Add files via upload

This commit is contained in:
hpc203
2023-01-14 21:54:06 +08:00
committed by GitHub
commit 9dad483077
26 changed files with 872 additions and 0 deletions

133
opencv/main.py Normal file
View File

@@ -0,0 +1,133 @@
import argparse
import cv2
import numpy as np
import os
class FreeYOLO():
def __init__(self, model_path, confThreshold=0.4, nmsThreshold=0.85, datatype='coco'):
self.net = cv2.dnn.readNet(model_path)
filename = os.path.splitext(os.path.basename(model_path))[0]
input_shape = filename.split('_')[-1].split('x')
self.input_height = int(input_shape[0])
self.input_width = int(input_shape[1])
self.anchors, self.expand_strides = self.generate_anchors((self.input_height, self.input_width), [8, 16, 32])
if datatype=='coco':
self.classes = list(map(lambda x: x.strip(), open('coco.names', 'r').readlines()))
elif datatype=='face':
self.classes = ['face']
else:
self.classes = ['person']
self.num_class = len(self.classes)
self.confThreshold = confThreshold
self.nmsThreshold = nmsThreshold
self.output_names = self.net.getUnconnectedOutLayersNames()
def generate_anchors(self, input_shape, strides):
"""
fmp_size: (List) [H, W]
"""
all_anchors = []
all_expand_strides = []
for stride in strides:
# generate grid cells
fmp_h, fmp_w = input_shape[0] // stride, input_shape[1] // stride
anchor_x, anchor_y = np.meshgrid(np.arange(fmp_w),
np.arange(fmp_h))
# [H, W, 2]
anchor_xy = np.stack([anchor_x, anchor_y], axis=-1)
shape = anchor_xy.shape[:2]
# [H, W, 2] -> [HW, 2]
anchor_xy = (anchor_xy.reshape(-1, 2) + 0.5) * stride
all_anchors.append(anchor_xy)
# expanded stride
strides = np.full((*shape, 1), stride)
all_expand_strides.append(strides.reshape(-1, 1))
anchors = np.concatenate(all_anchors, axis=0)
expand_strides = np.concatenate(all_expand_strides, axis=0)
return anchors, expand_strides
def decode_boxes(self, anchors, pred_regs, expand_strides):
"""
anchors: (List[Tensor]) [1, M, 2] or [M, 2]
pred_reg: (List[Tensor]) [B, M, 4] or [B, M, 4]
"""
# center of bbox
pred_ctr_xy = anchors[..., :2] + pred_regs[..., :2] * expand_strides
# size of bbox
pred_box_wh = np.exp(pred_regs[..., 2:]) * expand_strides
pred_x1y1 = pred_ctr_xy - 0.5 * pred_box_wh
# pred_x2y2 = pred_ctr_xy + 0.5 * pred_box_wh
# pred_box = np.concatenate([pred_x1y1, pred_x2y2], axis=-1)
pred_box = np.concatenate([pred_x1y1, pred_box_wh], axis=-1)
return pred_box
def drawPred(self, frame, classId, conf, left, top, right, bottom):
# Draw a bounding box.
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=2)
label = '%.2f' % conf
label = '%s:%s' % (self.classes[classId], label)
# Display the label at the top of the bounding box
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
top = max(top, labelSize[1])
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
cv2.putText(frame, label, (left, top - 10), 0, 0.7, (0, 255, 0), thickness=2)
return frame
def detect(self, frame):
padded_image = np.ones((self.input_height, self.input_width, 3), dtype=np.uint8)*114
ratio = min(self.input_height / frame.shape[0], self.input_width / frame.shape[1])
neww, newh = int(frame.shape[1] * ratio), int(frame.shape[0] * ratio)
temp_image = cv2.resize(frame, (neww, newh), interpolation=cv2.INTER_LINEAR)
padded_image[:newh, :neww, :] = temp_image
blob = cv2.dnn.blobFromImage(padded_image)
self.net.setInput(blob)
results = self.net.forward(self.output_names)
reg_preds = results[0][0][..., :4]
obj_preds = results[0][0][..., 4:5]
cls_preds = results[0][0][..., 5:]
scores = np.sqrt(obj_preds * cls_preds)
# scores & class_ids
class_ids = np.argmax(scores, axis=1) # [M,]
scores = np.max(scores, axis=1)
# bboxes
bboxes = self.decode_boxes(self.anchors, reg_preds, self.expand_strides) # [M, 4]
# thresh
keep = np.where(scores > self.confThreshold)
scores = scores[keep]
class_ids = class_ids[keep]
bboxes = bboxes[keep]
bboxes /= ratio
indices = cv2.dnn.NMSBoxes(bboxes.tolist(), scores.tolist(), self.confThreshold, self.nmsThreshold)
for i in indices:
left, top, width, height = bboxes[i, :].astype(np.int32)
frame = self.drawPred(frame, class_ids[i], scores[i], left, top, left + width, top + height)
return frame
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument("--modelpath", type=str, default='weights/coco/yolo_free_nano_192x320.onnx', help="model path")
parser.add_argument("--imgpath", type=str, default='images/coco/dog.jpg', help="image path")
parser.add_argument("--confThreshold", default=0.6, type=float, help='class confidence')
parser.add_argument("--nmsThreshold", default=0.5, type=float, help='iou thresh')
parser.add_argument("--datatype", default='coco', type=str, choices=['coco', 'face', 'person'], help='data type')
args = parser.parse_args()
net = FreeYOLO(args.modelpath, confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold, datatype=args.datatype)
srcimg = cv2.imread(args.imgpath)
srcimg = net.detect(srcimg)
winName = 'Deep learning object detection in OpenCV'
cv2.namedWindow(winName, cv2.WINDOW_NORMAL)
cv2.imshow(winName, srcimg)
cv2.waitKey(0)
cv2.destroyAllWindows()