Add files via upload

This commit is contained in:
hpc203
2023-01-14 21:54:06 +08:00
committed by GitHub
commit 9dad483077
26 changed files with 872 additions and 0 deletions

267
onnxruntime/main.cpp Normal file
View File

@@ -0,0 +1,267 @@
#include <fstream>
#include <sstream>
#include <iostream>
#include <opencv2/imgproc.hpp>
#include <opencv2/highgui.hpp>
//#include <cuda_provider_factory.h>
#include <onnxruntime_cxx_api.h>
using namespace std;
using namespace cv;
using namespace Ort;
struct Net_config
{
float confThreshold; // Confidence threshold
float nmsThreshold; // Non-maximum suppression threshold
string modelpath;
string datatype;
};
typedef struct BoxInfo
{
float x1;
float y1;
float x2;
float y2;
float score;
int label;
} BoxInfo;
class FreeYOLO
{
public:
FreeYOLO(Net_config config);
void detect(Mat& frame);
private:
int inpWidth;
int inpHeight;
int nout;
int num_proposal;
vector<string> class_names;
int num_class;
const int num_stride = 3;
int strides[3] = { 8,16,32 };
float confThreshold;
float nmsThreshold;
vector<float> input_image_;
void normalize_(Mat img);
void nms(vector<BoxInfo>& input_boxes);
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "FreeYOLO");
Ort::Session *ort_session = nullptr;
SessionOptions sessionOptions = SessionOptions();
vector<char*> input_names;
vector<char*> output_names;
vector<vector<int64_t>> input_node_dims; // >=1 outputs
vector<vector<int64_t>> output_node_dims; // >=1 outputs
};
FreeYOLO::FreeYOLO(Net_config config)
{
this->confThreshold = config.confThreshold;
this->nmsThreshold = config.nmsThreshold;
string model_path = config.modelpath;
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
ort_session = new Session(env, widestr.c_str(), sessionOptions);
size_t numInputNodes = ort_session->GetInputCount();
size_t numOutputNodes = ort_session->GetOutputCount();
AllocatorWithDefaultOptions allocator;
for (int i = 0; i < numInputNodes; i++)
{
input_names.push_back(ort_session->GetInputName(i, allocator));
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
auto input_dims = input_tensor_info.GetShape();
input_node_dims.push_back(input_dims);
}
for (int i = 0; i < numOutputNodes; i++)
{
output_names.push_back(ort_session->GetOutputName(i, allocator));
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
auto output_dims = output_tensor_info.GetShape();
output_node_dims.push_back(output_dims);
}
this->inpHeight = input_node_dims[0][2];
this->inpWidth = input_node_dims[0][3];
if (config.datatype == "coco")
{
string classesFile = "coco.names";
ifstream ifs(classesFile.c_str());
string line;
while (getline(ifs, line)) this->class_names.push_back(line);
}
else if (config.datatype == "face")
{
this->class_names.push_back("face");
}
else
{
this->class_names.push_back("person");
}
this->num_class = class_names.size();
}
void FreeYOLO::normalize_(Mat img)
{
// img.convertTo(img, CV_32F);
int row = img.rows;
int col = img.cols;
this->input_image_.resize(row * col * img.channels());
for (int c = 0; c < 3; c++)
{
for (int i = 0; i < row; i++)
{
for (int j = 0; j < col; j++)
{
float pix = img.ptr<uchar>(i)[j * 3 + c];
this->input_image_[c * row * col + i * col + j] = pix;
}
}
}
}
void FreeYOLO::nms(vector<BoxInfo>& input_boxes)
{
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
vector<float> vArea(input_boxes.size());
for (int i = 0; i < int(input_boxes.size()); ++i)
{
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
}
vector<bool> isSuppressed(input_boxes.size(), false);
for (int i = 0; i < int(input_boxes.size()); ++i)
{
if (isSuppressed[i]) { continue; }
for (int j = i + 1; j < int(input_boxes.size()); ++j)
{
if (isSuppressed[j]) { continue; }
float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);
float w = (max)(float(0), xx2 - xx1 + 1);
float h = (max)(float(0), yy2 - yy1 + 1);
float inter = w * h;
float ovr = inter / (vArea[i] + vArea[j] - inter);
if (ovr >= this->nmsThreshold)
{
isSuppressed[j] = true;
}
}
}
// return post_nms;
int idx_t = 0;
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());
}
void FreeYOLO::detect(Mat& frame)
{
const float ratio = std::min(float(this->inpHeight) / float(frame.rows), float(this->inpWidth) / float(frame.cols));
const int neww = int(frame.cols * ratio);
const int newh = int(frame.rows * ratio);
Mat dstimg;
resize(frame, dstimg, Size(neww, newh));
copyMakeBorder(dstimg, dstimg, 0, this->inpHeight - newh, 0, this->inpWidth - neww, BORDER_CONSTANT, 114);
this->normalize_(dstimg);
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
// <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size()); // <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
vector<BoxInfo> generate_boxes;
Ort::Value &predictions = ort_outputs.at(0);
auto pred_dims = predictions.GetTensorTypeAndShapeInfo().GetShape();
num_proposal = pred_dims.at(1);
nout = pred_dims.at(2);
const float* pdata = ort_outputs[0].GetTensorMutableData<float>();
int n = 0, i = 0, j = 0, k = 0; ///cx, cy, w, h, box_score, class_score
for (n = 0; n < this->num_stride; n++) ///<2F><><EFBFBD><EFBFBD>ͼ<EFBFBD>߶<EFBFBD>
{
int num_grid_x = (int)ceil((this->inpWidth / strides[n]));
int num_grid_y = (int)ceil((this->inpHeight / strides[n]));
for (i = 0; i < num_grid_y; i++)
{
for (j = 0; j < num_grid_x; j++)
{
const float box_score = pdata[4];
int max_ind = 0;
float max_class_socre = 0;
for (k = 0; k < num_class; k++)
{
if (pdata[k + 5] > max_class_socre)
{
max_class_socre = pdata[k + 5];
max_ind = k;
}
}
max_class_socre *= box_score;
max_class_socre = sqrt(max_class_socre);
if (max_class_socre > this->confThreshold)
{
float cx = (0.5f + j + pdata[0]) * strides[n]; ///cx
float cy = (0.5f + i + pdata[1]) * strides[n]; ///cy
float w = expf(pdata[2]) * strides[n]; ///w
float h = expf(pdata[3]) * strides[n]; ///h
float xmin = (cx - 0.5 * w) / ratio;
float ymin = (cy - 0.5 * h) / ratio;
float xmax = (cx + 0.5 * w) / ratio;
float ymax = (cy + 0.5 * h) / ratio;
generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, max_ind });
}
pdata += nout;
}
}
}
// Perform non maximum suppression to eliminate redundant overlapping boxes with
// lower confidences
nms(generate_boxes);
for (size_t i = 0; i < generate_boxes.size(); ++i)
{
int xmin = int(generate_boxes[i].x1);
int ymin = int(generate_boxes[i].y1);
rectangle(frame, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2);
string label = format("%.2f", generate_boxes[i].score);
label = this->class_names[generate_boxes[i].label] + ":" + label;
putText(frame, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
}
}
int main()
{
Net_config cfg = { 0.6, 0.5, "weights/crowdhuman/yolo_free_huge_crowdhuman_192x320.onnx", "person" };
FreeYOLO net(cfg);
string imgpath = "images/person/1.png";
Mat srcimg = imread(imgpath);
net.detect(srcimg);
static const string kWinName = "Deep learning object detection in ONNXRuntime";
namedWindow(kWinName, WINDOW_NORMAL);
imshow(kWinName, srcimg);
waitKey(0);
destroyAllWindows();
}