mirror of
https://github.com/hpc203/FreeYOLO-opencv-onnxrun-cpp-py.git
synced 2025-10-06 16:46:57 +08:00
Add files via upload
This commit is contained in:
267
onnxruntime/main.cpp
Normal file
267
onnxruntime/main.cpp
Normal file
@@ -0,0 +1,267 @@
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
//#include <cuda_provider_factory.h>
|
||||
#include <onnxruntime_cxx_api.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace Ort;
|
||||
|
||||
struct Net_config
|
||||
{
|
||||
float confThreshold; // Confidence threshold
|
||||
float nmsThreshold; // Non-maximum suppression threshold
|
||||
string modelpath;
|
||||
string datatype;
|
||||
};
|
||||
|
||||
typedef struct BoxInfo
|
||||
{
|
||||
float x1;
|
||||
float y1;
|
||||
float x2;
|
||||
float y2;
|
||||
float score;
|
||||
int label;
|
||||
} BoxInfo;
|
||||
|
||||
class FreeYOLO
|
||||
{
|
||||
public:
|
||||
FreeYOLO(Net_config config);
|
||||
void detect(Mat& frame);
|
||||
private:
|
||||
int inpWidth;
|
||||
int inpHeight;
|
||||
int nout;
|
||||
int num_proposal;
|
||||
vector<string> class_names;
|
||||
int num_class;
|
||||
const int num_stride = 3;
|
||||
int strides[3] = { 8,16,32 };
|
||||
|
||||
float confThreshold;
|
||||
float nmsThreshold;
|
||||
vector<float> input_image_;
|
||||
void normalize_(Mat img);
|
||||
void nms(vector<BoxInfo>& input_boxes);
|
||||
|
||||
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "FreeYOLO");
|
||||
Ort::Session *ort_session = nullptr;
|
||||
SessionOptions sessionOptions = SessionOptions();
|
||||
vector<char*> input_names;
|
||||
vector<char*> output_names;
|
||||
vector<vector<int64_t>> input_node_dims; // >=1 outputs
|
||||
vector<vector<int64_t>> output_node_dims; // >=1 outputs
|
||||
};
|
||||
|
||||
FreeYOLO::FreeYOLO(Net_config config)
|
||||
{
|
||||
this->confThreshold = config.confThreshold;
|
||||
this->nmsThreshold = config.nmsThreshold;
|
||||
|
||||
string model_path = config.modelpath;
|
||||
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
|
||||
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
|
||||
sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
|
||||
ort_session = new Session(env, widestr.c_str(), sessionOptions);
|
||||
size_t numInputNodes = ort_session->GetInputCount();
|
||||
size_t numOutputNodes = ort_session->GetOutputCount();
|
||||
AllocatorWithDefaultOptions allocator;
|
||||
for (int i = 0; i < numInputNodes; i++)
|
||||
{
|
||||
input_names.push_back(ort_session->GetInputName(i, allocator));
|
||||
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
|
||||
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
|
||||
auto input_dims = input_tensor_info.GetShape();
|
||||
input_node_dims.push_back(input_dims);
|
||||
}
|
||||
for (int i = 0; i < numOutputNodes; i++)
|
||||
{
|
||||
output_names.push_back(ort_session->GetOutputName(i, allocator));
|
||||
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
|
||||
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
|
||||
auto output_dims = output_tensor_info.GetShape();
|
||||
output_node_dims.push_back(output_dims);
|
||||
}
|
||||
this->inpHeight = input_node_dims[0][2];
|
||||
this->inpWidth = input_node_dims[0][3];
|
||||
|
||||
if (config.datatype == "coco")
|
||||
{
|
||||
string classesFile = "coco.names";
|
||||
ifstream ifs(classesFile.c_str());
|
||||
string line;
|
||||
while (getline(ifs, line)) this->class_names.push_back(line);
|
||||
}
|
||||
else if (config.datatype == "face")
|
||||
{
|
||||
this->class_names.push_back("face");
|
||||
}
|
||||
else
|
||||
{
|
||||
this->class_names.push_back("person");
|
||||
|
||||
}
|
||||
this->num_class = class_names.size();
|
||||
}
|
||||
|
||||
void FreeYOLO::normalize_(Mat img)
|
||||
{
|
||||
// img.convertTo(img, CV_32F);
|
||||
int row = img.rows;
|
||||
int col = img.cols;
|
||||
this->input_image_.resize(row * col * img.channels());
|
||||
|
||||
for (int c = 0; c < 3; c++)
|
||||
{
|
||||
for (int i = 0; i < row; i++)
|
||||
{
|
||||
for (int j = 0; j < col; j++)
|
||||
{
|
||||
float pix = img.ptr<uchar>(i)[j * 3 + c];
|
||||
this->input_image_[c * row * col + i * col + j] = pix;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void FreeYOLO::nms(vector<BoxInfo>& input_boxes)
|
||||
{
|
||||
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
|
||||
vector<float> vArea(input_boxes.size());
|
||||
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||||
{
|
||||
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
|
||||
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
|
||||
}
|
||||
|
||||
vector<bool> isSuppressed(input_boxes.size(), false);
|
||||
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||||
{
|
||||
if (isSuppressed[i]) { continue; }
|
||||
for (int j = i + 1; j < int(input_boxes.size()); ++j)
|
||||
{
|
||||
if (isSuppressed[j]) { continue; }
|
||||
float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
|
||||
float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
|
||||
float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
|
||||
float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);
|
||||
|
||||
float w = (max)(float(0), xx2 - xx1 + 1);
|
||||
float h = (max)(float(0), yy2 - yy1 + 1);
|
||||
float inter = w * h;
|
||||
float ovr = inter / (vArea[i] + vArea[j] - inter);
|
||||
|
||||
if (ovr >= this->nmsThreshold)
|
||||
{
|
||||
isSuppressed[j] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// return post_nms;
|
||||
int idx_t = 0;
|
||||
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());
|
||||
}
|
||||
|
||||
void FreeYOLO::detect(Mat& frame)
|
||||
{
|
||||
const float ratio = std::min(float(this->inpHeight) / float(frame.rows), float(this->inpWidth) / float(frame.cols));
|
||||
const int neww = int(frame.cols * ratio);
|
||||
const int newh = int(frame.rows * ratio);
|
||||
|
||||
Mat dstimg;
|
||||
resize(frame, dstimg, Size(neww, newh));
|
||||
copyMakeBorder(dstimg, dstimg, 0, this->inpHeight - newh, 0, this->inpWidth - neww, BORDER_CONSTANT, 114);
|
||||
|
||||
this->normalize_(dstimg);
|
||||
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
|
||||
|
||||
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
|
||||
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
|
||||
|
||||
// <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
|
||||
vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size()); // <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
|
||||
vector<BoxInfo> generate_boxes;
|
||||
|
||||
Ort::Value &predictions = ort_outputs.at(0);
|
||||
auto pred_dims = predictions.GetTensorTypeAndShapeInfo().GetShape();
|
||||
num_proposal = pred_dims.at(1);
|
||||
nout = pred_dims.at(2);
|
||||
const float* pdata = ort_outputs[0].GetTensorMutableData<float>();
|
||||
int n = 0, i = 0, j = 0, k = 0; ///cx, cy, w, h, box_score, class_score
|
||||
for (n = 0; n < this->num_stride; n++) ///<2F><><EFBFBD><EFBFBD>ͼ<EFBFBD>߶<EFBFBD>
|
||||
{
|
||||
int num_grid_x = (int)ceil((this->inpWidth / strides[n]));
|
||||
int num_grid_y = (int)ceil((this->inpHeight / strides[n]));
|
||||
for (i = 0; i < num_grid_y; i++)
|
||||
{
|
||||
for (j = 0; j < num_grid_x; j++)
|
||||
{
|
||||
const float box_score = pdata[4];
|
||||
int max_ind = 0;
|
||||
float max_class_socre = 0;
|
||||
for (k = 0; k < num_class; k++)
|
||||
{
|
||||
if (pdata[k + 5] > max_class_socre)
|
||||
{
|
||||
max_class_socre = pdata[k + 5];
|
||||
max_ind = k;
|
||||
}
|
||||
}
|
||||
max_class_socre *= box_score;
|
||||
max_class_socre = sqrt(max_class_socre);
|
||||
|
||||
if (max_class_socre > this->confThreshold)
|
||||
{
|
||||
float cx = (0.5f + j + pdata[0]) * strides[n]; ///cx
|
||||
float cy = (0.5f + i + pdata[1]) * strides[n]; ///cy
|
||||
float w = expf(pdata[2]) * strides[n]; ///w
|
||||
float h = expf(pdata[3]) * strides[n]; ///h
|
||||
|
||||
float xmin = (cx - 0.5 * w) / ratio;
|
||||
float ymin = (cy - 0.5 * h) / ratio;
|
||||
float xmax = (cx + 0.5 * w) / ratio;
|
||||
float ymax = (cy + 0.5 * h) / ratio;
|
||||
|
||||
generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, max_ind });
|
||||
}
|
||||
pdata += nout;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
|
||||
// Perform non maximum suppression to eliminate redundant overlapping boxes with
|
||||
// lower confidences
|
||||
nms(generate_boxes);
|
||||
|
||||
for (size_t i = 0; i < generate_boxes.size(); ++i)
|
||||
{
|
||||
int xmin = int(generate_boxes[i].x1);
|
||||
int ymin = int(generate_boxes[i].y1);
|
||||
rectangle(frame, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2);
|
||||
string label = format("%.2f", generate_boxes[i].score);
|
||||
label = this->class_names[generate_boxes[i].label] + ":" + label;
|
||||
putText(frame, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
Net_config cfg = { 0.6, 0.5, "weights/crowdhuman/yolo_free_huge_crowdhuman_192x320.onnx", "person" };
|
||||
FreeYOLO net(cfg);
|
||||
string imgpath = "images/person/1.png";
|
||||
Mat srcimg = imread(imgpath);
|
||||
net.detect(srcimg);
|
||||
|
||||
static const string kWinName = "Deep learning object detection in ONNXRuntime";
|
||||
namedWindow(kWinName, WINDOW_NORMAL);
|
||||
imshow(kWinName, srcimg);
|
||||
waitKey(0);
|
||||
destroyAllWindows();
|
||||
}
|
Reference in New Issue
Block a user