Files
2023-03-25 21:39:47 +08:00

95 lines
3.4 KiB
Python

import math
import torch
import torch.nn as nn
from torch.autograd import Variable
from torchvision import models
__all__ = ['myNet','myResNet18']
# defaultcfg = {
# 11 : [64, 'M', 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512],
# 13 : [64, 64, 'M', 128, 128, 'M', 256, 256, 'M', 512, 512, 'M', 512, 512],
# 16 : [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 'M', 512, 512, 512, 'M', 512, 512, 512],
# 19 : [64, 64, 'M', 128, 128, 'M', 256, 256, 256, 256, 'M', 512, 512, 512, 512, 'M', 512, 512, 512, 512],
# }
# myCfg = [32,'M',64,'M',96,'M',128,'M',192,'M',256]
myCfg = [32,'M',64,'M',96,'M',128,'M',256]
# myCfg = [8,'M',16,'M',32,'M',64,'M',96]
class myNet(nn.Module):
def __init__(self,cfg=None,num_classes=3):
super(myNet, self).__init__()
if cfg is None:
cfg = myCfg
self.feature = self.make_layers(cfg, True)
self.gap =nn.AdaptiveAvgPool2d((1,1))
self.classifier = nn.Linear(cfg[-1], num_classes)
# self.classifier = nn.Conv2d(cfg[-1],num_classes,kernel_size=1,stride=1)
# self.bn_c= nn.BatchNorm2d(num_classes)
# self.flatten = nn.Flatten()
def make_layers(self, cfg, batch_norm=False):
layers = []
in_channels = 3
for i in range(len(cfg)):
if i == 0:
conv2d =nn.Conv2d(in_channels, cfg[i], kernel_size=5,stride =1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = cfg[i]
else :
if cfg[i] == 'M':
layers += [nn.MaxPool2d(kernel_size=3, stride=2,ceil_mode=True)]
else:
conv2d = nn.Conv2d(in_channels, cfg[i], kernel_size=3, padding=1,stride =1)
if batch_norm:
layers += [conv2d, nn.BatchNorm2d(cfg[i]), nn.ReLU(inplace=True)]
else:
layers += [conv2d, nn.ReLU(inplace=True)]
in_channels = cfg[i]
return nn.Sequential(*layers)
def forward(self, x):
y = self.feature(x)
y = nn.AvgPool2d(kernel_size=3, stride=1)(y)
y = y.view(x.size(0), -1)
y = self.classifier(y)
# y = self.flatten(y)
return y
class myResNet18(nn.Module):
def __init__(self,num_classes=1000):
super(myResNet18,self).__init__()
model_ft = models.resnet18(pretrained=True)
self.model =model_ft
self.model.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1,ceil_mode=True)
self.model.averagePool = nn.AvgPool2d((5,5),stride=1,ceil_mode=True)
self.cls=nn.Linear(512,num_classes)
def forward(self,x):
x = self.model.conv1(x)
x = self.model.bn1(x)
x = self.model.relu(x)
x = self.model.maxpool(x)
x = self.model.layer1(x)
x = self.model.layer2(x)
x = self.model.layer3(x)
x = self.model.layer4(x)
x = self.model.averagePool(x)
x = x.view(x.size(0), -1)
x = self.cls(x)
return x
if __name__ == '__main__':
net = myNet(num_classes=2)
# infeatures = net.cls.in_features
# net.cls=nn.Linear(infeatures,2)
x = torch.FloatTensor(16, 3, 64, 64)
y = net(x)
print(y.shape)
# print(net)