
{
for (cols = 1000; cols < colsMax; cols++)
{
for (type = 0; type < typeMax; type++) {
for (rows = 1000; rows < rowsMax; rows++) {
for (cols = 1000; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
@@ -404,7 +426,8 @@ void AclMat_Test::Test_DATA_TRANSFER(aclCxt *acl_context_0) {
}
}
}
clog << "Test_DATA_TRANSFER_ALIGN: -> upload(), download() <- is success" << endl;
clog << "Test_DATA_TRANSFER_ALIGN: -> upload(), download() <- is success"
<< endl;
}
void AclMat_Test::Test_DATA_TRANSFERASYNC(aclCxt *acl_context_0) {
@@ -415,12 +438,9 @@ void AclMat_Test::Test_DATA_TRANSFERASYNC(aclCxt *acl_context_0) {
const int colsMax = 1048;
const int typeMax = 7;
for (type = 0; type < typeMax; type++)
{
for (rows = 1000; rows < rowsMax; rows++)
{
for (cols = 1000; cols < colsMax; cols++)
{
for (type = 0; type < typeMax; type++) {
for (rows = 1000; rows < rowsMax; rows++) {
for (cols = 1000; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
@@ -435,14 +455,13 @@ void AclMat_Test::Test_DATA_TRANSFERASYNC(aclCxt *acl_context_0) {
}
}
}
clog << "Test_DATA_TRANSFERASYNC_UNALIGNED: -> upload(), download() <- is success" << endl;
clog << "Test_DATA_TRANSFERASYNC_UNALIGNED: -> upload(), download() <- is "
"success"
<< endl;
for (type = 0; type < typeMax; type++)
{
for (rows = 1000; rows < rowsMax; rows++)
{
for (cols = 1000; cols < colsMax; cols++)
{
for (type = 0; type < typeMax; type++) {
for (rows = 1000; rows < rowsMax; rows++) {
for (cols = 1000; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
@@ -450,15 +469,17 @@ void AclMat_Test::Test_DATA_TRANSFERASYNC(aclCxt *acl_context_0) {
test.SetDataRange(mat_dest);
aclMat aclmat_src(rows, cols, type, acl_context_0, MEMORY_ALIGN);
aclmat_src.upload(mat_src, aclmat_src.acl_context->get_stream(0), MEMORY_ALIGN);
aclmat_src.download(mat_dest, aclmat_src.acl_context->get_stream(0), MEMORY_ALIGN);
aclmat_src.upload(mat_src, aclmat_src.acl_context->get_stream(0),
MEMORY_ALIGN);
aclmat_src.download(mat_dest, aclmat_src.acl_context->get_stream(0),
MEMORY_ALIGN);
ret = test.Test_Diff(mat_src, mat_dest);
ASSERT_TRUE(ret);
}
}
}
clog << "Test_DATA_TRANSFERASYNC_ALIGN: -> upload(), download() <- is success" << endl;
clog << "Test_DATA_TRANSFERASYNC_ALIGN: -> upload(), download() <- is success"
<< endl;
}
static inline void dataSwap(int &data1, int &data2) {
@@ -480,8 +501,7 @@ void AclMat_Test::Test_locateROI(aclCxt *acl_context_0) {
cv::Size size, size1;
cv::Point ofs, ofs1;
for (int x = 0; x < rows * cols; ++x)
{
for (int x = 0; x < rows * cols; ++x) {
rangex = (rangex = test.RandDom_()) > 0 ? rangex : 1;
rangey = (rangey = test.RandDom_()) > 0 ? rangey : 1;
rangex1 = (rangex1 = test.RandDom_()) > 0 ? rangex1 : 1;
@@ -491,11 +511,13 @@ void AclMat_Test::Test_locateROI(aclCxt *acl_context_0) {
dataSwap(rangey, rangey1);
Mat mat_src(rows, cols, type);
Mat mat_range(mat_src, cv::Range(rangex1, rangex+1), cv::Range(rangey1, rangey+1));
Mat mat_range(mat_src, cv::Range(rangex1, rangex + 1),
cv::Range(rangey1, rangey + 1));
mat_range.locateROI(size, ofs);
aclMat aclmat_src(rows, cols, type, acl_context_0);
aclMat aclmat_range(aclmat_src, cv::Range(rangex1, rangex+1), cv::Range(rangey1, rangey+1));
aclMat aclmat_range(aclmat_src, cv::Range(rangex1, rangex + 1),
cv::Range(rangey1, rangey + 1));
aclmat_range.locateROI(size1, ofs1);
ASSERT_EQ(size.height, size1.height);
@@ -504,7 +526,6 @@ void AclMat_Test::Test_locateROI(aclCxt *acl_context_0) {
ASSERT_EQ(ofs.y, ofs1.y);
}
clog << "Test_loacteROI: -> locateROI() <- is success" << endl;
}
void AclMat_Test::Test_swap(aclCxt *acl_context_0) {
@@ -515,12 +536,9 @@ void AclMat_Test::Test_swap(aclCxt *acl_context_0) {
const int colsMax = 1048;
const int typeMax = 7;
for (type = 0; type < typeMax; type++)
{
for (rows = 1024; rows < rowsMax; rows++)
{
for (cols = 1024; cols < colsMax; cols++)
{
for (type = 0; type < typeMax; type++) {
for (rows = 1024; rows < rowsMax; rows++) {
for (cols = 1024; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type);
Mat mat_dest(rows, cols, type);
@@ -556,13 +574,10 @@ void AclMat_Test::Test_operator_add(aclCxt *acl_context) {
const int colsMax = 1048;
vector<int> type{CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3, CV_32SC1, CV_32SC3};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Correctness test: Functoin: operator+=()", type[i]);
for (rows = 1024; rows < rowsMax; rows++)
{
for (cols = 1024; cols < colsMax; cols++)
{
for (rows = 1024; rows < rowsMax; rows++) {
for (cols = 1024; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type[i]);
Mat mat_dest(rows, cols, type[i]);
Mat mat_dest1(rows, cols, type[i]);
@@ -570,8 +585,10 @@ void AclMat_Test::Test_operator_add(aclCxt *acl_context) {
test.SetDataRange(mat_src, 32);
test.SetDataRange(mat_dest, 32);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context,
MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context,
MEMORY_ALIGN);
mat_dest += mat_src;
@@ -584,7 +601,6 @@ void AclMat_Test::Test_operator_add(aclCxt *acl_context) {
}
}
}
}
void AclMat_Test::Test_operator_sub(aclCxt *acl_context) {
@@ -594,20 +610,20 @@ void AclMat_Test::Test_operator_sub(aclCxt *acl_context) {
const int rowsMax = 1048;
const int colsMax = 1048;
vector<int> type{CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3, CV_32SC1, CV_32SC3, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
vector<int> type{CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3,
CV_32SC1, CV_32SC3, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Correctness test: Functoin: operator-=()", type[i]);
for (rows = 1024; rows < rowsMax; rows++)
{
for (cols = 1024; cols < colsMax; cols++)
{
for (rows = 1024; rows < rowsMax; rows++) {
for (cols = 1024; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type[i], Scalar(1, 2, 3));
Mat mat_dest(rows, cols, type[i], Scalar(4, 6, 8));
Mat mat_dest1(rows, cols, type[i]);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context,
MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context,
MEMORY_ALIGN);
mat_dest -= mat_src;
@@ -620,7 +636,6 @@ void AclMat_Test::Test_operator_sub(aclCxt *acl_context) {
}
}
}
}
void AclMat_Test::Test_operator_div(aclCxt *acl_context) {
@@ -630,20 +645,20 @@ void AclMat_Test::Test_operator_div(aclCxt *acl_context) {
const int rowsMax = 1048;
const int colsMax = 1048;
vector<int> type{CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3, CV_32SC1, CV_32SC3, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
vector<int> type{CV_8UC1, CV_8UC3, CV_32FC1, CV_32FC3,
CV_32SC1, CV_32SC3, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Correctness test: Functoin: operator/=()", type[i]);
for (rows = 1024; rows < rowsMax; rows++)
{
for (cols = 1024; cols < colsMax; cols++)
{
for (rows = 1024; rows < rowsMax; rows++) {
for (cols = 1024; cols < colsMax; cols++) {
Mat mat_src(rows, cols, type[i], Scalar(1, 2, 4));
Mat mat_dest(rows, cols, type[i], Scalar(4, 6, 8));
Mat mat_dest1(rows, cols, type[i]);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context, MEMORY_ALIGN);
aclMat aclmat_src(rows, cols, type[i], mat_src.data, acl_context,
MEMORY_ALIGN);
aclMat aclmat_dest(rows, cols, type[i], mat_dest.data, acl_context,
MEMORY_ALIGN);
mat_dest /= mat_src;
@@ -665,11 +680,9 @@ void AclMat_Test::Test_operator_mul(aclCxt *acl_context) {
const int valMax = 1048;
vector<int> type{CV_32FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Correctness test: Functoin: operator*=()", type[i]);
for (val = 1024; val < valMax; val++)
{
for (val = 1024; val < valMax; val++) {
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
Mat mat_dest1(val, val, type[i]);
@@ -690,9 +703,4 @@ void AclMat_Test::Test_operator_mul(aclCxt *acl_context) {
ASSERT_TRUE(ret);
}
}
}

View File

@@ -2,25 +2,36 @@
#define __OPENCV_CORRECTNESS_HPP__
#include "test_precomp.hpp"
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
class CV_EXPORTS AclMat_Test {
public:
AclMat_Test();
~AclMat_Test();
/* test set_device() */
CV_EXPORTS void Test_set_device();
/* test aclMat(int rows, int cols, int type, aclCxt *acl_context, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST) */
/* test aclMat(int rows, int cols, int type, aclCxt *acl_context,
* aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST) */
CV_EXPORTS void Test_constructor_UNALIGNED(aclCxt *acl_context);
CV_EXPORTS void Test_constructor_ALIGN(aclCxt *acl_context);
/* test aclMat(const aclMat &m) */
CV_EXPORTS void Test_constructor(aclCxt *acl_context);
/* test aclMat(int rows, int cols, int type, void *data, aclCxt* acl_context, size_t step = Mat::AUTO_STEP) */
/* test aclMat(int rows, int cols, int type, void *data, aclCxt* acl_context,
* size_t step = Mat::AUTO_STEP) */
CV_EXPORTS void Test_constructor_DATA(aclCxt *acl_context);
/* test aclMat(const aclMat &m, const Range &rowRange, const Range &colRange = Range::all()) */
/* test aclMat(const aclMat &m, const Range &rowRange, const Range &colRange =
* Range::all()) */
CV_EXPORTS void Test_constructor_RANGE(aclCxt *acl_context);
/* test aclMat(const aclMat &m, const Rect &roi) */
CV_EXPORTS void Test_constructor_ROI(aclCxt *acl_context);
/* test aclMat (const Mat &m, aclCxt* acl_context, aclrtMemMallocPolicy policy = ACL_MEM_MALLOC_HUGE_FIRST) */
/* test aclMat (const Mat &m, aclCxt* acl_context, aclrtMemMallocPolicy policy
* = ACL_MEM_MALLOC_HUGE_FIRST) */
CV_EXPORTS void Test_constructor_MAT(aclCxt *acl_context);
/* test upload download*/
CV_EXPORTS void Test_DATA_TRANSFER(aclCxt *acl_context);

View File

@@ -1,8 +1,13 @@
#include "test_common.hpp"
#include "test_perf.hpp"
void PERF_TEST::Test_MatMul(aclCxt *acl_context)
{
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
void PERF_TEST::Test_MatMul(aclCxt *acl_context) {
int val, n;
int valmax = 4096;
int cycle_index = 10; // 100;
@@ -10,10 +15,8 @@ void PERF_TEST::Test_MatMul(aclCxt *acl_context)
Common_Test test;
vector<int> type{CV_32FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
Mat mat_src(val, val, type[i]);
Mat mat_src1(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -29,8 +32,7 @@ void PERF_TEST::Test_MatMul(aclCxt *acl_context)
n = cycle_index;
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest = mat_src * mat_src1;
while (n--) mat_dest = mat_src * mat_src1;
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -38,8 +40,7 @@ void PERF_TEST::Test_MatMul(aclCxt *acl_context)
MatMul(aclmat_src1, aclmat_src, aclmat_dest, 0);
wait_stream(acl_context, 0);
begin = static_cast<double>(getTickCount());
while (n--)
MatMul(aclmat_src1, aclmat_src, aclmat_dest, 1);
while (n--) MatMul(aclmat_src1, aclmat_src, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -51,14 +52,13 @@ void PERF_TEST::Test_MatMul(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
}
void PERF_TEST::Test_Convolution(aclCxt *acl_context)
{
void PERF_TEST::Test_Convolution(aclCxt *acl_context) {
int val, n;
int valmax = 4096;
int cycle_index = 10;
@@ -66,10 +66,8 @@ void PERF_TEST::Test_Convolution(aclCxt *acl_context)
Common_Test test;
vector<int> type{CV_32FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
Mat mat_src(val, val, type[i], Scalar{1, 2});
Mat mat_kernel(3, 3, type[i], Scalar(1, 4));
Mat mat_dest(val, val, type[i], Scalar{6});
@@ -80,8 +78,7 @@ void PERF_TEST::Test_Convolution(aclCxt *acl_context)
n = cycle_index;
begin = static_cast<double>(getTickCount());
while (n--)
filter2D(mat_src, mat_dest, -1, mat_kernel);
while (n--) filter2D(mat_src, mat_dest, -1, mat_kernel);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -107,7 +104,8 @@ void PERF_TEST::Test_Convolution(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}

View File

@@ -1,6 +1,6 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// It is subject to the license terms in the LICENSE file found in the top-level
// directory of this distribution and at http://opencv.org/license.html.
#include "test_precomp.hpp"
#if defined(HAVE_HPX)

View File

@@ -1,8 +1,13 @@
#include "test_common.hpp"
#include "test_perf.hpp"
void PERF_TEST::Test_Abs(aclCxt *acl_context)
{
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
void PERF_TEST::Test_Abs(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -11,11 +16,9 @@ void PERF_TEST::Test_Abs(aclCxt *acl_context)
// vector<int> type{CV_32FC1};
vector<int> type{CV_32FC1, CV_32SC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Perf test : Function: Abs()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i], Scalar{-2});
Mat mat_dest(val, val, type[i], Scalar{-4});
@@ -25,8 +28,7 @@ void PERF_TEST::Test_Abs(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
mat_dest = abs(mat_src);
while (n--) mat_dest = abs(mat_src);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -34,8 +36,7 @@ void PERF_TEST::Test_Abs(aclCxt *acl_context)
aclmat_dest = abs(aclmat_src, 0);
wait_stream(acl_context, 0);
begin = static_cast<double>(getTickCount());
while (n--)
aclmat_dest = abs(aclmat_src, 1);
while (n--) aclmat_dest = abs(aclmat_src, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -47,13 +48,13 @@ void PERF_TEST::Test_Abs(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Pow(aclCxt *acl_context)
{
void PERF_TEST::Test_Pow(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -62,11 +63,9 @@ void PERF_TEST::Test_Pow(aclCxt *acl_context)
// vector<int> type{CV_32FC1};
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Perf test : Function: Pow()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
int power = test.RandDom_(6);
Mat mat_src(val, val, type[i]);
@@ -79,8 +78,7 @@ void PERF_TEST::Test_Pow(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
pow(mat_src, power, mat_dest);
while (n--) pow(mat_src, power, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -88,8 +86,7 @@ void PERF_TEST::Test_Pow(aclCxt *acl_context)
pow(aclmat_src, power, aclmat_dest, 0);
wait_stream(acl_context, 0);
begin = static_cast<double>(getTickCount());
while (n--)
pow(aclmat_src, power, aclmat_dest, 1);
while (n--) pow(aclmat_src, power, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -99,13 +96,13 @@ void PERF_TEST::Test_Pow(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Sqrt(aclCxt *acl_context)
{
void PERF_TEST::Test_Sqrt(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -113,10 +110,8 @@ void PERF_TEST::Test_Sqrt(aclCxt *acl_context)
Common_Test test;
// vector<int> type{CV_32FC1};
vector<int> type{CV_32FC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -129,8 +124,7 @@ void PERF_TEST::Test_Sqrt(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
sqrt(mat_src, mat_dest);
while (n--) sqrt(mat_src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -138,8 +132,7 @@ void PERF_TEST::Test_Sqrt(aclCxt *acl_context)
sqrt(aclmat_src, aclmat_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
sqrt(aclmat_src, aclmat_dest, 1);
while (n--) sqrt(aclmat_src, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -149,14 +142,13 @@ void PERF_TEST::Test_Sqrt(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
}
void PERF_TEST::Test_Add(aclCxt *acl_context)
{
void PERF_TEST::Test_Add(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -164,10 +156,8 @@ void PERF_TEST::Test_Add(aclCxt *acl_context)
Common_Test test;
// vector<int> type{CV_32FC1};
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src1(val, val, type[i]);
Mat mat_src2(val, val, type[i]);
@@ -183,8 +173,7 @@ void PERF_TEST::Test_Add(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
add(mat_src1, mat_src2, mat_dest);
while (n--) add(mat_src1, mat_src2, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -192,8 +181,7 @@ void PERF_TEST::Test_Add(aclCxt *acl_context)
add(aclmat_src1, aclmat_src2, aclmat_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
add(aclmat_src1, aclmat_src2, aclmat_dest, 1);
while (n--) add(aclmat_src1, aclmat_src2, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -205,14 +193,13 @@ void PERF_TEST::Test_Add(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
}
void PERF_TEST::Test_Divide(aclCxt *acl_context)
{
void PERF_TEST::Test_Divide(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -220,10 +207,8 @@ void PERF_TEST::Test_Divide(aclCxt *acl_context)
Common_Test test;
// vector<int> type{CV_32FC1};
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src1(val, val, type[i]);
Mat mat_src2(val, val, type[i]);
@@ -239,8 +224,7 @@ void PERF_TEST::Test_Divide(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
divide(mat_src1, mat_src2, mat_dest);
while (n--) divide(mat_src1, mat_src2, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -248,8 +232,7 @@ void PERF_TEST::Test_Divide(aclCxt *acl_context)
divide(aclmat_src1, aclmat_src2, aclmat_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
divide(aclmat_src1, aclmat_src2, aclmat_dest, 1);
while (n--) divide(aclmat_src1, aclmat_src2, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -261,13 +244,13 @@ void PERF_TEST::Test_Divide(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Exp(aclCxt *acl_context)
{
void PERF_TEST::Test_Exp(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -276,10 +259,8 @@ void PERF_TEST::Test_Exp(aclCxt *acl_context)
// vector<int> type{CV_32FC1};
vector<int> type{CV_32FC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -292,8 +273,7 @@ void PERF_TEST::Test_Exp(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
exp(mat_src, mat_dest);
while (n--) exp(mat_src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -301,8 +281,7 @@ void PERF_TEST::Test_Exp(aclCxt *acl_context)
exp(aclmat_src, aclmat_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
exp(aclmat_src, aclmat_dest, 1);
while (n--) exp(aclmat_src, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -312,14 +291,13 @@ void PERF_TEST::Test_Exp(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
}
void PERF_TEST::Test_Log(aclCxt *acl_context)
{
void PERF_TEST::Test_Log(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -327,10 +305,8 @@ void PERF_TEST::Test_Log(aclCxt *acl_context)
Common_Test test;
// vector<int> type{CV_32FC1};
vector<int> type{CV_32FC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -343,8 +319,7 @@ void PERF_TEST::Test_Log(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
log(mat_src, mat_dest);
while (n--) log(mat_src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -352,8 +327,7 @@ void PERF_TEST::Test_Log(aclCxt *acl_context)
log(aclmat_src, aclmat_dest, 1);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
log(aclmat_src, aclmat_dest, 1);
while (n--) log(aclmat_src, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -363,14 +337,13 @@ void PERF_TEST::Test_Log(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
}
void PERF_TEST::Test_Max(aclCxt *acl_context)
{
void PERF_TEST::Test_Max(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -378,10 +351,8 @@ void PERF_TEST::Test_Max(aclCxt *acl_context)
Common_Test test;
// vector<int> type{CV_32FC2};
vector<int> type{CV_32FC2, CV_32SC2, CV_64FC2};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src1(val, val, type[i]);
Mat mat_src2(val, val, type[i]);
@@ -397,8 +368,7 @@ void PERF_TEST::Test_Max(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
cv::max(mat_src1, mat_src2, mat_dest);
while (n--) cv::max(mat_src1, mat_src2, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -406,8 +376,7 @@ void PERF_TEST::Test_Max(aclCxt *acl_context)
cv::acl::max(aclmat_src1, aclmat_src2, aclmat_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
cv::acl::max(aclmat_src1, aclmat_src2, aclmat_dest, 1);
while (n--) cv::acl::max(aclmat_src1, aclmat_src2, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -419,13 +388,13 @@ void PERF_TEST::Test_Max(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Min(aclCxt *acl_context)
{
void PERF_TEST::Test_Min(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -433,10 +402,8 @@ void PERF_TEST::Test_Min(aclCxt *acl_context)
Common_Test test;
// vector<int> type{CV_32FC3};
vector<int> type{CV_32FC3, CV_32SC3, CV_64FC3};
for (size_t i = 0; i < type.size(); ++i)
{
for (val = 8; val <= valmax; val *= 2)
{
for (size_t i = 0; i < type.size(); ++i) {
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src1(val, val, type[i]);
Mat mat_src2(val, val, type[i]);
@@ -452,8 +419,7 @@ void PERF_TEST::Test_Min(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
cv::min(mat_src1, mat_src2, mat_dest);
while (n--) cv::min(mat_src1, mat_src2, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -461,8 +427,7 @@ void PERF_TEST::Test_Min(aclCxt *acl_context)
cv::acl::min(aclmat_src1, aclmat_src2, aclmat_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
cv::acl::min(aclmat_src1, aclmat_src2, aclmat_dest, 1);
while (n--) cv::acl::min(aclmat_src1, aclmat_src2, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -474,8 +439,8 @@ void PERF_TEST::Test_Min(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}

View File

@@ -1,49 +1,26 @@
#include "test_common.hpp"
#include "test_perf.hpp"
/*
//disable
void PERF_TEST::Test_Lookuptable(aclCxt *acl_context_0)
{
int type = CV_8UC1;
Common_Test test;
Mat mat_src(1, 256, type);
Mat mat_dest(1, 256, type);
Mat lookuptable(1, 256, type);
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
test.SetDataRange(mat_src, 32);
test.SetDataRange(lookuptable, 32);
aclMat aclmat_src(1, 256, type, mat_src.data, acl_context_0);
aclMat aclmat_dest(1, 256, type, mat_dest.data, acl_context_0);
aclMat lut(1, 256, type, lookuptable.data, acl_context_0);
// LUT(mat_src, lookuptable, mat_dest);
lookUpTable(aclmat_src, lut, aclmat_dest);
cout << mat_src << endl;
cout << lookuptable << endl;
cout << mat_dest << endl;
}
*/
void PERF_TEST::Test_Merge(aclCxt *acl_context)
{
void PERF_TEST::Test_Merge(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
double begin, end, time, acltime;
Common_Test test;
vector<int> srcType{CV_8UC1, CV_32FC1, CV_32SC1};
// vector<int> destType{CV_32FC3};
vector<int> destType{CV_8UC3, CV_32FC3, CV_32SC3};
for (size_t i = 0; i < srcType.size(); ++i)
{
for (size_t i = 0; i < srcType.size(); ++i) {
test.PrintLog("Perf test : Function: merge()", srcType[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src1(val, val, srcType[i], Scalar(1));
Mat mat_src2(val, val, srcType[i], Scalar(2));
@@ -71,8 +48,7 @@ void PERF_TEST::Test_Merge(aclCxt *acl_context)
acl_src.emplace_back(aclmat_src3);
begin = static_cast<double>(getTickCount());
while (n--)
merge(src, mat_dest);
while (n--) merge(src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -80,8 +56,7 @@ void PERF_TEST::Test_Merge(aclCxt *acl_context)
merge(acl_src, aclmat_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
merge(acl_src, aclmat_dest, 1);
while (n--) merge(acl_src, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -92,14 +67,13 @@ void PERF_TEST::Test_Merge(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Transpose(aclCxt *acl_context)
{
void PERF_TEST::Test_Transpose(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -108,11 +82,9 @@ void PERF_TEST::Test_Transpose(aclCxt *acl_context)
// vector<int> type{CV_32FC1};
vector<int> type{CV_32FC1, CV_32SC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Perf test : Function: transpose()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -124,8 +96,7 @@ void PERF_TEST::Test_Transpose(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
transpose(mat_src, mat_dest);
while (n--) transpose(mat_src, mat_dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -133,8 +104,7 @@ void PERF_TEST::Test_Transpose(aclCxt *acl_context)
transpose(aclmat_src, aclmat_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
transpose(aclmat_src, aclmat_dest, 1);
while (n--) transpose(aclmat_src, aclmat_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -146,13 +116,13 @@ void PERF_TEST::Test_Transpose(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
void PERF_TEST::Test_Split(aclCxt *acl_context)
{
void PERF_TEST::Test_Split(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 10;
@@ -162,11 +132,9 @@ void PERF_TEST::Test_Split(aclCxt *acl_context)
// vector<int> srcType{CV_32FC3};
vector<int> srcType{CV_8UC3, CV_32FC3, CV_32SC3};
vector<int> destType{CV_8UC1, CV_32FC1, CV_32SC1};
for (size_t i = 0; i < srcType.size(); ++i)
{
for (size_t i = 0; i < srcType.size(); ++i) {
test.PrintLog("Perf test : Function: split()", srcType[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, srcType[i]);
Mat mat_dest1(val, val, destType[i]);
@@ -191,8 +159,7 @@ void PERF_TEST::Test_Split(aclCxt *acl_context)
acl_dest.emplace_back(aclmat_dest3);
begin = static_cast<double>(getTickCount());
while (n--)
split(mat_src, dest);
while (n--) split(mat_src, dest);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -200,8 +167,7 @@ void PERF_TEST::Test_Split(aclCxt *acl_context)
split(aclmat_src, acl_dest);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
split(aclmat_src, acl_dest, 1);
while (n--) split(aclmat_src, acl_dest, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -218,15 +184,13 @@ void PERF_TEST::Test_Split(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}
}
void PERF_TEST::Test_Flip(aclCxt *acl_context)
{
void PERF_TEST::Test_Flip(aclCxt *acl_context) {
int val, n;
int valmax = 8192;
int cycle_index = 100;
@@ -234,11 +198,9 @@ void PERF_TEST::Test_Flip(aclCxt *acl_context)
Common_Test test;
vector<int> type{CV_8UC1, CV_32FC1, CV_32SC1, CV_64FC1};
for (size_t i = 0; i < type.size(); ++i)
{
for (size_t i = 0; i < type.size(); ++i) {
test.PrintLog("Perf test : Function: flip()", type[i]);
for (val = 8; val <= valmax; val *= 2)
{
for (val = 8; val <= valmax; val *= 2) {
n = cycle_index;
Mat mat_src(val, val, type[i]);
Mat mat_dest(val, val, type[i]);
@@ -250,8 +212,7 @@ void PERF_TEST::Test_Flip(aclCxt *acl_context)
aclMat aclmat_dest(val, val, type[i], mat_dest.data, acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
flip(mat_src, mat_dest, 0);
while (n--) flip(mat_src, mat_dest, 0);
end = static_cast<double>(getTickCount());
time = (end - begin) / getTickFrequency() / cycle_index;
@@ -259,8 +220,7 @@ void PERF_TEST::Test_Flip(aclCxt *acl_context)
flip(aclmat_src, aclmat_dest, 0);
wait_stream(acl_context);
begin = static_cast<double>(getTickCount());
while (n--)
flip(aclmat_src, aclmat_dest, 0, 1);
while (n--) flip(aclmat_src, aclmat_dest, 0, 1);
wait_stream(acl_context, 1);
end = static_cast<double>(getTickCount());
acltime = (end - begin) / getTickFrequency() / (cycle_index - 1);
@@ -272,7 +232,8 @@ void PERF_TEST::Test_Flip(aclCxt *acl_context)
cout << "Shape: " << val << " x " << val << "\t\t";
else
cout << "Shape: " << val << " x " << val << "\t";
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime << "\tRate: " << time / acltime << endl;
cout << "CpuTimes: " << time << "\tAclTimes: " << acltime
<< "\tRate: " << time / acltime << endl;
}
}
}

View File

@@ -3,31 +3,30 @@
#include "test_precomp.hpp"
class PERF_TEST
{
class PERF_TEST {
public:
CV_EXPORTS void Test_operator_add_perf(aclCxt *acl_context);
CV_EXPORTS void Test_operator_sub_perf(aclCxt *acl_context);
CV_EXPORTS void Test_operator_div_perf(aclCxt *acl_context);
CV_EXPORTS void Test_operator_mul_perf(aclCxt *acl_context);
CV_EXPORTS void Test_Abs(aclCxt *acl_context);
CV_EXPORTS void Test_Pow(aclCxt *acl_context);
CV_EXPORTS void Test_Sqrt(aclCxt *acl_context);
CV_EXPORTS void Test_Add(aclCxt *acl_context);
CV_EXPORTS void Test_Divide(aclCxt *acl_context);
CV_EXPORTS void Test_Exp(aclCxt *acl_context);
CV_EXPORTS void Test_Log(aclCxt *acl_context);
CV_EXPORTS void Test_Max(aclCxt *acl_context);
CV_EXPORTS void Test_Min(aclCxt *acl_context);
CV_EXPORTS void Test_operator_add_perf(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_operator_sub_perf(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_operator_div_perf(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_operator_mul_perf(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Abs(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Pow(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Sqrt(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Add(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Divide(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Exp(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Log(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Max(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Min(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_MatMul(aclCxt *acl_context);
CV_EXPORTS void Test_Convolution(aclCxt *acl_context);
CV_EXPORTS void Test_MatMul(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Convolution(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Lookuptable(aclCxt *acl_context);
CV_EXPORTS void Test_Merge(aclCxt *acl_context);
CV_EXPORTS void Test_Split(aclCxt *acl_context);
CV_EXPORTS void Test_Transpose(aclCxt *acl_context);
CV_EXPORTS void Test_Flip(aclCxt *acl_context);
CV_EXPORTS void Test_Lookuptable(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Merge(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Split(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Transpose(cv::acl::aclCxt *acl_context);
CV_EXPORTS void Test_Flip(cv::acl::aclCxt *acl_context);
};
#endif

View File

@@ -1,27 +1,21 @@
// This file is part of OpenCV project.
// It is subject to the license terms in the LICENSE file found in the top-level directory
// of this distribution and at http://opencv.org/license.html.
// It is subject to the license terms in the LICENSE file found in the top-level
// directory of this distribution and at http://opencv.org/license.html.
#ifndef __OPENCV_TEST_PRECOMP_HPP__
#define __OPENCV_TEST_PRECOMP_HPP__
#include <iomanip>
#include <iostream>
#include <mutex>
#include <thread>
#include <iomanip>
#include "opencv2/core.hpp"
#include "opencv2/ts.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/videoio.hpp"
#include "sys/time.h"
#include "opencv2/acl/acl.hpp"
#include "acl/acl.h"
#include "acl/acl_op_compiler.h"
using namespace cv;
using namespace cv::acl;
using namespace cvtest;
using namespace testing;
using namespace std;
#include "opencv2/acl/acl.hpp"
#include "opencv2/core.hpp"
#include "opencv2/highgui.hpp"
#include "opencv2/imgproc.hpp"
#include "opencv2/ts.hpp"
#include "opencv2/videoio.hpp"
#include "sys/time.h"
#endif