import argparse import cv2 import numpy as np import os class FreeYOLO(): def __init__(self, model_path, confThreshold=0.4, nmsThreshold=0.85, datatype='coco'): self.net = cv2.dnn.readNet(model_path) filename = os.path.splitext(os.path.basename(model_path))[0] input_shape = filename.split('_')[-1].split('x') self.input_height = int(input_shape[0]) self.input_width = int(input_shape[1]) self.anchors, self.expand_strides = self.generate_anchors((self.input_height, self.input_width), [8, 16, 32]) if datatype=='coco': self.classes = list(map(lambda x: x.strip(), open('coco.names', 'r').readlines())) elif datatype=='face': self.classes = ['face'] else: self.classes = ['person'] self.num_class = len(self.classes) self.confThreshold = confThreshold self.nmsThreshold = nmsThreshold self.output_names = self.net.getUnconnectedOutLayersNames() def generate_anchors(self, input_shape, strides): """ fmp_size: (List) [H, W] """ all_anchors = [] all_expand_strides = [] for stride in strides: # generate grid cells fmp_h, fmp_w = input_shape[0] // stride, input_shape[1] // stride anchor_x, anchor_y = np.meshgrid(np.arange(fmp_w), np.arange(fmp_h)) # [H, W, 2] anchor_xy = np.stack([anchor_x, anchor_y], axis=-1) shape = anchor_xy.shape[:2] # [H, W, 2] -> [HW, 2] anchor_xy = (anchor_xy.reshape(-1, 2) + 0.5) * stride all_anchors.append(anchor_xy) # expanded stride strides = np.full((*shape, 1), stride) all_expand_strides.append(strides.reshape(-1, 1)) anchors = np.concatenate(all_anchors, axis=0) expand_strides = np.concatenate(all_expand_strides, axis=0) return anchors, expand_strides def decode_boxes(self, anchors, pred_regs, expand_strides): """ anchors: (List[Tensor]) [1, M, 2] or [M, 2] pred_reg: (List[Tensor]) [B, M, 4] or [B, M, 4] """ # center of bbox pred_ctr_xy = anchors[..., :2] + pred_regs[..., :2] * expand_strides # size of bbox pred_box_wh = np.exp(pred_regs[..., 2:]) * expand_strides pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh # pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh # pred_box = np.concatenate([pred_x1y1, pred_x2y2], axis=-1) pred_box = np.concatenate([pred_x1y1, pred_box_wh], axis=-1) return pred_box def drawPred(self, frame, classId, conf, left, top, right, bottom): # Draw a bounding box. cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=2) label = '%.2f' % conf label = '%s:%s' % (self.classes[classId], label) # Display the label at the top of the bounding box labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) top = max(top, labelSize[1]) # cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED) cv2.putText(frame, label, (left, top - 10), 0, 0.7, (0, 255, 0), thickness=2) return frame def detect(self, frame): padded_image = np.ones((self.input_height, self.input_width, 3), dtype=np.uint8)*114 ratio = min(self.input_height / frame.shape[0], self.input_width / frame.shape[1]) neww, newh = int(frame.shape[1] * ratio), int(frame.shape[0] * ratio) temp_image = cv2.resize(frame, (neww, newh), interpolation=cv2.INTER_LINEAR) padded_image[:newh, :neww, :] = temp_image blob = cv2.dnn.blobFromImage(padded_image) self.net.setInput(blob) results = self.net.forward(self.output_names) reg_preds = results[0][0][..., :4] obj_preds = results[0][0][..., 4:5] cls_preds = results[0][0][..., 5:] scores = np.sqrt(obj_preds * cls_preds) # scores & class_ids class_ids = np.argmax(scores, axis=1) # [M,] scores = np.max(scores, axis=1) # bboxes bboxes = self.decode_boxes(self.anchors, reg_preds, self.expand_strides) # [M, 4] # thresh keep = np.where(scores > self.confThreshold) scores = scores[keep] class_ids = class_ids[keep] bboxes = bboxes[keep] bboxes /= ratio indices = cv2.dnn.NMSBoxes(bboxes.tolist(), scores.tolist(), self.confThreshold, self.nmsThreshold) for i in indices: left, top, width, height = bboxes[i, :].astype(np.int32) frame = self.drawPred(frame, class_ids[i], scores[i], left, top, left + width, top + height) return frame if __name__ == '__main__': parser = argparse.ArgumentParser() parser.add_argument("--modelpath", type=str, default='weights/coco/yolo_free_nano_192x320.onnx', help="model path") parser.add_argument("--imgpath", type=str, default='images/coco/dog.jpg', help="image path") parser.add_argument("--confThreshold", default=0.6, type=float, help='class confidence') parser.add_argument("--nmsThreshold", default=0.5, type=float, help='iou thresh') parser.add_argument("--datatype", default='coco', type=str, choices=['coco', 'face', 'person'], help='data type') args = parser.parse_args() net = FreeYOLO(args.modelpath, confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, datatype=args.datatype) srcimg = cv2.imread(args.imgpath) srcimg = net.detect(srcimg) winName = 'Deep learning object detection in OpenCV' cv2.namedWindow(winName, cv2.WINDOW_NORMAL) cv2.imshow(winName, srcimg) cv2.waitKey(0) cv2.destroyAllWindows()