Add files via upload
80
onnxruntime/coco.names
Normal file
@@ -0,0 +1,80 @@
|
||||
person
|
||||
bicycle
|
||||
car
|
||||
motorbike
|
||||
aeroplane
|
||||
bus
|
||||
train
|
||||
truck
|
||||
boat
|
||||
traffic light
|
||||
fire hydrant
|
||||
stop sign
|
||||
parking meter
|
||||
bench
|
||||
bird
|
||||
cat
|
||||
dog
|
||||
horse
|
||||
sheep
|
||||
cow
|
||||
elephant
|
||||
bear
|
||||
zebra
|
||||
giraffe
|
||||
backpack
|
||||
umbrella
|
||||
handbag
|
||||
tie
|
||||
suitcase
|
||||
frisbee
|
||||
skis
|
||||
snowboard
|
||||
sports ball
|
||||
kite
|
||||
baseball bat
|
||||
baseball glove
|
||||
skateboard
|
||||
surfboard
|
||||
tennis racket
|
||||
bottle
|
||||
wine glass
|
||||
cup
|
||||
fork
|
||||
knife
|
||||
spoon
|
||||
bowl
|
||||
banana
|
||||
apple
|
||||
sandwich
|
||||
orange
|
||||
broccoli
|
||||
carrot
|
||||
hot dog
|
||||
pizza
|
||||
donut
|
||||
cake
|
||||
chair
|
||||
sofa
|
||||
pottedplant
|
||||
bed
|
||||
diningtable
|
||||
toilet
|
||||
tvmonitor
|
||||
laptop
|
||||
mouse
|
||||
remote
|
||||
keyboard
|
||||
cell phone
|
||||
microwave
|
||||
oven
|
||||
toaster
|
||||
sink
|
||||
refrigerator
|
||||
book
|
||||
clock
|
||||
vase
|
||||
scissors
|
||||
teddy bear
|
||||
hair drier
|
||||
toothbrush
|
BIN
onnxruntime/images/coco/000000000785.jpg
Normal file
After Width: | Height: | Size: 130 KiB |
BIN
onnxruntime/images/coco/bus.jpg
Normal file
After Width: | Height: | Size: 476 KiB |
BIN
onnxruntime/images/coco/dog.jpg
Normal file
After Width: | Height: | Size: 160 KiB |
BIN
onnxruntime/images/coco/person.jpg
Normal file
After Width: | Height: | Size: 111 KiB |
BIN
onnxruntime/images/coco/zidane.jpg
Normal file
After Width: | Height: | Size: 165 KiB |
BIN
onnxruntime/images/face/1.jpg
Normal file
After Width: | Height: | Size: 732 KiB |
BIN
onnxruntime/images/face/2.jpg
Normal file
After Width: | Height: | Size: 1.0 MiB |
BIN
onnxruntime/images/face/3.jpg
Normal file
After Width: | Height: | Size: 696 KiB |
BIN
onnxruntime/images/face/4.jpg
Normal file
After Width: | Height: | Size: 601 KiB |
BIN
onnxruntime/images/person/1.png
Normal file
After Width: | Height: | Size: 1.3 MiB |
267
onnxruntime/main.cpp
Normal file
@@ -0,0 +1,267 @@
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
//#include <cuda_provider_factory.h>
|
||||
#include <onnxruntime_cxx_api.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace Ort;
|
||||
|
||||
struct Net_config
|
||||
{
|
||||
float confThreshold; // Confidence threshold
|
||||
float nmsThreshold; // Non-maximum suppression threshold
|
||||
string modelpath;
|
||||
string datatype;
|
||||
};
|
||||
|
||||
typedef struct BoxInfo
|
||||
{
|
||||
float x1;
|
||||
float y1;
|
||||
float x2;
|
||||
float y2;
|
||||
float score;
|
||||
int label;
|
||||
} BoxInfo;
|
||||
|
||||
class FreeYOLO
|
||||
{
|
||||
public:
|
||||
FreeYOLO(Net_config config);
|
||||
void detect(Mat& frame);
|
||||
private:
|
||||
int inpWidth;
|
||||
int inpHeight;
|
||||
int nout;
|
||||
int num_proposal;
|
||||
vector<string> class_names;
|
||||
int num_class;
|
||||
const int num_stride = 3;
|
||||
int strides[3] = { 8,16,32 };
|
||||
|
||||
float confThreshold;
|
||||
float nmsThreshold;
|
||||
vector<float> input_image_;
|
||||
void normalize_(Mat img);
|
||||
void nms(vector<BoxInfo>& input_boxes);
|
||||
|
||||
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "FreeYOLO");
|
||||
Ort::Session *ort_session = nullptr;
|
||||
SessionOptions sessionOptions = SessionOptions();
|
||||
vector<char*> input_names;
|
||||
vector<char*> output_names;
|
||||
vector<vector<int64_t>> input_node_dims; // >=1 outputs
|
||||
vector<vector<int64_t>> output_node_dims; // >=1 outputs
|
||||
};
|
||||
|
||||
FreeYOLO::FreeYOLO(Net_config config)
|
||||
{
|
||||
this->confThreshold = config.confThreshold;
|
||||
this->nmsThreshold = config.nmsThreshold;
|
||||
|
||||
string model_path = config.modelpath;
|
||||
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
|
||||
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
|
||||
sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
|
||||
ort_session = new Session(env, widestr.c_str(), sessionOptions);
|
||||
size_t numInputNodes = ort_session->GetInputCount();
|
||||
size_t numOutputNodes = ort_session->GetOutputCount();
|
||||
AllocatorWithDefaultOptions allocator;
|
||||
for (int i = 0; i < numInputNodes; i++)
|
||||
{
|
||||
input_names.push_back(ort_session->GetInputName(i, allocator));
|
||||
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
|
||||
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
|
||||
auto input_dims = input_tensor_info.GetShape();
|
||||
input_node_dims.push_back(input_dims);
|
||||
}
|
||||
for (int i = 0; i < numOutputNodes; i++)
|
||||
{
|
||||
output_names.push_back(ort_session->GetOutputName(i, allocator));
|
||||
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
|
||||
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
|
||||
auto output_dims = output_tensor_info.GetShape();
|
||||
output_node_dims.push_back(output_dims);
|
||||
}
|
||||
this->inpHeight = input_node_dims[0][2];
|
||||
this->inpWidth = input_node_dims[0][3];
|
||||
|
||||
if (config.datatype == "coco")
|
||||
{
|
||||
string classesFile = "coco.names";
|
||||
ifstream ifs(classesFile.c_str());
|
||||
string line;
|
||||
while (getline(ifs, line)) this->class_names.push_back(line);
|
||||
}
|
||||
else if (config.datatype == "face")
|
||||
{
|
||||
this->class_names.push_back("face");
|
||||
}
|
||||
else
|
||||
{
|
||||
this->class_names.push_back("person");
|
||||
|
||||
}
|
||||
this->num_class = class_names.size();
|
||||
}
|
||||
|
||||
void FreeYOLO::normalize_(Mat img)
|
||||
{
|
||||
// img.convertTo(img, CV_32F);
|
||||
int row = img.rows;
|
||||
int col = img.cols;
|
||||
this->input_image_.resize(row * col * img.channels());
|
||||
|
||||
for (int c = 0; c < 3; c++)
|
||||
{
|
||||
for (int i = 0; i < row; i++)
|
||||
{
|
||||
for (int j = 0; j < col; j++)
|
||||
{
|
||||
float pix = img.ptr<uchar>(i)[j * 3 + c];
|
||||
this->input_image_[c * row * col + i * col + j] = pix;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FreeYOLO::nms(vector<BoxInfo>& input_boxes)
|
||||
{
|
||||
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
|
||||
vector<float> vArea(input_boxes.size());
|
||||
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||||
{
|
||||
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
|
||||
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
|
||||
}
|
||||
|
||||
vector<bool> isSuppressed(input_boxes.size(), false);
|
||||
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||||
{
|
||||
if (isSuppressed[i]) { continue; }
|
||||
for (int j = i + 1; j < int(input_boxes.size()); ++j)
|
||||
{
|
||||
if (isSuppressed[j]) { continue; }
|
||||
float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
|
||||
float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
|
||||
float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
|
||||
float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);
|
||||
|
||||
float w = (max)(float(0), xx2 - xx1 + 1);
|
||||
float h = (max)(float(0), yy2 - yy1 + 1);
|
||||
float inter = w * h;
|
||||
float ovr = inter / (vArea[i] + vArea[j] - inter);
|
||||
|
||||
if (ovr >= this->nmsThreshold)
|
||||
{
|
||||
isSuppressed[j] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// return post_nms;
|
||||
int idx_t = 0;
|
||||
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());
|
||||
}
|
||||
|
||||
void FreeYOLO::detect(Mat& frame)
|
||||
{
|
||||
const float ratio = std::min(float(this->inpHeight) / float(frame.rows), float(this->inpWidth) / float(frame.cols));
|
||||
const int neww = int(frame.cols * ratio);
|
||||
const int newh = int(frame.rows * ratio);
|
||||
|
||||
Mat dstimg;
|
||||
resize(frame, dstimg, Size(neww, newh));
|
||||
copyMakeBorder(dstimg, dstimg, 0, this->inpHeight - newh, 0, this->inpWidth - neww, BORDER_CONSTANT, 114);
|
||||
|
||||
this->normalize_(dstimg);
|
||||
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
|
||||
|
||||
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
|
||||
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
|
||||
|
||||
// <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
|
||||
vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size()); // <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
|
||||
vector<BoxInfo> generate_boxes;
|
||||
|
||||
Ort::Value &predictions = ort_outputs.at(0);
|
||||
auto pred_dims = predictions.GetTensorTypeAndShapeInfo().GetShape();
|
||||
num_proposal = pred_dims.at(1);
|
||||
nout = pred_dims.at(2);
|
||||
const float* pdata = ort_outputs[0].GetTensorMutableData<float>();
|
||||
int n = 0, i = 0, j = 0, k = 0; ///cx, cy, w, h, box_score, class_score
|
||||
for (n = 0; n < this->num_stride; n++) ///<2F><><EFBFBD><EFBFBD>ͼ<EFBFBD>߶<EFBFBD>
|
||||
{
|
||||
int num_grid_x = (int)ceil((this->inpWidth / strides[n]));
|
||||
int num_grid_y = (int)ceil((this->inpHeight / strides[n]));
|
||||
for (i = 0; i < num_grid_y; i++)
|
||||
{
|
||||
for (j = 0; j < num_grid_x; j++)
|
||||
{
|
||||
const float box_score = pdata[4];
|
||||
int max_ind = 0;
|
||||
float max_class_socre = 0;
|
||||
for (k = 0; k < num_class; k++)
|
||||
{
|
||||
if (pdata[k + 5] > max_class_socre)
|
||||
{
|
||||
max_class_socre = pdata[k + 5];
|
||||
max_ind = k;
|
||||
}
|
||||
}
|
||||
max_class_socre *= box_score;
|
||||
max_class_socre = sqrt(max_class_socre);
|
||||
|
||||
if (max_class_socre > this->confThreshold)
|
||||
{
|
||||
float cx = (0.5f + j + pdata[0]) * strides[n]; ///cx
|
||||
float cy = (0.5f + i + pdata[1]) * strides[n]; ///cy
|
||||
float w = expf(pdata[2]) * strides[n]; ///w
|
||||
float h = expf(pdata[3]) * strides[n]; ///h
|
||||
|
||||
float xmin = (cx - 0.5 * w) / ratio;
|
||||
float ymin = (cy - 0.5 * h) / ratio;
|
||||
float xmax = (cx + 0.5 * w) / ratio;
|
||||
float ymax = (cy + 0.5 * h) / ratio;
|
||||
|
||||
generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, max_ind });
|
||||
}
|
||||
pdata += nout;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Perform non maximum suppression to eliminate redundant overlapping boxes with
|
||||
// lower confidences
|
||||
nms(generate_boxes);
|
||||
|
||||
for (size_t i = 0; i < generate_boxes.size(); ++i)
|
||||
{
|
||||
int xmin = int(generate_boxes[i].x1);
|
||||
int ymin = int(generate_boxes[i].y1);
|
||||
rectangle(frame, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2);
|
||||
string label = format("%.2f", generate_boxes[i].score);
|
||||
label = this->class_names[generate_boxes[i].label] + ":" + label;
|
||||
putText(frame, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
Net_config cfg = { 0.6, 0.5, "weights/crowdhuman/yolo_free_huge_crowdhuman_192x320.onnx", "person" };
|
||||
FreeYOLO net(cfg);
|
||||
string imgpath = "images/person/1.png";
|
||||
Mat srcimg = imread(imgpath);
|
||||
net.detect(srcimg);
|
||||
|
||||
static const string kWinName = "Deep learning object detection in ONNXRuntime";
|
||||
namedWindow(kWinName, WINDOW_NORMAL);
|
||||
imshow(kWinName, srcimg);
|
||||
waitKey(0);
|
||||
destroyAllWindows();
|
||||
}
|
138
onnxruntime/main.py
Normal file
@@ -0,0 +1,138 @@
|
||||
import argparse
|
||||
import cv2
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
class FreeYOLO():
|
||||
def __init__(self, model_path, confThreshold=0.4, nmsThreshold=0.85, datatype='coco'):
|
||||
so = ort.SessionOptions()
|
||||
so.log_severity_level = 3
|
||||
self.session = ort.InferenceSession(model_path, so)
|
||||
model_inputs = self.session.get_inputs()
|
||||
self.input_name = model_inputs[0].name
|
||||
self.input_shape = model_inputs[0].shape
|
||||
self.input_height = int(self.input_shape[2])
|
||||
self.input_width = int(self.input_shape[3])
|
||||
self.anchors, self.expand_strides = self.generate_anchors((self.input_height, self.input_width), [8, 16, 32])
|
||||
|
||||
if datatype=='coco':
|
||||
self.classes = list(map(lambda x: x.strip(), open('coco.names', 'r').readlines()))
|
||||
elif datatype=='face':
|
||||
self.classes = ['face']
|
||||
else:
|
||||
self.classes = ['person']
|
||||
self.num_class = len(self.classes)
|
||||
self.confThreshold = confThreshold
|
||||
self.nmsThreshold = nmsThreshold
|
||||
|
||||
def generate_anchors(self, input_shape, strides):
|
||||
"""
|
||||
fmp_size: (List) [H, W]
|
||||
"""
|
||||
all_anchors = []
|
||||
all_expand_strides = []
|
||||
for stride in strides:
|
||||
# generate grid cells
|
||||
fmp_h, fmp_w = input_shape[0] // stride, input_shape[1] // stride
|
||||
anchor_x, anchor_y = np.meshgrid(np.arange(fmp_w),
|
||||
np.arange(fmp_h))
|
||||
# [H, W, 2]
|
||||
anchor_xy = np.stack([anchor_x, anchor_y], axis=-1)
|
||||
shape = anchor_xy.shape[:2]
|
||||
# [H, W, 2] -> [HW, 2]
|
||||
anchor_xy = (anchor_xy.reshape(-1, 2) + 0.5) * stride
|
||||
all_anchors.append(anchor_xy)
|
||||
|
||||
# expanded stride
|
||||
strides = np.full((*shape, 1), stride)
|
||||
all_expand_strides.append(strides.reshape(-1, 1))
|
||||
|
||||
anchors = np.concatenate(all_anchors, axis=0)
|
||||
expand_strides = np.concatenate(all_expand_strides, axis=0)
|
||||
|
||||
return anchors, expand_strides
|
||||
|
||||
def decode_boxes(self, anchors, pred_regs, expand_strides):
|
||||
"""
|
||||
anchors: (List[Tensor]) [1, M, 2] or [M, 2]
|
||||
pred_reg: (List[Tensor]) [B, M, 4] or [B, M, 4]
|
||||
"""
|
||||
# center of bbox
|
||||
pred_ctr_xy = anchors[..., :2] + pred_regs[..., :2] * expand_strides
|
||||
# size of bbox
|
||||
pred_box_wh = np.exp(pred_regs[..., 2:]) * expand_strides
|
||||
|
||||
pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh
|
||||
# pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh
|
||||
# pred_box = np.concatenate([pred_x1y1, pred_x2y2], axis=-1)
|
||||
pred_box = np.concatenate([pred_x1y1, pred_box_wh], axis=-1)
|
||||
return pred_box
|
||||
def drawPred(self, frame, classId, conf, left, top, right, bottom):
|
||||
# Draw a bounding box.
|
||||
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=2)
|
||||
|
||||
label = '%.2f' % conf
|
||||
label = '%s:%s' % (self.classes[classId], label)
|
||||
|
||||
# Display the label at the top of the bounding box
|
||||
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
top = max(top, labelSize[1])
|
||||
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
|
||||
cv2.putText(frame, label, (left, top - 10), 0, 0.7, (0, 255, 0), thickness=2)
|
||||
return frame
|
||||
|
||||
def detect(self, frame):
|
||||
padded_image = np.ones((self.input_height, self.input_width, 3), dtype=np.uint8)*114
|
||||
ratio = min(self.input_height / frame.shape[0], self.input_width / frame.shape[1])
|
||||
neww, newh = int(frame.shape[1] * ratio), int(frame.shape[0] * ratio)
|
||||
temp_image = cv2.resize(frame, (neww, newh), interpolation=cv2.INTER_LINEAR)
|
||||
padded_image[:newh, :neww, :] = temp_image
|
||||
|
||||
padded_image = padded_image.transpose(2, 0, 1)
|
||||
padded_image = np.expand_dims(padded_image, axis=0).astype(np.float32)
|
||||
|
||||
# Inference
|
||||
results = self.session.run(None, {self.input_name: padded_image})
|
||||
|
||||
reg_preds = results[0][0][..., :4]
|
||||
obj_preds = results[0][0][..., 4:5]
|
||||
cls_preds = results[0][0][..., 5:]
|
||||
scores = np.sqrt(obj_preds * cls_preds)
|
||||
|
||||
# scores & class_ids
|
||||
class_ids = np.argmax(scores, axis=1) # [M,]
|
||||
scores = np.max(scores, axis=1)
|
||||
|
||||
# bboxes
|
||||
bboxes = self.decode_boxes(self.anchors, reg_preds, self.expand_strides) # [M, 4]
|
||||
# thresh
|
||||
keep = np.where(scores > self.confThreshold)
|
||||
scores = scores[keep]
|
||||
class_ids = class_ids[keep]
|
||||
bboxes = bboxes[keep]
|
||||
bboxes /= ratio
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(bboxes.tolist(), scores.tolist(), self.confThreshold, self.nmsThreshold)
|
||||
for i in indices:
|
||||
left, top, width, height = bboxes[i, :].astype(np.int32)
|
||||
frame = self.drawPred(frame, class_ids[i], scores[i], left, top, left + width, top + height)
|
||||
return frame
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--modelpath", type=str, default='weights/coco/yolo_free_nano_192x320.onnx', help="model path")
|
||||
parser.add_argument("--imgpath", type=str, default='images/coco/dog.jpg', help="image path")
|
||||
parser.add_argument("--confThreshold", default=0.6, type=float, help='class confidence')
|
||||
parser.add_argument("--nmsThreshold", default=0.5, type=float, help='iou thresh')
|
||||
parser.add_argument("--datatype", default='coco', type=str, choices=['coco', 'face', 'person'], help='data type')
|
||||
args = parser.parse_args()
|
||||
|
||||
net = FreeYOLO(args.modelpath, confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, datatype=args.datatype)
|
||||
srcimg = cv2.imread(args.imgpath)
|
||||
srcimg = net.detect(srcimg)
|
||||
|
||||
winName = 'Deep learning object detection in ONNXRuntime'
|
||||
cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
|
||||
cv2.imshow(winName, srcimg)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
80
opencv/coco.names
Normal file
@@ -0,0 +1,80 @@
|
||||
person
|
||||
bicycle
|
||||
car
|
||||
motorbike
|
||||
aeroplane
|
||||
bus
|
||||
train
|
||||
truck
|
||||
boat
|
||||
traffic light
|
||||
fire hydrant
|
||||
stop sign
|
||||
parking meter
|
||||
bench
|
||||
bird
|
||||
cat
|
||||
dog
|
||||
horse
|
||||
sheep
|
||||
cow
|
||||
elephant
|
||||
bear
|
||||
zebra
|
||||
giraffe
|
||||
backpack
|
||||
umbrella
|
||||
handbag
|
||||
tie
|
||||
suitcase
|
||||
frisbee
|
||||
skis
|
||||
snowboard
|
||||
sports ball
|
||||
kite
|
||||
baseball bat
|
||||
baseball glove
|
||||
skateboard
|
||||
surfboard
|
||||
tennis racket
|
||||
bottle
|
||||
wine glass
|
||||
cup
|
||||
fork
|
||||
knife
|
||||
spoon
|
||||
bowl
|
||||
banana
|
||||
apple
|
||||
sandwich
|
||||
orange
|
||||
broccoli
|
||||
carrot
|
||||
hot dog
|
||||
pizza
|
||||
donut
|
||||
cake
|
||||
chair
|
||||
sofa
|
||||
pottedplant
|
||||
bed
|
||||
diningtable
|
||||
toilet
|
||||
tvmonitor
|
||||
laptop
|
||||
mouse
|
||||
remote
|
||||
keyboard
|
||||
cell phone
|
||||
microwave
|
||||
oven
|
||||
toaster
|
||||
sink
|
||||
refrigerator
|
||||
book
|
||||
clock
|
||||
vase
|
||||
scissors
|
||||
teddy bear
|
||||
hair drier
|
||||
toothbrush
|
BIN
opencv/images/coco/000000000785.jpg
Normal file
After Width: | Height: | Size: 130 KiB |
BIN
opencv/images/coco/bus.jpg
Normal file
After Width: | Height: | Size: 476 KiB |
BIN
opencv/images/coco/dog.jpg
Normal file
After Width: | Height: | Size: 160 KiB |
BIN
opencv/images/coco/person.jpg
Normal file
After Width: | Height: | Size: 111 KiB |
BIN
opencv/images/coco/zidane.jpg
Normal file
After Width: | Height: | Size: 165 KiB |
BIN
opencv/images/face/1.jpg
Normal file
After Width: | Height: | Size: 732 KiB |
BIN
opencv/images/face/2.jpg
Normal file
After Width: | Height: | Size: 1.0 MiB |
BIN
opencv/images/face/3.jpg
Normal file
After Width: | Height: | Size: 696 KiB |
BIN
opencv/images/face/4.jpg
Normal file
After Width: | Height: | Size: 601 KiB |
BIN
opencv/images/person/1.png
Normal file
After Width: | Height: | Size: 1.3 MiB |
174
opencv/main.cpp
Normal file
@@ -0,0 +1,174 @@
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
#include <opencv2/dnn.hpp>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace dnn;
|
||||
|
||||
struct Net_config
|
||||
{
|
||||
float confThreshold; // Confidence threshold
|
||||
float nmsThreshold; // Non-maximum suppression threshold
|
||||
string modelpath;
|
||||
string datatype;
|
||||
};
|
||||
|
||||
class FreeYOLO
|
||||
{
|
||||
public:
|
||||
FreeYOLO(Net_config config);
|
||||
void detect(Mat& frame);
|
||||
private:
|
||||
int inpWidth;
|
||||
int inpHeight;
|
||||
int nout;
|
||||
int num_proposal;
|
||||
vector<string> class_names;
|
||||
int num_class;
|
||||
const int num_stride = 3;
|
||||
int strides[3] = { 8,16,32 };
|
||||
|
||||
float confThreshold;
|
||||
float nmsThreshold;
|
||||
Net net;
|
||||
};
|
||||
|
||||
FreeYOLO::FreeYOLO(Net_config config)
|
||||
{
|
||||
this->confThreshold = config.confThreshold;
|
||||
this->nmsThreshold = config.nmsThreshold;
|
||||
|
||||
this->net = readNet(config.modelpath);
|
||||
|
||||
size_t pos = config.modelpath.rfind("_");
|
||||
size_t pos_ = config.modelpath.rfind(".");
|
||||
int len = pos_ - pos - 1;
|
||||
string hxw = config.modelpath.substr(pos + 1, len);
|
||||
pos = hxw.rfind("x");
|
||||
string h = hxw.substr(0, pos);
|
||||
len = hxw.length() - pos;
|
||||
string w = hxw.substr(pos + 1, len);
|
||||
this->inpHeight = stoi(h);
|
||||
this->inpWidth = stoi(w);
|
||||
|
||||
if (config.datatype == "coco")
|
||||
{
|
||||
string classesFile = "coco.names";
|
||||
ifstream ifs(classesFile.c_str());
|
||||
string line;
|
||||
while (getline(ifs, line)) this->class_names.push_back(line);
|
||||
}
|
||||
else if (config.datatype == "face")
|
||||
{
|
||||
this->class_names.push_back("face");
|
||||
}
|
||||
else
|
||||
{
|
||||
this->class_names.push_back("person");
|
||||
|
||||
}
|
||||
this->num_class = class_names.size();
|
||||
}
|
||||
|
||||
void FreeYOLO::detect(Mat& frame)
|
||||
{
|
||||
const float ratio = std::min(float(this->inpHeight) / float(frame.rows), float(this->inpWidth) / float(frame.cols));
|
||||
const int neww = int(frame.cols * ratio);
|
||||
const int newh = int(frame.rows * ratio);
|
||||
|
||||
Mat dstimg;
|
||||
resize(frame, dstimg, Size(neww, newh));
|
||||
copyMakeBorder(dstimg, dstimg, 0, this->inpHeight - newh, 0, this->inpWidth - neww, BORDER_CONSTANT, 114);
|
||||
|
||||
Mat blob = blobFromImage(dstimg);
|
||||
this->net.setInput(blob);
|
||||
vector<Mat> outs;
|
||||
this->net.forward(outs, this->net.getUnconnectedOutLayersNames()); // <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
|
||||
|
||||
num_proposal = outs[0].size[1];
|
||||
nout = outs[0].size[2];
|
||||
const float* pdata = (float*)outs[0].data;
|
||||
int n = 0, i = 0, j = 0, k = 0; ///cx, cy, w, h, box_score, class_score
|
||||
vector<float> confidences;
|
||||
vector<Rect> boxes;
|
||||
vector<int> classIds;
|
||||
for (n = 0; n < this->num_stride; n++) ///<2F><><EFBFBD><EFBFBD>ͼ<EFBFBD>߶<EFBFBD>
|
||||
{
|
||||
int num_grid_x = (int)ceil((this->inpWidth / strides[n]));
|
||||
int num_grid_y = (int)ceil((this->inpHeight / strides[n]));
|
||||
for (i = 0; i < num_grid_y; i++)
|
||||
{
|
||||
for (j = 0; j < num_grid_x; j++)
|
||||
{
|
||||
const float box_score = pdata[4];
|
||||
int max_ind = 0;
|
||||
float max_class_socre = 0;
|
||||
for (k = 0; k < num_class; k++)
|
||||
{
|
||||
if (pdata[k + 5] > max_class_socre)
|
||||
{
|
||||
max_class_socre = pdata[k + 5];
|
||||
max_ind = k;
|
||||
}
|
||||
}
|
||||
max_class_socre *= box_score;
|
||||
max_class_socre = sqrt(max_class_socre);
|
||||
|
||||
if (max_class_socre > this->confThreshold)
|
||||
{
|
||||
float cx = (0.5f + j + pdata[0]) * strides[n]; ///cx
|
||||
float cy = (0.5f + i + pdata[1]) * strides[n]; ///cy
|
||||
float w = expf(pdata[2]) * strides[n]; ///w
|
||||
float h = expf(pdata[3]) * strides[n]; ///h
|
||||
|
||||
float xmin = (cx - 0.5 * w) / ratio;
|
||||
float ymin = (cy - 0.5 * h) / ratio;
|
||||
float xmax = (cx + 0.5 * w) / ratio;
|
||||
float ymax = (cy + 0.5 * h) / ratio;
|
||||
|
||||
int left = int((cx - 0.5 * w) / ratio);
|
||||
int top = int((cy - 0.5 * h) / ratio);
|
||||
int width = int(w / ratio);
|
||||
int height = int(h / ratio);
|
||||
|
||||
confidences.push_back(max_class_socre);
|
||||
boxes.push_back(Rect(left, top, width, height));
|
||||
classIds.push_back(max_ind);
|
||||
}
|
||||
pdata += nout;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
vector<int> indices;
|
||||
dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
|
||||
|
||||
for (size_t i = 0; i < indices.size(); ++i)
|
||||
{
|
||||
int idx = indices[i];
|
||||
Rect box = boxes[idx];
|
||||
rectangle(frame, Point(box.x, box.y), Point(box.x + box.width, box.y + box.height), Scalar(0, 0, 255), 3);
|
||||
string label = format("%.2f", confidences[idx]);
|
||||
label = this->class_names[classIds[idx]] + ":" + label;
|
||||
putText(frame, label, Point(box.x, box.y - 10), FONT_HERSHEY_SIMPLEX, 1, Scalar(0, 255, 0), 2);
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
Net_config cfg = { 0.8, 0.5, "weights/face/yolo_free_huge_widerface_192x320.onnx", "face" };
|
||||
FreeYOLO net(cfg);
|
||||
string imgpath = "images/face/1.jpg";
|
||||
Mat srcimg = imread(imgpath);
|
||||
net.detect(srcimg);
|
||||
|
||||
static const string kWinName = "Deep learning object detection in OpenCV";
|
||||
namedWindow(kWinName, WINDOW_NORMAL);
|
||||
imshow(kWinName, srcimg);
|
||||
waitKey(0);
|
||||
destroyAllWindows();
|
||||
}
|
133
opencv/main.py
Normal file
@@ -0,0 +1,133 @@
|
||||
import argparse
|
||||
import cv2
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
class FreeYOLO():
|
||||
def __init__(self, model_path, confThreshold=0.4, nmsThreshold=0.85, datatype='coco'):
|
||||
self.net = cv2.dnn.readNet(model_path)
|
||||
filename = os.path.splitext(os.path.basename(model_path))[0]
|
||||
input_shape = filename.split('_')[-1].split('x')
|
||||
self.input_height = int(input_shape[0])
|
||||
self.input_width = int(input_shape[1])
|
||||
self.anchors, self.expand_strides = self.generate_anchors((self.input_height, self.input_width), [8, 16, 32])
|
||||
|
||||
if datatype=='coco':
|
||||
self.classes = list(map(lambda x: x.strip(), open('coco.names', 'r').readlines()))
|
||||
elif datatype=='face':
|
||||
self.classes = ['face']
|
||||
else:
|
||||
self.classes = ['person']
|
||||
self.num_class = len(self.classes)
|
||||
self.confThreshold = confThreshold
|
||||
self.nmsThreshold = nmsThreshold
|
||||
self.output_names = self.net.getUnconnectedOutLayersNames()
|
||||
|
||||
def generate_anchors(self, input_shape, strides):
|
||||
"""
|
||||
fmp_size: (List) [H, W]
|
||||
"""
|
||||
all_anchors = []
|
||||
all_expand_strides = []
|
||||
for stride in strides:
|
||||
# generate grid cells
|
||||
fmp_h, fmp_w = input_shape[0] // stride, input_shape[1] // stride
|
||||
anchor_x, anchor_y = np.meshgrid(np.arange(fmp_w),
|
||||
np.arange(fmp_h))
|
||||
# [H, W, 2]
|
||||
anchor_xy = np.stack([anchor_x, anchor_y], axis=-1)
|
||||
shape = anchor_xy.shape[:2]
|
||||
# [H, W, 2] -> [HW, 2]
|
||||
anchor_xy = (anchor_xy.reshape(-1, 2) + 0.5) * stride
|
||||
all_anchors.append(anchor_xy)
|
||||
|
||||
# expanded stride
|
||||
strides = np.full((*shape, 1), stride)
|
||||
all_expand_strides.append(strides.reshape(-1, 1))
|
||||
|
||||
anchors = np.concatenate(all_anchors, axis=0)
|
||||
expand_strides = np.concatenate(all_expand_strides, axis=0)
|
||||
|
||||
return anchors, expand_strides
|
||||
|
||||
def decode_boxes(self, anchors, pred_regs, expand_strides):
|
||||
"""
|
||||
anchors: (List[Tensor]) [1, M, 2] or [M, 2]
|
||||
pred_reg: (List[Tensor]) [B, M, 4] or [B, M, 4]
|
||||
"""
|
||||
# center of bbox
|
||||
pred_ctr_xy = anchors[..., :2] + pred_regs[..., :2] * expand_strides
|
||||
# size of bbox
|
||||
pred_box_wh = np.exp(pred_regs[..., 2:]) * expand_strides
|
||||
|
||||
pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh
|
||||
# pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh
|
||||
# pred_box = np.concatenate([pred_x1y1, pred_x2y2], axis=-1)
|
||||
pred_box = np.concatenate([pred_x1y1, pred_box_wh], axis=-1)
|
||||
return pred_box
|
||||
def drawPred(self, frame, classId, conf, left, top, right, bottom):
|
||||
# Draw a bounding box.
|
||||
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=2)
|
||||
|
||||
label = '%.2f' % conf
|
||||
label = '%s:%s' % (self.classes[classId], label)
|
||||
|
||||
# Display the label at the top of the bounding box
|
||||
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
top = max(top, labelSize[1])
|
||||
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
|
||||
cv2.putText(frame, label, (left, top - 10), 0, 0.7, (0, 255, 0), thickness=2)
|
||||
return frame
|
||||
|
||||
def detect(self, frame):
|
||||
padded_image = np.ones((self.input_height, self.input_width, 3), dtype=np.uint8)*114
|
||||
ratio = min(self.input_height / frame.shape[0], self.input_width / frame.shape[1])
|
||||
neww, newh = int(frame.shape[1] * ratio), int(frame.shape[0] * ratio)
|
||||
temp_image = cv2.resize(frame, (neww, newh), interpolation=cv2.INTER_LINEAR)
|
||||
padded_image[:newh, :neww, :] = temp_image
|
||||
blob = cv2.dnn.blobFromImage(padded_image)
|
||||
self.net.setInput(blob)
|
||||
results = self.net.forward(self.output_names)
|
||||
|
||||
reg_preds = results[0][0][..., :4]
|
||||
obj_preds = results[0][0][..., 4:5]
|
||||
cls_preds = results[0][0][..., 5:]
|
||||
scores = np.sqrt(obj_preds * cls_preds)
|
||||
|
||||
# scores & class_ids
|
||||
class_ids = np.argmax(scores, axis=1) # [M,]
|
||||
scores = np.max(scores, axis=1)
|
||||
|
||||
# bboxes
|
||||
bboxes = self.decode_boxes(self.anchors, reg_preds, self.expand_strides) # [M, 4]
|
||||
# thresh
|
||||
keep = np.where(scores > self.confThreshold)
|
||||
scores = scores[keep]
|
||||
class_ids = class_ids[keep]
|
||||
bboxes = bboxes[keep]
|
||||
bboxes /= ratio
|
||||
|
||||
indices = cv2.dnn.NMSBoxes(bboxes.tolist(), scores.tolist(), self.confThreshold, self.nmsThreshold)
|
||||
for i in indices:
|
||||
left, top, width, height = bboxes[i, :].astype(np.int32)
|
||||
frame = self.drawPred(frame, class_ids[i], scores[i], left, top, left + width, top + height)
|
||||
return frame
|
||||
|
||||
if __name__ == '__main__':
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument("--modelpath", type=str, default='weights/coco/yolo_free_nano_192x320.onnx', help="model path")
|
||||
parser.add_argument("--imgpath", type=str, default='images/coco/dog.jpg', help="image path")
|
||||
parser.add_argument("--confThreshold", default=0.6, type=float, help='class confidence')
|
||||
parser.add_argument("--nmsThreshold", default=0.5, type=float, help='iou thresh')
|
||||
parser.add_argument("--datatype", default='coco', type=str, choices=['coco', 'face', 'person'], help='data type')
|
||||
args = parser.parse_args()
|
||||
|
||||
net = FreeYOLO(args.modelpath, confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, datatype=args.datatype)
|
||||
srcimg = cv2.imread(args.imgpath)
|
||||
srcimg = net.detect(srcimg)
|
||||
|
||||
winName = 'Deep learning object detection in OpenCV'
|
||||
cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
|
||||
cv2.imshow(winName, srcimg)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|