mirror of
https://github.com/hpc203/Detic-onnxrun-cpp-py.git
synced 2025-09-26 20:11:15 +08:00
194 lines
6.2 KiB
C++
194 lines
6.2 KiB
C++
#define _CRT_SECURE_NO_WARNINGS
|
||
#include <iostream>
|
||
#include <fstream>
|
||
#include <numeric>
|
||
#include <opencv2/imgproc.hpp>
|
||
#include <opencv2/highgui.hpp>
|
||
//#include <cuda_provider_factory.h> ///nvidia-cuda加速
|
||
#include <onnxruntime_cxx_api.h>
|
||
|
||
using namespace cv;
|
||
using namespace std;
|
||
using namespace Ort;
|
||
|
||
typedef struct BoxInfo
|
||
{
|
||
int xmin;
|
||
int ymin;
|
||
int xmax;
|
||
int ymax;
|
||
float score;
|
||
string name;
|
||
} BoxInfo;
|
||
|
||
class Detic
|
||
{
|
||
public:
|
||
Detic(string modelpath);
|
||
vector<BoxInfo> detect(Mat cv_image);
|
||
private:
|
||
void preprocess(Mat srcimg);
|
||
vector<float> input_image_;
|
||
int inpWidth;
|
||
int inpHeight;
|
||
vector<string> class_names;
|
||
const int max_size = 800;
|
||
|
||
//存储初始化获得的可执行网络
|
||
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "Detic");
|
||
Ort::Session *ort_session = nullptr;
|
||
SessionOptions sessionOptions = SessionOptions();
|
||
vector<char*> input_names;
|
||
vector<char*> output_names;
|
||
vector<vector<int64_t>> input_node_dims; // >=1 outputs
|
||
vector<vector<int64_t>> output_node_dims; // >=1 outputs
|
||
};
|
||
|
||
Detic::Detic(string model_path)
|
||
{
|
||
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0); ///nvidia-cuda加速
|
||
sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
|
||
std::wstring widestr = std::wstring(model_path.begin(), model_path.end()); ///如果在windows系统就这么写
|
||
ort_session = new Session(env, widestr.c_str(), sessionOptions); ///如果在windows系统就这么写
|
||
///ort_session = new Session(env, model_path.c_str(), sessionOptions); ///如果在linux系统,就这么写
|
||
|
||
size_t numInputNodes = ort_session->GetInputCount();
|
||
size_t numOutputNodes = ort_session->GetOutputCount();
|
||
AllocatorWithDefaultOptions allocator;
|
||
for (int i = 0; i < numInputNodes; i++)
|
||
{
|
||
input_names.push_back(ort_session->GetInputName(i, allocator));
|
||
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
|
||
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
|
||
auto input_dims = input_tensor_info.GetShape();
|
||
input_node_dims.push_back(input_dims);
|
||
}
|
||
for (int i = 0; i < numOutputNodes; i++)
|
||
{
|
||
output_names.push_back(ort_session->GetOutputName(i, allocator));
|
||
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
|
||
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
|
||
auto output_dims = output_tensor_info.GetShape();
|
||
output_node_dims.push_back(output_dims);
|
||
}
|
||
|
||
ifstream ifs("imagenet_21k_class_names.txt");
|
||
string line;
|
||
while (getline(ifs, line))
|
||
{
|
||
this->class_names.push_back(line); ///你可以用随机数给每个类别分配RGB值
|
||
}
|
||
}
|
||
|
||
void Detic::preprocess(Mat srcimg)
|
||
{
|
||
Mat dstimg;
|
||
cvtColor(srcimg, dstimg, COLOR_BGR2RGB);
|
||
int im_h = srcimg.rows;
|
||
int im_w = srcimg.cols;
|
||
float oh, ow, scale;
|
||
if (im_h < im_w)
|
||
{
|
||
scale = (float)max_size / (float)im_h;
|
||
oh = max_size;
|
||
ow = scale * (float)im_w;
|
||
}
|
||
else
|
||
{
|
||
scale = (float)max_size / (float)im_h;
|
||
oh = scale * (float)im_h;
|
||
ow = max_size;
|
||
}
|
||
float max_hw = std::max(oh, ow);
|
||
if (max_hw > max_size)
|
||
{
|
||
scale = (float)max_size / max_hw;
|
||
oh *= scale;
|
||
ow *= scale;
|
||
}
|
||
|
||
resize(dstimg, dstimg, Size(int(ow + 0.5), int(oh + 0.5)), INTER_LINEAR);
|
||
this->inpHeight = dstimg.rows;
|
||
this->inpWidth = dstimg.cols;
|
||
this->input_image_.resize(this->inpWidth * this->inpHeight * dstimg.channels());
|
||
int k = 0;
|
||
for (int c = 0; c < 3; c++)
|
||
{
|
||
for (int i = 0; i < this->inpHeight; i++)
|
||
{
|
||
for (int j = 0; j < this->inpWidth; j++)
|
||
{
|
||
float pix = dstimg.ptr<uchar>(i)[j * 3 + c];
|
||
this->input_image_[k] = pix;
|
||
k++;
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
vector<BoxInfo> Detic::detect(Mat srcimg)
|
||
{
|
||
int im_h = srcimg.rows;
|
||
int im_w = srcimg.cols;
|
||
this->preprocess(srcimg);
|
||
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
|
||
|
||
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
|
||
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
|
||
|
||
// 开始推理
|
||
vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size());
|
||
|
||
const float *pred_boxes = ort_outputs[0].GetTensorMutableData<float>();
|
||
const float *scores = ort_outputs[1].GetTensorMutableData<float>();
|
||
const int *pred_classes = ort_outputs[2].GetTensorMutableData<int>();
|
||
//const float *pred_masks = ort_outputs[3].GetTensorMutableData<float>();
|
||
|
||
int num_box = ort_outputs[0].GetTensorTypeAndShapeInfo().GetShape()[0];
|
||
const float scale_x = float(im_w) / float(inpWidth);
|
||
const float scale_y = float(im_h) / float(inpHeight);
|
||
vector<BoxInfo> preds;
|
||
for (int i = 0; i < num_box; i++)
|
||
{
|
||
float xmin = pred_boxes[i * 4] * scale_x;
|
||
float ymin = pred_boxes[i * 4 + 1] * scale_y;
|
||
float xmax = pred_boxes[i * 4 + 2] * scale_x;
|
||
float ymax = pred_boxes[i * 4 + 3] * scale_y;
|
||
xmin = std::min(std::max(xmin, 0.f), float(im_w));
|
||
ymin = std::min(std::max(ymin, 0.f), float(im_h));
|
||
xmax = std::min(std::max(xmax, 0.f), float(im_w));
|
||
ymax = std::min(std::max(ymax, 0.f), float(im_h));
|
||
|
||
const float threshold = 0;
|
||
const float width = xmax - xmin;
|
||
const float height = ymax - ymin;
|
||
if (width > threshold && height > threshold)
|
||
{
|
||
preds.push_back({ int(xmin), int(ymin), int(xmax), int(ymax), scores[i], class_names[pred_classes[i]] });
|
||
}
|
||
}
|
||
return preds;
|
||
}
|
||
|
||
int main()
|
||
{
|
||
Detic mynet("weights/Detic_C2_R50_640_4x_in21k.onnx");
|
||
string imgpath = "desk.jpg";
|
||
Mat srcimg = imread(imgpath);
|
||
vector<BoxInfo> preds = mynet.detect(srcimg);
|
||
for (size_t i = 0; i < preds.size(); ++i)
|
||
{
|
||
rectangle(srcimg, Point(preds[i].xmin, preds[i].ymin), Point(preds[i].xmax, preds[i].ymax), Scalar(0, 0, 255), 2);
|
||
string label = format("%.2f", preds[i].score);
|
||
label = preds[i].name + " :" + label;
|
||
putText(srcimg, label, Point(preds[i].xmin, preds[i].ymin - 5), FONT_HERSHEY_SIMPLEX, 0.5, Scalar(0, 255, 0), 1);
|
||
}
|
||
|
||
//imwrite("result.jpg", srcimg);
|
||
static const string kWinName = "Deep learning object detection in ONNXRuntime";
|
||
namedWindow(kWinName, WINDOW_NORMAL);
|
||
imshow(kWinName, srcimg);
|
||
waitKey(0);
|
||
destroyAllWindows();
|
||
}
|