mirror of
				https://github.com/bolucat/Archive.git
				synced 2025-11-01 04:13:16 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			19700 lines
		
	
	
		
			721 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			19700 lines
		
	
	
		
			721 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //
 | |
| // Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved.
 | |
| //
 | |
| // Permission is hereby granted, free of charge, to any person obtaining a copy
 | |
| // of this software and associated documentation files (the "Software"), to deal
 | |
| // in the Software without restriction, including without limitation the rights
 | |
| // to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
 | |
| // copies of the Software, and to permit persons to whom the Software is
 | |
| // furnished to do so, subject to the following conditions:
 | |
| //
 | |
| // The above copyright notice and this permission notice shall be included in
 | |
| // all copies or substantial portions of the Software.
 | |
| //
 | |
| // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
 | |
| // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
 | |
| // FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL THE
 | |
| // AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
 | |
| // LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
 | |
| // OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
 | |
| // THE SOFTWARE.
 | |
| //
 | |
| 
 | |
| #ifndef AMD_VULKAN_MEMORY_ALLOCATOR_H
 | |
| #define AMD_VULKAN_MEMORY_ALLOCATOR_H
 | |
| 
 | |
| /** \mainpage Vulkan Memory Allocator
 | |
| 
 | |
| <b>Version 3.1.0-development</b>
 | |
| 
 | |
| Copyright (c) 2017-2022 Advanced Micro Devices, Inc. All rights reserved. \n
 | |
| License: MIT
 | |
| 
 | |
| <b>API documentation divided into groups:</b> [Modules](modules.html)
 | |
| 
 | |
| \section main_table_of_contents Table of contents
 | |
| 
 | |
| - <b>User guide</b>
 | |
|   - \subpage quick_start
 | |
|     - [Project setup](@ref quick_start_project_setup)
 | |
|     - [Initialization](@ref quick_start_initialization)
 | |
|     - [Resource allocation](@ref quick_start_resource_allocation)
 | |
|   - \subpage choosing_memory_type
 | |
|     - [Usage](@ref choosing_memory_type_usage)
 | |
|     - [Required and preferred flags](@ref choosing_memory_type_required_preferred_flags)
 | |
|     - [Explicit memory types](@ref choosing_memory_type_explicit_memory_types)
 | |
|     - [Custom memory pools](@ref choosing_memory_type_custom_memory_pools)
 | |
|     - [Dedicated allocations](@ref choosing_memory_type_dedicated_allocations)
 | |
|   - \subpage memory_mapping
 | |
|     - [Mapping functions](@ref memory_mapping_mapping_functions)
 | |
|     - [Persistently mapped memory](@ref memory_mapping_persistently_mapped_memory)
 | |
|     - [Cache flush and invalidate](@ref memory_mapping_cache_control)
 | |
|   - \subpage staying_within_budget
 | |
|     - [Querying for budget](@ref staying_within_budget_querying_for_budget)
 | |
|     - [Controlling memory usage](@ref staying_within_budget_controlling_memory_usage)
 | |
|   - \subpage resource_aliasing
 | |
|   - \subpage custom_memory_pools
 | |
|     - [Choosing memory type index](@ref custom_memory_pools_MemTypeIndex)
 | |
|     - [Linear allocation algorithm](@ref linear_algorithm)
 | |
|       - [Free-at-once](@ref linear_algorithm_free_at_once)
 | |
|       - [Stack](@ref linear_algorithm_stack)
 | |
|       - [Double stack](@ref linear_algorithm_double_stack)
 | |
|       - [Ring buffer](@ref linear_algorithm_ring_buffer)
 | |
|   - \subpage defragmentation
 | |
|   - \subpage statistics
 | |
|     - [Numeric statistics](@ref statistics_numeric_statistics)
 | |
|     - [JSON dump](@ref statistics_json_dump)
 | |
|   - \subpage allocation_annotation
 | |
|     - [Allocation user data](@ref allocation_user_data)
 | |
|     - [Allocation names](@ref allocation_names)
 | |
|   - \subpage virtual_allocator
 | |
|   - \subpage debugging_memory_usage
 | |
|     - [Memory initialization](@ref debugging_memory_usage_initialization)
 | |
|     - [Margins](@ref debugging_memory_usage_margins)
 | |
|     - [Corruption detection](@ref debugging_memory_usage_corruption_detection)
 | |
|   - \subpage opengl_interop
 | |
| - \subpage usage_patterns
 | |
|     - [GPU-only resource](@ref usage_patterns_gpu_only)
 | |
|     - [Staging copy for upload](@ref usage_patterns_staging_copy_upload)
 | |
|     - [Readback](@ref usage_patterns_readback)
 | |
|     - [Advanced data uploading](@ref usage_patterns_advanced_data_uploading)
 | |
|     - [Other use cases](@ref usage_patterns_other_use_cases)
 | |
| - \subpage configuration
 | |
|   - [Pointers to Vulkan functions](@ref config_Vulkan_functions)
 | |
|   - [Custom host memory allocator](@ref custom_memory_allocator)
 | |
|   - [Device memory allocation callbacks](@ref allocation_callbacks)
 | |
|   - [Device heap memory limit](@ref heap_memory_limit)
 | |
| - <b>Extension support</b>
 | |
|     - \subpage vk_khr_dedicated_allocation
 | |
|     - \subpage enabling_buffer_device_address
 | |
|     - \subpage vk_ext_memory_priority
 | |
|     - \subpage vk_amd_device_coherent_memory
 | |
| - \subpage general_considerations
 | |
|   - [Thread safety](@ref general_considerations_thread_safety)
 | |
|   - [Versioning and compatibility](@ref general_considerations_versioning_and_compatibility)
 | |
|   - [Validation layer warnings](@ref general_considerations_validation_layer_warnings)
 | |
|   - [Allocation algorithm](@ref general_considerations_allocation_algorithm)
 | |
|   - [Features not supported](@ref general_considerations_features_not_supported)
 | |
| 
 | |
| \section main_see_also See also
 | |
| 
 | |
| - [**Product page on GPUOpen**](https://gpuopen.com/gaming-product/vulkan-memory-allocator/)
 | |
| - [**Source repository on GitHub**](https://github.com/GPUOpen-LibrariesAndSDKs/VulkanMemoryAllocator)
 | |
| 
 | |
| \defgroup group_init Library initialization
 | |
| 
 | |
| \brief API elements related to the initialization and management of the entire library, especially #VmaAllocator object.
 | |
| 
 | |
| \defgroup group_alloc Memory allocation
 | |
| 
 | |
| \brief API elements related to the allocation, deallocation, and management of Vulkan memory, buffers, images.
 | |
| Most basic ones being: vmaCreateBuffer(), vmaCreateImage().
 | |
| 
 | |
| \defgroup group_virtual Virtual allocator
 | |
| 
 | |
| \brief API elements related to the mechanism of \ref virtual_allocator - using the core allocation algorithm
 | |
| for user-defined purpose without allocating any real GPU memory.
 | |
| 
 | |
| \defgroup group_stats Statistics
 | |
| 
 | |
| \brief API elements that query current status of the allocator, from memory usage, budget, to full dump of the internal state in JSON format.
 | |
| See documentation chapter: \ref statistics.
 | |
| */
 | |
| 
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| extern "C" {
 | |
| #endif
 | |
| 
 | |
| #include <vulkan/vulkan.h>
 | |
| 
 | |
| #if !defined(VMA_VULKAN_VERSION)
 | |
|     #if defined(VK_VERSION_1_3)
 | |
|         #define VMA_VULKAN_VERSION 1003000
 | |
|     #elif defined(VK_VERSION_1_2)
 | |
|         #define VMA_VULKAN_VERSION 1002000
 | |
|     #elif defined(VK_VERSION_1_1)
 | |
|         #define VMA_VULKAN_VERSION 1001000
 | |
|     #else
 | |
|         #define VMA_VULKAN_VERSION 1000000
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if defined(__ANDROID__) && defined(VK_NO_PROTOTYPES) && VMA_STATIC_VULKAN_FUNCTIONS
 | |
|     extern PFN_vkGetInstanceProcAddr vkGetInstanceProcAddr;
 | |
|     extern PFN_vkGetDeviceProcAddr vkGetDeviceProcAddr;
 | |
|     extern PFN_vkGetPhysicalDeviceProperties vkGetPhysicalDeviceProperties;
 | |
|     extern PFN_vkGetPhysicalDeviceMemoryProperties vkGetPhysicalDeviceMemoryProperties;
 | |
|     extern PFN_vkAllocateMemory vkAllocateMemory;
 | |
|     extern PFN_vkFreeMemory vkFreeMemory;
 | |
|     extern PFN_vkMapMemory vkMapMemory;
 | |
|     extern PFN_vkUnmapMemory vkUnmapMemory;
 | |
|     extern PFN_vkFlushMappedMemoryRanges vkFlushMappedMemoryRanges;
 | |
|     extern PFN_vkInvalidateMappedMemoryRanges vkInvalidateMappedMemoryRanges;
 | |
|     extern PFN_vkBindBufferMemory vkBindBufferMemory;
 | |
|     extern PFN_vkBindImageMemory vkBindImageMemory;
 | |
|     extern PFN_vkGetBufferMemoryRequirements vkGetBufferMemoryRequirements;
 | |
|     extern PFN_vkGetImageMemoryRequirements vkGetImageMemoryRequirements;
 | |
|     extern PFN_vkCreateBuffer vkCreateBuffer;
 | |
|     extern PFN_vkDestroyBuffer vkDestroyBuffer;
 | |
|     extern PFN_vkCreateImage vkCreateImage;
 | |
|     extern PFN_vkDestroyImage vkDestroyImage;
 | |
|     extern PFN_vkCmdCopyBuffer vkCmdCopyBuffer;
 | |
|     #if VMA_VULKAN_VERSION >= 1001000
 | |
|         extern PFN_vkGetBufferMemoryRequirements2 vkGetBufferMemoryRequirements2;
 | |
|         extern PFN_vkGetImageMemoryRequirements2 vkGetImageMemoryRequirements2;
 | |
|         extern PFN_vkBindBufferMemory2 vkBindBufferMemory2;
 | |
|         extern PFN_vkBindImageMemory2 vkBindImageMemory2;
 | |
|         extern PFN_vkGetPhysicalDeviceMemoryProperties2 vkGetPhysicalDeviceMemoryProperties2;
 | |
|     #endif // #if VMA_VULKAN_VERSION >= 1001000
 | |
| #endif // #if defined(__ANDROID__) && VMA_STATIC_VULKAN_FUNCTIONS && VK_NO_PROTOTYPES
 | |
| 
 | |
| #if !defined(VMA_DEDICATED_ALLOCATION)
 | |
|     #if VK_KHR_get_memory_requirements2 && VK_KHR_dedicated_allocation
 | |
|         #define VMA_DEDICATED_ALLOCATION 1
 | |
|     #else
 | |
|         #define VMA_DEDICATED_ALLOCATION 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if !defined(VMA_BIND_MEMORY2)
 | |
|     #if VK_KHR_bind_memory2
 | |
|         #define VMA_BIND_MEMORY2 1
 | |
|     #else
 | |
|         #define VMA_BIND_MEMORY2 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #if !defined(VMA_MEMORY_BUDGET)
 | |
|     #if VK_EXT_memory_budget && (VK_KHR_get_physical_device_properties2 || VMA_VULKAN_VERSION >= 1001000)
 | |
|         #define VMA_MEMORY_BUDGET 1
 | |
|     #else
 | |
|         #define VMA_MEMORY_BUDGET 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| // Defined to 1 when VK_KHR_buffer_device_address device extension or equivalent core Vulkan 1.2 feature is defined in its headers.
 | |
| #if !defined(VMA_BUFFER_DEVICE_ADDRESS)
 | |
|     #if VK_KHR_buffer_device_address || VMA_VULKAN_VERSION >= 1002000
 | |
|         #define VMA_BUFFER_DEVICE_ADDRESS 1
 | |
|     #else
 | |
|         #define VMA_BUFFER_DEVICE_ADDRESS 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| // Defined to 1 when VK_EXT_memory_priority device extension is defined in Vulkan headers.
 | |
| #if !defined(VMA_MEMORY_PRIORITY)
 | |
|     #if VK_EXT_memory_priority
 | |
|         #define VMA_MEMORY_PRIORITY 1
 | |
|     #else
 | |
|         #define VMA_MEMORY_PRIORITY 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| // Defined to 1 when VK_KHR_external_memory device extension is defined in Vulkan headers.
 | |
| #if !defined(VMA_EXTERNAL_MEMORY)
 | |
|     #if VK_KHR_external_memory
 | |
|         #define VMA_EXTERNAL_MEMORY 1
 | |
|     #else
 | |
|         #define VMA_EXTERNAL_MEMORY 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| // Define these macros to decorate all public functions with additional code,
 | |
| // before and after returned type, appropriately. This may be useful for
 | |
| // exporting the functions when compiling VMA as a separate library. Example:
 | |
| // #define VMA_CALL_PRE  __declspec(dllexport)
 | |
| // #define VMA_CALL_POST __cdecl
 | |
| #ifndef VMA_CALL_PRE
 | |
|     #define VMA_CALL_PRE
 | |
| #endif
 | |
| #ifndef VMA_CALL_POST
 | |
|     #define VMA_CALL_POST
 | |
| #endif
 | |
| 
 | |
| // Define this macro to decorate pNext pointers with an attribute specifying the Vulkan
 | |
| // structure that will be extended via the pNext chain.
 | |
| #ifndef VMA_EXTENDS_VK_STRUCT
 | |
|     #define VMA_EXTENDS_VK_STRUCT(vkStruct)
 | |
| #endif
 | |
| 
 | |
| // Define this macro to decorate pointers with an attribute specifying the
 | |
| // length of the array they point to if they are not null.
 | |
| //
 | |
| // The length may be one of
 | |
| // - The name of another parameter in the argument list where the pointer is declared
 | |
| // - The name of another member in the struct where the pointer is declared
 | |
| // - The name of a member of a struct type, meaning the value of that member in
 | |
| //   the context of the call. For example
 | |
| //   VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount"),
 | |
| //   this means the number of memory heaps available in the device associated
 | |
| //   with the VmaAllocator being dealt with.
 | |
| #ifndef VMA_LEN_IF_NOT_NULL
 | |
|     #define VMA_LEN_IF_NOT_NULL(len)
 | |
| #endif
 | |
| 
 | |
| // The VMA_NULLABLE macro is defined to be _Nullable when compiling with Clang.
 | |
| // see: https://clang.llvm.org/docs/AttributeReference.html#nullable
 | |
| #ifndef VMA_NULLABLE
 | |
|     #ifdef __clang__
 | |
|         #define VMA_NULLABLE _Nullable
 | |
|     #else
 | |
|         #define VMA_NULLABLE
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| // The VMA_NOT_NULL macro is defined to be _Nonnull when compiling with Clang.
 | |
| // see: https://clang.llvm.org/docs/AttributeReference.html#nonnull
 | |
| #ifndef VMA_NOT_NULL
 | |
|     #ifdef __clang__
 | |
|         #define VMA_NOT_NULL _Nonnull
 | |
|     #else
 | |
|         #define VMA_NOT_NULL
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| // If non-dispatchable handles are represented as pointers then we can give
 | |
| // then nullability annotations
 | |
| #ifndef VMA_NOT_NULL_NON_DISPATCHABLE
 | |
|     #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
 | |
|         #define VMA_NOT_NULL_NON_DISPATCHABLE VMA_NOT_NULL
 | |
|     #else
 | |
|         #define VMA_NOT_NULL_NON_DISPATCHABLE
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_NULLABLE_NON_DISPATCHABLE
 | |
|     #if defined(__LP64__) || defined(_WIN64) || (defined(__x86_64__) && !defined(__ILP32__) ) || defined(_M_X64) || defined(__ia64) || defined (_M_IA64) || defined(__aarch64__) || defined(__powerpc64__)
 | |
|         #define VMA_NULLABLE_NON_DISPATCHABLE VMA_NULLABLE
 | |
|     #else
 | |
|         #define VMA_NULLABLE_NON_DISPATCHABLE
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_STATS_STRING_ENABLED
 | |
|     #define VMA_STATS_STRING_ENABLED 1
 | |
| #endif
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //    INTERFACE
 | |
| //
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // Sections for managing code placement in file, only for development purposes e.g. for convenient folding inside an IDE.
 | |
| #ifndef _VMA_ENUM_DECLARATIONS
 | |
| 
 | |
| /**
 | |
| \addtogroup group_init
 | |
| @{
 | |
| */
 | |
| 
 | |
| /// Flags for created #VmaAllocator.
 | |
| typedef enum VmaAllocatorCreateFlagBits
 | |
| {
 | |
|     /** \brief Allocator and all objects created from it will not be synchronized internally, so you must guarantee they are used from only one thread at a time or synchronized externally by you.
 | |
| 
 | |
|     Using this flag may increase performance because internal mutexes are not used.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT = 0x00000001,
 | |
|     /** \brief Enables usage of VK_KHR_dedicated_allocation extension.
 | |
| 
 | |
|     The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
 | |
|     When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
 | |
| 
 | |
|     Using this extension will automatically allocate dedicated blocks of memory for
 | |
|     some buffers and images instead of suballocating place for them out of bigger
 | |
|     memory blocks (as if you explicitly used #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT
 | |
|     flag) when it is recommended by the driver. It may improve performance on some
 | |
|     GPUs.
 | |
| 
 | |
|     You may set this flag only if you found out that following device extensions are
 | |
|     supported, you enabled them while creating Vulkan device passed as
 | |
|     VmaAllocatorCreateInfo::device, and you want them to be used internally by this
 | |
|     library:
 | |
| 
 | |
|     - VK_KHR_get_memory_requirements2 (device extension)
 | |
|     - VK_KHR_dedicated_allocation (device extension)
 | |
| 
 | |
|     When this flag is set, you can experience following warnings reported by Vulkan
 | |
|     validation layer. You can ignore them.
 | |
| 
 | |
|     > vkBindBufferMemory(): Binding memory to buffer 0x2d but vkGetBufferMemoryRequirements() has not been called on that buffer.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT = 0x00000002,
 | |
|     /**
 | |
|     Enables usage of VK_KHR_bind_memory2 extension.
 | |
| 
 | |
|     The flag works only if VmaAllocatorCreateInfo::vulkanApiVersion `== VK_API_VERSION_1_0`.
 | |
|     When it is `VK_API_VERSION_1_1`, the flag is ignored because the extension has been promoted to Vulkan 1.1.
 | |
| 
 | |
|     You may set this flag only if you found out that this device extension is supported,
 | |
|     you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
 | |
|     and you want it to be used internally by this library.
 | |
| 
 | |
|     The extension provides functions `vkBindBufferMemory2KHR` and `vkBindImageMemory2KHR`,
 | |
|     which allow to pass a chain of `pNext` structures while binding.
 | |
|     This flag is required if you use `pNext` parameter in vmaBindBufferMemory2() or vmaBindImageMemory2().
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT = 0x00000004,
 | |
|     /**
 | |
|     Enables usage of VK_EXT_memory_budget extension.
 | |
| 
 | |
|     You may set this flag only if you found out that this device extension is supported,
 | |
|     you enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
 | |
|     and you want it to be used internally by this library, along with another instance extension
 | |
|     VK_KHR_get_physical_device_properties2, which is required by it (or Vulkan 1.1, where this extension is promoted).
 | |
| 
 | |
|     The extension provides query for current memory usage and budget, which will probably
 | |
|     be more accurate than an estimation used by the library otherwise.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT = 0x00000008,
 | |
|     /**
 | |
|     Enables usage of VK_AMD_device_coherent_memory extension.
 | |
| 
 | |
|     You may set this flag only if you:
 | |
| 
 | |
|     - found out that this device extension is supported and enabled it while creating Vulkan device passed as VmaAllocatorCreateInfo::device,
 | |
|     - checked that `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true and set it while creating the Vulkan device,
 | |
|     - want it to be used internally by this library.
 | |
| 
 | |
|     The extension and accompanying device feature provide access to memory types with
 | |
|     `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flags.
 | |
|     They are useful mostly for writing breadcrumb markers - a common method for debugging GPU crash/hang/TDR.
 | |
| 
 | |
|     When the extension is not enabled, such memory types are still enumerated, but their usage is illegal.
 | |
|     To protect from this error, if you don't create the allocator with this flag, it will refuse to allocate any memory or create a custom pool in such memory type,
 | |
|     returning `VK_ERROR_FEATURE_NOT_PRESENT`.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT = 0x00000010,
 | |
|     /**
 | |
|     Enables usage of "buffer device address" feature, which allows you to use function
 | |
|     `vkGetBufferDeviceAddress*` to get raw GPU pointer to a buffer and pass it for usage inside a shader.
 | |
| 
 | |
|     You may set this flag only if you:
 | |
| 
 | |
|     1. (For Vulkan version < 1.2) Found as available and enabled device extension
 | |
|     VK_KHR_buffer_device_address.
 | |
|     This extension is promoted to core Vulkan 1.2.
 | |
|     2. Found as available and enabled device feature `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress`.
 | |
| 
 | |
|     When this flag is set, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT` using VMA.
 | |
|     The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT` to
 | |
|     allocated memory blocks wherever it might be needed.
 | |
| 
 | |
|     For more information, see documentation chapter \ref enabling_buffer_device_address.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT = 0x00000020,
 | |
|     /**
 | |
|     Enables usage of VK_EXT_memory_priority extension in the library.
 | |
| 
 | |
|     You may set this flag only if you found available and enabled this device extension,
 | |
|     along with `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority == VK_TRUE`,
 | |
|     while creating Vulkan device passed as VmaAllocatorCreateInfo::device.
 | |
| 
 | |
|     When this flag is used, VmaAllocationCreateInfo::priority and VmaPoolCreateInfo::priority
 | |
|     are used to set priorities of allocated Vulkan memory. Without it, these variables are ignored.
 | |
| 
 | |
|     A priority must be a floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
 | |
|     Larger values are higher priority. The granularity of the priorities is implementation-dependent.
 | |
|     It is automatically passed to every call to `vkAllocateMemory` done by the library using structure `VkMemoryPriorityAllocateInfoEXT`.
 | |
|     The value to be used for default priority is 0.5.
 | |
|     For more details, see the documentation of the VK_EXT_memory_priority extension.
 | |
|     */
 | |
|     VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT = 0x00000040,
 | |
| 
 | |
|     VMA_ALLOCATOR_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaAllocatorCreateFlagBits;
 | |
| /// See #VmaAllocatorCreateFlagBits.
 | |
| typedef VkFlags VmaAllocatorCreateFlags;
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_alloc
 | |
| @{
 | |
| */
 | |
| 
 | |
| /// \brief Intended usage of the allocated memory.
 | |
| typedef enum VmaMemoryUsage
 | |
| {
 | |
|     /** No intended memory usage specified.
 | |
|     Use other members of VmaAllocationCreateInfo to specify your requirements.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_UNKNOWN = 0,
 | |
|     /**
 | |
|     \deprecated Obsolete, preserved for backward compatibility.
 | |
|     Prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_GPU_ONLY = 1,
 | |
|     /**
 | |
|     \deprecated Obsolete, preserved for backward compatibility.
 | |
|     Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` and `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT`.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_CPU_ONLY = 2,
 | |
|     /**
 | |
|     \deprecated Obsolete, preserved for backward compatibility.
 | |
|     Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_CPU_TO_GPU = 3,
 | |
|     /**
 | |
|     \deprecated Obsolete, preserved for backward compatibility.
 | |
|     Guarantees `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`, prefers `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_GPU_TO_CPU = 4,
 | |
|     /**
 | |
|     \deprecated Obsolete, preserved for backward compatibility.
 | |
|     Prefers not `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_CPU_COPY = 5,
 | |
|     /**
 | |
|     Lazily allocated GPU memory having `VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT`.
 | |
|     Exists mostly on mobile platforms. Using it on desktop PC or other GPUs with no such memory type present will fail the allocation.
 | |
| 
 | |
|     Usage: Memory for transient attachment images (color attachments, depth attachments etc.), created with `VK_IMAGE_USAGE_TRANSIENT_ATTACHMENT_BIT`.
 | |
| 
 | |
|     Allocations with this usage are always created as dedicated - it implies #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED = 6,
 | |
|     /**
 | |
|     Selects best memory type automatically.
 | |
|     This flag is recommended for most common use cases.
 | |
| 
 | |
|     When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
 | |
|     you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | |
|     in VmaAllocationCreateInfo::flags.
 | |
| 
 | |
|     It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
 | |
|     vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
 | |
|     and not with generic memory allocation functions.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_AUTO = 7,
 | |
|     /**
 | |
|     Selects best memory type automatically with preference for GPU (device) memory.
 | |
| 
 | |
|     When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
 | |
|     you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | |
|     in VmaAllocationCreateInfo::flags.
 | |
| 
 | |
|     It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
 | |
|     vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
 | |
|     and not with generic memory allocation functions.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE = 8,
 | |
|     /**
 | |
|     Selects best memory type automatically with preference for CPU (host) memory.
 | |
| 
 | |
|     When using this flag, if you want to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT),
 | |
|     you must pass one of the flags: #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | |
|     in VmaAllocationCreateInfo::flags.
 | |
| 
 | |
|     It can be used only with functions that let the library know `VkBufferCreateInfo` or `VkImageCreateInfo`, e.g.
 | |
|     vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo()
 | |
|     and not with generic memory allocation functions.
 | |
|     */
 | |
|     VMA_MEMORY_USAGE_AUTO_PREFER_HOST = 9,
 | |
| 
 | |
|     VMA_MEMORY_USAGE_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaMemoryUsage;
 | |
| 
 | |
| /// Flags to be passed as VmaAllocationCreateInfo::flags.
 | |
| typedef enum VmaAllocationCreateFlagBits
 | |
| {
 | |
|     /** \brief Set this flag if the allocation should have its own memory block.
 | |
| 
 | |
|     Use it for special, big resources, like fullscreen images used as attachments.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT = 0x00000001,
 | |
| 
 | |
|     /** \brief Set this flag to only try to allocate from existing `VkDeviceMemory` blocks and never create new such block.
 | |
| 
 | |
|     If new allocation cannot be placed in any of the existing blocks, allocation
 | |
|     fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
 | |
| 
 | |
|     You should not use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT and
 | |
|     #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT at the same time. It makes no sense.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT = 0x00000002,
 | |
|     /** \brief Set this flag to use a memory that will be persistently mapped and retrieve pointer to it.
 | |
| 
 | |
|     Pointer to mapped memory will be returned through VmaAllocationInfo::pMappedData.
 | |
| 
 | |
|     It is valid to use this flag for allocation made from memory type that is not
 | |
|     `HOST_VISIBLE`. This flag is then ignored and memory is not mapped. This is
 | |
|     useful if you need an allocation that is efficient to use on GPU
 | |
|     (`DEVICE_LOCAL`) and still want to map it directly if possible on platforms that
 | |
|     support it (e.g. Intel GPU).
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_MAPPED_BIT = 0x00000004,
 | |
|     /** \deprecated Preserved for backward compatibility. Consider using vmaSetAllocationName() instead.
 | |
| 
 | |
|     Set this flag to treat VmaAllocationCreateInfo::pUserData as pointer to a
 | |
|     null-terminated string. Instead of copying pointer value, a local copy of the
 | |
|     string is made and stored in allocation's `pName`. The string is automatically
 | |
|     freed together with the allocation. It is also used in vmaBuildStatsString().
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT = 0x00000020,
 | |
|     /** Allocation will be created from upper stack in a double stack pool.
 | |
| 
 | |
|     This flag is only allowed for custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT flag.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = 0x00000040,
 | |
|     /** Create both buffer/image and allocation, but don't bind them together.
 | |
|     It is useful when you want to bind yourself to do some more advanced binding, e.g. using some extensions.
 | |
|     The flag is meaningful only with functions that bind by default: vmaCreateBuffer(), vmaCreateImage().
 | |
|     Otherwise it is ignored.
 | |
| 
 | |
|     If you want to make sure the new buffer/image is not tied to the new memory allocation
 | |
|     through `VkMemoryDedicatedAllocateInfoKHR` structure in case the allocation ends up in its own memory block,
 | |
|     use also flag #VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_DONT_BIND_BIT = 0x00000080,
 | |
|     /** Create allocation only if additional device memory required for it, if any, won't exceed
 | |
|     memory budget. Otherwise return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT = 0x00000100,
 | |
|     /** \brief Set this flag if the allocated memory will have aliasing resources.
 | |
| 
 | |
|     Usage of this flag prevents supplying `VkMemoryDedicatedAllocateInfoKHR` when #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT is specified.
 | |
|     Otherwise created dedicated memory will not be suitable for aliasing resources, resulting in Vulkan Validation Layer errors.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT = 0x00000200,
 | |
|     /**
 | |
|     Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
 | |
| 
 | |
|     - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
 | |
|       you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
 | |
|     - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
 | |
|       This includes allocations created in \ref custom_memory_pools.
 | |
| 
 | |
|     Declares that mapped memory will only be written sequentially, e.g. using `memcpy()` or a loop writing number-by-number,
 | |
|     never read or accessed randomly, so a memory type can be selected that is uncached and write-combined.
 | |
| 
 | |
|     \warning Violating this declaration may work correctly, but will likely be very slow.
 | |
|     Watch out for implicit reads introduced by doing e.g. `pMappedData[i] += x;`
 | |
|     Better prepare your data in a local variable and `memcpy()` it to the mapped pointer all at once.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT = 0x00000400,
 | |
|     /**
 | |
|     Requests possibility to map the allocation (using vmaMapMemory() or #VMA_ALLOCATION_CREATE_MAPPED_BIT).
 | |
| 
 | |
|     - If you use #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` value,
 | |
|       you must use this flag to be able to map the allocation. Otherwise, mapping is incorrect.
 | |
|     - If you use other value of #VmaMemoryUsage, this flag is ignored and mapping is always possible in memory types that are `HOST_VISIBLE`.
 | |
|       This includes allocations created in \ref custom_memory_pools.
 | |
| 
 | |
|     Declares that mapped memory can be read, written, and accessed in random order,
 | |
|     so a `HOST_CACHED` memory type is required.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT = 0x00000800,
 | |
|     /**
 | |
|     Together with #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT,
 | |
|     it says that despite request for host access, a not-`HOST_VISIBLE` memory type can be selected
 | |
|     if it may improve performance.
 | |
| 
 | |
|     By using this flag, you declare that you will check if the allocation ended up in a `HOST_VISIBLE` memory type
 | |
|     (e.g. using vmaGetAllocationMemoryProperties()) and if not, you will create some "staging" buffer and
 | |
|     issue an explicit transfer to write/read your data.
 | |
|     To prepare for this possibility, don't forget to add appropriate flags like
 | |
|     `VK_BUFFER_USAGE_TRANSFER_DST_BIT`, `VK_BUFFER_USAGE_TRANSFER_SRC_BIT` to the parameters of created buffer or image.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT = 0x00001000,
 | |
|     /** Allocation strategy that chooses smallest possible free range for the allocation
 | |
|     to minimize memory usage and fragmentation, possibly at the expense of allocation time.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = 0x00010000,
 | |
|     /** Allocation strategy that chooses first suitable free range for the allocation -
 | |
|     not necessarily in terms of the smallest offset but the one that is easiest and fastest to find
 | |
|     to minimize allocation time, possibly at the expense of allocation quality.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = 0x00020000,
 | |
|     /** Allocation strategy that chooses always the lowest offset in available space.
 | |
|     This is not the most efficient strategy but achieves highly packed data.
 | |
|     Used internally by defragmentation, not recommended in typical usage.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT  = 0x00040000,
 | |
|     /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_BEST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
 | |
|     /** Alias to #VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_FIRST_FIT_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
 | |
|     /** A bit mask to extract only `STRATEGY` bits from entire set of flags.
 | |
|     */
 | |
|     VMA_ALLOCATION_CREATE_STRATEGY_MASK =
 | |
|         VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT |
 | |
|         VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT |
 | |
|         VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | |
| 
 | |
|     VMA_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaAllocationCreateFlagBits;
 | |
| /// See #VmaAllocationCreateFlagBits.
 | |
| typedef VkFlags VmaAllocationCreateFlags;
 | |
| 
 | |
| /// Flags to be passed as VmaPoolCreateInfo::flags.
 | |
| typedef enum VmaPoolCreateFlagBits
 | |
| {
 | |
|     /** \brief Use this flag if you always allocate only buffers and linear images or only optimal images out of this pool and so Buffer-Image Granularity can be ignored.
 | |
| 
 | |
|     This is an optional optimization flag.
 | |
| 
 | |
|     If you always allocate using vmaCreateBuffer(), vmaCreateImage(),
 | |
|     vmaAllocateMemoryForBuffer(), then you don't need to use it because allocator
 | |
|     knows exact type of your allocations so it can handle Buffer-Image Granularity
 | |
|     in the optimal way.
 | |
| 
 | |
|     If you also allocate using vmaAllocateMemoryForImage() or vmaAllocateMemory(),
 | |
|     exact type of such allocations is not known, so allocator must be conservative
 | |
|     in handling Buffer-Image Granularity, which can lead to suboptimal allocation
 | |
|     (wasted memory). In that case, if you can make sure you always allocate only
 | |
|     buffers and linear images or only optimal images out of this pool, use this flag
 | |
|     to make allocator disregard Buffer-Image Granularity and so make allocations
 | |
|     faster and more optimal.
 | |
|     */
 | |
|     VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT = 0x00000002,
 | |
| 
 | |
|     /** \brief Enables alternative, linear allocation algorithm in this pool.
 | |
| 
 | |
|     Specify this flag to enable linear allocation algorithm, which always creates
 | |
|     new allocations after last one and doesn't reuse space from allocations freed in
 | |
|     between. It trades memory consumption for simplified algorithm and data
 | |
|     structure, which has better performance and uses less memory for metadata.
 | |
| 
 | |
|     By using this flag, you can achieve behavior of free-at-once, stack,
 | |
|     ring buffer, and double stack.
 | |
|     For details, see documentation chapter \ref linear_algorithm.
 | |
|     */
 | |
|     VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT = 0x00000004,
 | |
| 
 | |
|     /** Bit mask to extract only `ALGORITHM` bits from entire set of flags.
 | |
|     */
 | |
|     VMA_POOL_CREATE_ALGORITHM_MASK =
 | |
|         VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT,
 | |
| 
 | |
|     VMA_POOL_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaPoolCreateFlagBits;
 | |
| /// Flags to be passed as VmaPoolCreateInfo::flags. See #VmaPoolCreateFlagBits.
 | |
| typedef VkFlags VmaPoolCreateFlags;
 | |
| 
 | |
| /// Flags to be passed as VmaDefragmentationInfo::flags.
 | |
| typedef enum VmaDefragmentationFlagBits
 | |
| {
 | |
|     /* \brief Use simple but fast algorithm for defragmentation.
 | |
|     May not achieve best results but will require least time to compute and least allocations to copy.
 | |
|     */
 | |
|     VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT = 0x1,
 | |
|     /* \brief Default defragmentation algorithm, applied also when no `ALGORITHM` flag is specified.
 | |
|     Offers a balance between defragmentation quality and the amount of allocations and bytes that need to be moved.
 | |
|     */
 | |
|     VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT = 0x2,
 | |
|     /* \brief Perform full defragmentation of memory.
 | |
|     Can result in notably more time to compute and allocations to copy, but will achieve best memory packing.
 | |
|     */
 | |
|     VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT = 0x4,
 | |
|     /** \brief Use the most roboust algorithm at the cost of time to compute and number of copies to make.
 | |
|     Only available when bufferImageGranularity is greater than 1, since it aims to reduce
 | |
|     alignment issues between different types of resources.
 | |
|     Otherwise falls back to same behavior as #VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT.
 | |
|     */
 | |
|     VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT = 0x8,
 | |
| 
 | |
|     /// A bit mask to extract only `ALGORITHM` bits from entire set of flags.
 | |
|     VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK =
 | |
|         VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT |
 | |
|         VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT |
 | |
|         VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT |
 | |
|         VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT,
 | |
| 
 | |
|     VMA_DEFRAGMENTATION_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaDefragmentationFlagBits;
 | |
| /// See #VmaDefragmentationFlagBits.
 | |
| typedef VkFlags VmaDefragmentationFlags;
 | |
| 
 | |
| /// Operation performed on single defragmentation move. See structure #VmaDefragmentationMove.
 | |
| typedef enum VmaDefragmentationMoveOperation
 | |
| {
 | |
|     /// Buffer/image has been recreated at `dstTmpAllocation`, data has been copied, old buffer/image has been destroyed. `srcAllocation` should be changed to point to the new place. This is the default value set by vmaBeginDefragmentationPass().
 | |
|     VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY = 0,
 | |
|     /// Set this value if you cannot move the allocation. New place reserved at `dstTmpAllocation` will be freed. `srcAllocation` will remain unchanged.
 | |
|     VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE = 1,
 | |
|     /// Set this value if you decide to abandon the allocation and you destroyed the buffer/image. New place reserved at `dstTmpAllocation` will be freed, along with `srcAllocation`, which will be destroyed.
 | |
|     VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY = 2,
 | |
| } VmaDefragmentationMoveOperation;
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_virtual
 | |
| @{
 | |
| */
 | |
| 
 | |
| /// Flags to be passed as VmaVirtualBlockCreateInfo::flags.
 | |
| typedef enum VmaVirtualBlockCreateFlagBits
 | |
| {
 | |
|     /** \brief Enables alternative, linear allocation algorithm in this virtual block.
 | |
| 
 | |
|     Specify this flag to enable linear allocation algorithm, which always creates
 | |
|     new allocations after last one and doesn't reuse space from allocations freed in
 | |
|     between. It trades memory consumption for simplified algorithm and data
 | |
|     structure, which has better performance and uses less memory for metadata.
 | |
| 
 | |
|     By using this flag, you can achieve behavior of free-at-once, stack,
 | |
|     ring buffer, and double stack.
 | |
|     For details, see documentation chapter \ref linear_algorithm.
 | |
|     */
 | |
|     VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT = 0x00000001,
 | |
| 
 | |
|     /** \brief Bit mask to extract only `ALGORITHM` bits from entire set of flags.
 | |
|     */
 | |
|     VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK =
 | |
|         VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT,
 | |
| 
 | |
|     VMA_VIRTUAL_BLOCK_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaVirtualBlockCreateFlagBits;
 | |
| /// Flags to be passed as VmaVirtualBlockCreateInfo::flags. See #VmaVirtualBlockCreateFlagBits.
 | |
| typedef VkFlags VmaVirtualBlockCreateFlags;
 | |
| 
 | |
| /// Flags to be passed as VmaVirtualAllocationCreateInfo::flags.
 | |
| typedef enum VmaVirtualAllocationCreateFlagBits
 | |
| {
 | |
|     /** \brief Allocation will be created from upper stack in a double stack pool.
 | |
| 
 | |
|     This flag is only allowed for virtual blocks created with #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT flag.
 | |
|     */
 | |
|     VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT = VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT,
 | |
|     /** \brief Allocation strategy that tries to minimize memory usage.
 | |
|     */
 | |
|     VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT,
 | |
|     /** \brief Allocation strategy that tries to minimize allocation time.
 | |
|     */
 | |
|     VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT,
 | |
|     /** Allocation strategy that chooses always the lowest offset in available space.
 | |
|     This is not the most efficient strategy but achieves highly packed data.
 | |
|     */
 | |
|     VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT = VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | |
|     /** \brief A bit mask to extract only `STRATEGY` bits from entire set of flags.
 | |
| 
 | |
|     These strategy flags are binary compatible with equivalent flags in #VmaAllocationCreateFlagBits.
 | |
|     */
 | |
|     VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK = VMA_ALLOCATION_CREATE_STRATEGY_MASK,
 | |
| 
 | |
|     VMA_VIRTUAL_ALLOCATION_CREATE_FLAG_BITS_MAX_ENUM = 0x7FFFFFFF
 | |
| } VmaVirtualAllocationCreateFlagBits;
 | |
| /// Flags to be passed as VmaVirtualAllocationCreateInfo::flags. See #VmaVirtualAllocationCreateFlagBits.
 | |
| typedef VkFlags VmaVirtualAllocationCreateFlags;
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| #endif // _VMA_ENUM_DECLARATIONS
 | |
| 
 | |
| #ifndef _VMA_DATA_TYPES_DECLARATIONS
 | |
| 
 | |
| /**
 | |
| \addtogroup group_init
 | |
| @{ */
 | |
| 
 | |
| /** \struct VmaAllocator
 | |
| \brief Represents main object of this library initialized.
 | |
| 
 | |
| Fill structure #VmaAllocatorCreateInfo and call function vmaCreateAllocator() to create it.
 | |
| Call function vmaDestroyAllocator() to destroy it.
 | |
| 
 | |
| It is recommended to create just one object of this type per `VkDevice` object,
 | |
| right after Vulkan is initialized and keep it alive until before Vulkan device is destroyed.
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaAllocator)
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_alloc
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \struct VmaPool
 | |
| \brief Represents custom memory pool
 | |
| 
 | |
| Fill structure VmaPoolCreateInfo and call function vmaCreatePool() to create it.
 | |
| Call function vmaDestroyPool() to destroy it.
 | |
| 
 | |
| For more information see [Custom memory pools](@ref choosing_memory_type_custom_memory_pools).
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaPool)
 | |
| 
 | |
| /** \struct VmaAllocation
 | |
| \brief Represents single memory allocation.
 | |
| 
 | |
| It may be either dedicated block of `VkDeviceMemory` or a specific region of a bigger block of this type
 | |
| plus unique offset.
 | |
| 
 | |
| There are multiple ways to create such object.
 | |
| You need to fill structure VmaAllocationCreateInfo.
 | |
| For more information see [Choosing memory type](@ref choosing_memory_type).
 | |
| 
 | |
| Although the library provides convenience functions that create Vulkan buffer or image,
 | |
| allocate memory for it and bind them together,
 | |
| binding of the allocation to a buffer or an image is out of scope of the allocation itself.
 | |
| Allocation object can exist without buffer/image bound,
 | |
| binding can be done manually by the user, and destruction of it can be done
 | |
| independently of destruction of the allocation.
 | |
| 
 | |
| The object also remembers its size and some other information.
 | |
| To retrieve this information, use function vmaGetAllocationInfo() and inspect
 | |
| returned structure VmaAllocationInfo.
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaAllocation)
 | |
| 
 | |
| /** \struct VmaDefragmentationContext
 | |
| \brief An opaque object that represents started defragmentation process.
 | |
| 
 | |
| Fill structure #VmaDefragmentationInfo and call function vmaBeginDefragmentation() to create it.
 | |
| Call function vmaEndDefragmentation() to destroy it.
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaDefragmentationContext)
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_virtual
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \struct VmaVirtualAllocation
 | |
| \brief Represents single memory allocation done inside VmaVirtualBlock.
 | |
| 
 | |
| Use it as a unique identifier to virtual allocation within the single block.
 | |
| 
 | |
| Use value `VK_NULL_HANDLE` to represent a null/invalid allocation.
 | |
| */
 | |
| VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaVirtualAllocation)
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_virtual
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \struct VmaVirtualBlock
 | |
| \brief Handle to a virtual block object that allows to use core allocation algorithm without allocating any real GPU memory.
 | |
| 
 | |
| Fill in #VmaVirtualBlockCreateInfo structure and use vmaCreateVirtualBlock() to create it. Use vmaDestroyVirtualBlock() to destroy it.
 | |
| For more information, see documentation chapter \ref virtual_allocator.
 | |
| 
 | |
| This object is not thread-safe - should not be used from multiple threads simultaneously, must be synchronized externally.
 | |
| */
 | |
| VK_DEFINE_HANDLE(VmaVirtualBlock)
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_init
 | |
| @{
 | |
| */
 | |
| 
 | |
| /// Callback function called after successful vkAllocateMemory.
 | |
| typedef void (VKAPI_PTR* PFN_vmaAllocateDeviceMemoryFunction)(
 | |
|     VmaAllocator VMA_NOT_NULL                    allocator,
 | |
|     uint32_t                                     memoryType,
 | |
|     VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
 | |
|     VkDeviceSize                                 size,
 | |
|     void* VMA_NULLABLE                           pUserData);
 | |
| 
 | |
| /// Callback function called before vkFreeMemory.
 | |
| typedef void (VKAPI_PTR* PFN_vmaFreeDeviceMemoryFunction)(
 | |
|     VmaAllocator VMA_NOT_NULL                    allocator,
 | |
|     uint32_t                                     memoryType,
 | |
|     VkDeviceMemory VMA_NOT_NULL_NON_DISPATCHABLE memory,
 | |
|     VkDeviceSize                                 size,
 | |
|     void* VMA_NULLABLE                           pUserData);
 | |
| 
 | |
| /** \brief Set of callbacks that the library will call for `vkAllocateMemory` and `vkFreeMemory`.
 | |
| 
 | |
| Provided for informative purpose, e.g. to gather statistics about number of
 | |
| allocations or total amount of memory allocated in Vulkan.
 | |
| 
 | |
| Used in VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
 | |
| */
 | |
| typedef struct VmaDeviceMemoryCallbacks
 | |
| {
 | |
|     /// Optional, can be null.
 | |
|     PFN_vmaAllocateDeviceMemoryFunction VMA_NULLABLE pfnAllocate;
 | |
|     /// Optional, can be null.
 | |
|     PFN_vmaFreeDeviceMemoryFunction VMA_NULLABLE pfnFree;
 | |
|     /// Optional, can be null.
 | |
|     void* VMA_NULLABLE pUserData;
 | |
| } VmaDeviceMemoryCallbacks;
 | |
| 
 | |
| /** \brief Pointers to some Vulkan functions - a subset used by the library.
 | |
| 
 | |
| Used in VmaAllocatorCreateInfo::pVulkanFunctions.
 | |
| */
 | |
| typedef struct VmaVulkanFunctions
 | |
| {
 | |
|     /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
 | |
|     PFN_vkGetInstanceProcAddr VMA_NULLABLE vkGetInstanceProcAddr;
 | |
|     /// Required when using VMA_DYNAMIC_VULKAN_FUNCTIONS.
 | |
|     PFN_vkGetDeviceProcAddr VMA_NULLABLE vkGetDeviceProcAddr;
 | |
|     PFN_vkGetPhysicalDeviceProperties VMA_NULLABLE vkGetPhysicalDeviceProperties;
 | |
|     PFN_vkGetPhysicalDeviceMemoryProperties VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties;
 | |
|     PFN_vkAllocateMemory VMA_NULLABLE vkAllocateMemory;
 | |
|     PFN_vkFreeMemory VMA_NULLABLE vkFreeMemory;
 | |
|     PFN_vkMapMemory VMA_NULLABLE vkMapMemory;
 | |
|     PFN_vkUnmapMemory VMA_NULLABLE vkUnmapMemory;
 | |
|     PFN_vkFlushMappedMemoryRanges VMA_NULLABLE vkFlushMappedMemoryRanges;
 | |
|     PFN_vkInvalidateMappedMemoryRanges VMA_NULLABLE vkInvalidateMappedMemoryRanges;
 | |
|     PFN_vkBindBufferMemory VMA_NULLABLE vkBindBufferMemory;
 | |
|     PFN_vkBindImageMemory VMA_NULLABLE vkBindImageMemory;
 | |
|     PFN_vkGetBufferMemoryRequirements VMA_NULLABLE vkGetBufferMemoryRequirements;
 | |
|     PFN_vkGetImageMemoryRequirements VMA_NULLABLE vkGetImageMemoryRequirements;
 | |
|     PFN_vkCreateBuffer VMA_NULLABLE vkCreateBuffer;
 | |
|     PFN_vkDestroyBuffer VMA_NULLABLE vkDestroyBuffer;
 | |
|     PFN_vkCreateImage VMA_NULLABLE vkCreateImage;
 | |
|     PFN_vkDestroyImage VMA_NULLABLE vkDestroyImage;
 | |
|     PFN_vkCmdCopyBuffer VMA_NULLABLE vkCmdCopyBuffer;
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     /// Fetch "vkGetBufferMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetBufferMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
 | |
|     PFN_vkGetBufferMemoryRequirements2KHR VMA_NULLABLE vkGetBufferMemoryRequirements2KHR;
 | |
|     /// Fetch "vkGetImageMemoryRequirements2" on Vulkan >= 1.1, fetch "vkGetImageMemoryRequirements2KHR" when using VK_KHR_dedicated_allocation extension.
 | |
|     PFN_vkGetImageMemoryRequirements2KHR VMA_NULLABLE vkGetImageMemoryRequirements2KHR;
 | |
| #endif
 | |
| #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | |
|     /// Fetch "vkBindBufferMemory2" on Vulkan >= 1.1, fetch "vkBindBufferMemory2KHR" when using VK_KHR_bind_memory2 extension.
 | |
|     PFN_vkBindBufferMemory2KHR VMA_NULLABLE vkBindBufferMemory2KHR;
 | |
|     /// Fetch "vkBindImageMemory2" on Vulkan >= 1.1, fetch "vkBindImageMemory2KHR" when using VK_KHR_bind_memory2 extension.
 | |
|     PFN_vkBindImageMemory2KHR VMA_NULLABLE vkBindImageMemory2KHR;
 | |
| #endif
 | |
| #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | |
|     PFN_vkGetPhysicalDeviceMemoryProperties2KHR VMA_NULLABLE vkGetPhysicalDeviceMemoryProperties2KHR;
 | |
| #endif
 | |
| #if VMA_VULKAN_VERSION >= 1003000
 | |
|     /// Fetch from "vkGetDeviceBufferMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceBufferMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
 | |
|     PFN_vkGetDeviceBufferMemoryRequirements VMA_NULLABLE vkGetDeviceBufferMemoryRequirements;
 | |
|     /// Fetch from "vkGetDeviceImageMemoryRequirements" on Vulkan >= 1.3, but you can also fetch it from "vkGetDeviceImageMemoryRequirementsKHR" if you enabled extension VK_KHR_maintenance4.
 | |
|     PFN_vkGetDeviceImageMemoryRequirements VMA_NULLABLE vkGetDeviceImageMemoryRequirements;
 | |
| #endif
 | |
| } VmaVulkanFunctions;
 | |
| 
 | |
| /// Description of a Allocator to be created.
 | |
| typedef struct VmaAllocatorCreateInfo
 | |
| {
 | |
|     /// Flags for created allocator. Use #VmaAllocatorCreateFlagBits enum.
 | |
|     VmaAllocatorCreateFlags flags;
 | |
|     /// Vulkan physical device.
 | |
|     /** It must be valid throughout whole lifetime of created allocator. */
 | |
|     VkPhysicalDevice VMA_NOT_NULL physicalDevice;
 | |
|     /// Vulkan device.
 | |
|     /** It must be valid throughout whole lifetime of created allocator. */
 | |
|     VkDevice VMA_NOT_NULL device;
 | |
|     /// Preferred size of a single `VkDeviceMemory` block to be allocated from large heaps > 1 GiB. Optional.
 | |
|     /** Set to 0 to use default, which is currently 256 MiB. */
 | |
|     VkDeviceSize preferredLargeHeapBlockSize;
 | |
|     /// Custom CPU memory allocation callbacks. Optional.
 | |
|     /** Optional, can be null. When specified, will also be used for all CPU-side memory allocations. */
 | |
|     const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
 | |
|     /// Informative callbacks for `vkAllocateMemory`, `vkFreeMemory`. Optional.
 | |
|     /** Optional, can be null. */
 | |
|     const VmaDeviceMemoryCallbacks* VMA_NULLABLE pDeviceMemoryCallbacks;
 | |
|     /** \brief Either null or a pointer to an array of limits on maximum number of bytes that can be allocated out of particular Vulkan memory heap.
 | |
| 
 | |
|     If not NULL, it must be a pointer to an array of
 | |
|     `VkPhysicalDeviceMemoryProperties::memoryHeapCount` elements, defining limit on
 | |
|     maximum number of bytes that can be allocated out of particular Vulkan memory
 | |
|     heap.
 | |
| 
 | |
|     Any of the elements may be equal to `VK_WHOLE_SIZE`, which means no limit on that
 | |
|     heap. This is also the default in case of `pHeapSizeLimit` = NULL.
 | |
| 
 | |
|     If there is a limit defined for a heap:
 | |
| 
 | |
|     - If user tries to allocate more memory from that heap using this allocator,
 | |
|       the allocation fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
|     - If the limit is smaller than heap size reported in `VkMemoryHeap::size`, the
 | |
|       value of this limit will be reported instead when using vmaGetMemoryProperties().
 | |
| 
 | |
|     Warning! Using this feature may not be equivalent to installing a GPU with
 | |
|     smaller amount of memory, because graphics driver doesn't necessary fail new
 | |
|     allocations with `VK_ERROR_OUT_OF_DEVICE_MEMORY` result when memory capacity is
 | |
|     exceeded. It may return success and just silently migrate some device memory
 | |
|     blocks to system RAM. This driver behavior can also be controlled using
 | |
|     VK_AMD_memory_overallocation_behavior extension.
 | |
|     */
 | |
|     const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pHeapSizeLimit;
 | |
| 
 | |
|     /** \brief Pointers to Vulkan functions. Can be null.
 | |
| 
 | |
|     For details see [Pointers to Vulkan functions](@ref config_Vulkan_functions).
 | |
|     */
 | |
|     const VmaVulkanFunctions* VMA_NULLABLE pVulkanFunctions;
 | |
|     /** \brief Handle to Vulkan instance object.
 | |
| 
 | |
|     Starting from version 3.0.0 this member is no longer optional, it must be set!
 | |
|     */
 | |
|     VkInstance VMA_NOT_NULL instance;
 | |
|     /** \brief Optional. The highest version of Vulkan that the application is designed to use.
 | |
| 
 | |
|     It must be a value in the format as created by macro `VK_MAKE_VERSION` or a constant like: `VK_API_VERSION_1_1`, `VK_API_VERSION_1_0`.
 | |
|     The patch version number specified is ignored. Only the major and minor versions are considered.
 | |
|     It must be less or equal (preferably equal) to value as passed to `vkCreateInstance` as `VkApplicationInfo::apiVersion`.
 | |
|     Only versions 1.0, 1.1, 1.2, 1.3 are supported by the current implementation.
 | |
|     Leaving it initialized to zero is equivalent to `VK_API_VERSION_1_0`.
 | |
|     */
 | |
|     uint32_t vulkanApiVersion;
 | |
| #if VMA_EXTERNAL_MEMORY
 | |
|     /** \brief Either null or a pointer to an array of external memory handle types for each Vulkan memory type.
 | |
| 
 | |
|     If not NULL, it must be a pointer to an array of `VkPhysicalDeviceMemoryProperties::memoryTypeCount`
 | |
|     elements, defining external memory handle types of particular Vulkan memory type,
 | |
|     to be passed using `VkExportMemoryAllocateInfoKHR`.
 | |
| 
 | |
|     Any of the elements may be equal to 0, which means not to use `VkExportMemoryAllocateInfoKHR` on this memory type.
 | |
|     This is also the default in case of `pTypeExternalMemoryHandleTypes` = NULL.
 | |
|     */
 | |
|     const VkExternalMemoryHandleTypeFlagsKHR* VMA_NULLABLE VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryTypeCount") pTypeExternalMemoryHandleTypes;
 | |
| #endif // #if VMA_EXTERNAL_MEMORY
 | |
| } VmaAllocatorCreateInfo;
 | |
| 
 | |
| /// Information about existing #VmaAllocator object.
 | |
| typedef struct VmaAllocatorInfo
 | |
| {
 | |
|     /** \brief Handle to Vulkan instance object.
 | |
| 
 | |
|     This is the same value as has been passed through VmaAllocatorCreateInfo::instance.
 | |
|     */
 | |
|     VkInstance VMA_NOT_NULL instance;
 | |
|     /** \brief Handle to Vulkan physical device object.
 | |
| 
 | |
|     This is the same value as has been passed through VmaAllocatorCreateInfo::physicalDevice.
 | |
|     */
 | |
|     VkPhysicalDevice VMA_NOT_NULL physicalDevice;
 | |
|     /** \brief Handle to Vulkan device object.
 | |
| 
 | |
|     This is the same value as has been passed through VmaAllocatorCreateInfo::device.
 | |
|     */
 | |
|     VkDevice VMA_NOT_NULL device;
 | |
| } VmaAllocatorInfo;
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_stats
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \brief Calculated statistics of memory usage e.g. in a specific memory type, heap, custom pool, or total.
 | |
| 
 | |
| These are fast to calculate.
 | |
| See functions: vmaGetHeapBudgets(), vmaGetPoolStatistics().
 | |
| */
 | |
| typedef struct VmaStatistics
 | |
| {
 | |
|     /** \brief Number of `VkDeviceMemory` objects - Vulkan memory blocks allocated.
 | |
|     */
 | |
|     uint32_t blockCount;
 | |
|     /** \brief Number of #VmaAllocation objects allocated.
 | |
| 
 | |
|     Dedicated allocations have their own blocks, so each one adds 1 to `allocationCount` as well as `blockCount`.
 | |
|     */
 | |
|     uint32_t allocationCount;
 | |
|     /** \brief Number of bytes allocated in `VkDeviceMemory` blocks.
 | |
| 
 | |
|     \note To avoid confusion, please be aware that what Vulkan calls an "allocation" - a whole `VkDeviceMemory` object
 | |
|     (e.g. as in `VkPhysicalDeviceLimits::maxMemoryAllocationCount`) is called a "block" in VMA, while VMA calls
 | |
|     "allocation" a #VmaAllocation object that represents a memory region sub-allocated from such block, usually for a single buffer or image.
 | |
|     */
 | |
|     VkDeviceSize blockBytes;
 | |
|     /** \brief Total number of bytes occupied by all #VmaAllocation objects.
 | |
| 
 | |
|     Always less or equal than `blockBytes`.
 | |
|     Difference `(blockBytes - allocationBytes)` is the amount of memory allocated from Vulkan
 | |
|     but unused by any #VmaAllocation.
 | |
|     */
 | |
|     VkDeviceSize allocationBytes;
 | |
| } VmaStatistics;
 | |
| 
 | |
| /** \brief More detailed statistics than #VmaStatistics.
 | |
| 
 | |
| These are slower to calculate. Use for debugging purposes.
 | |
| See functions: vmaCalculateStatistics(), vmaCalculatePoolStatistics().
 | |
| 
 | |
| Previous version of the statistics API provided averages, but they have been removed
 | |
| because they can be easily calculated as:
 | |
| 
 | |
| \code
 | |
| VkDeviceSize allocationSizeAvg = detailedStats.statistics.allocationBytes / detailedStats.statistics.allocationCount;
 | |
| VkDeviceSize unusedBytes = detailedStats.statistics.blockBytes - detailedStats.statistics.allocationBytes;
 | |
| VkDeviceSize unusedRangeSizeAvg = unusedBytes / detailedStats.unusedRangeCount;
 | |
| \endcode
 | |
| */
 | |
| typedef struct VmaDetailedStatistics
 | |
| {
 | |
|     /// Basic statistics.
 | |
|     VmaStatistics statistics;
 | |
|     /// Number of free ranges of memory between allocations.
 | |
|     uint32_t unusedRangeCount;
 | |
|     /// Smallest allocation size. `VK_WHOLE_SIZE` if there are 0 allocations.
 | |
|     VkDeviceSize allocationSizeMin;
 | |
|     /// Largest allocation size. 0 if there are 0 allocations.
 | |
|     VkDeviceSize allocationSizeMax;
 | |
|     /// Smallest empty range size. `VK_WHOLE_SIZE` if there are 0 empty ranges.
 | |
|     VkDeviceSize unusedRangeSizeMin;
 | |
|     /// Largest empty range size. 0 if there are 0 empty ranges.
 | |
|     VkDeviceSize unusedRangeSizeMax;
 | |
| } VmaDetailedStatistics;
 | |
| 
 | |
| /** \brief  General statistics from current state of the Allocator -
 | |
| total memory usage across all memory heaps and types.
 | |
| 
 | |
| These are slower to calculate. Use for debugging purposes.
 | |
| See function vmaCalculateStatistics().
 | |
| */
 | |
| typedef struct VmaTotalStatistics
 | |
| {
 | |
|     VmaDetailedStatistics memoryType[VK_MAX_MEMORY_TYPES];
 | |
|     VmaDetailedStatistics memoryHeap[VK_MAX_MEMORY_HEAPS];
 | |
|     VmaDetailedStatistics total;
 | |
| } VmaTotalStatistics;
 | |
| 
 | |
| /** \brief Statistics of current memory usage and available budget for a specific memory heap.
 | |
| 
 | |
| These are fast to calculate.
 | |
| See function vmaGetHeapBudgets().
 | |
| */
 | |
| typedef struct VmaBudget
 | |
| {
 | |
|     /** \brief Statistics fetched from the library.
 | |
|     */
 | |
|     VmaStatistics statistics;
 | |
|     /** \brief Estimated current memory usage of the program, in bytes.
 | |
| 
 | |
|     Fetched from system using VK_EXT_memory_budget extension if enabled.
 | |
| 
 | |
|     It might be different than `statistics.blockBytes` (usually higher) due to additional implicit objects
 | |
|     also occupying the memory, like swapchain, pipelines, descriptor heaps, command buffers, or
 | |
|     `VkDeviceMemory` blocks allocated outside of this library, if any.
 | |
|     */
 | |
|     VkDeviceSize usage;
 | |
|     /** \brief Estimated amount of memory available to the program, in bytes.
 | |
| 
 | |
|     Fetched from system using VK_EXT_memory_budget extension if enabled.
 | |
| 
 | |
|     It might be different (most probably smaller) than `VkMemoryHeap::size[heapIndex]` due to factors
 | |
|     external to the program, decided by the operating system.
 | |
|     Difference `budget - usage` is the amount of additional memory that can probably
 | |
|     be allocated without problems. Exceeding the budget may result in various problems.
 | |
|     */
 | |
|     VkDeviceSize budget;
 | |
| } VmaBudget;
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_alloc
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \brief Parameters of new #VmaAllocation.
 | |
| 
 | |
| To be used with functions like vmaCreateBuffer(), vmaCreateImage(), and many others.
 | |
| */
 | |
| typedef struct VmaAllocationCreateInfo
 | |
| {
 | |
|     /// Use #VmaAllocationCreateFlagBits enum.
 | |
|     VmaAllocationCreateFlags flags;
 | |
|     /** \brief Intended usage of memory.
 | |
| 
 | |
|     You can leave #VMA_MEMORY_USAGE_UNKNOWN if you specify memory requirements in other way. \n
 | |
|     If `pool` is not null, this member is ignored.
 | |
|     */
 | |
|     VmaMemoryUsage usage;
 | |
|     /** \brief Flags that must be set in a Memory Type chosen for an allocation.
 | |
| 
 | |
|     Leave 0 if you specify memory requirements in other way. \n
 | |
|     If `pool` is not null, this member is ignored.*/
 | |
|     VkMemoryPropertyFlags requiredFlags;
 | |
|     /** \brief Flags that preferably should be set in a memory type chosen for an allocation.
 | |
| 
 | |
|     Set to 0 if no additional flags are preferred. \n
 | |
|     If `pool` is not null, this member is ignored. */
 | |
|     VkMemoryPropertyFlags preferredFlags;
 | |
|     /** \brief Bitmask containing one bit set for every memory type acceptable for this allocation.
 | |
| 
 | |
|     Value 0 is equivalent to `UINT32_MAX` - it means any memory type is accepted if
 | |
|     it meets other requirements specified by this structure, with no further
 | |
|     restrictions on memory type index. \n
 | |
|     If `pool` is not null, this member is ignored.
 | |
|     */
 | |
|     uint32_t memoryTypeBits;
 | |
|     /** \brief Pool that this allocation should be created in.
 | |
| 
 | |
|     Leave `VK_NULL_HANDLE` to allocate from default pool. If not null, members:
 | |
|     `usage`, `requiredFlags`, `preferredFlags`, `memoryTypeBits` are ignored.
 | |
|     */
 | |
|     VmaPool VMA_NULLABLE pool;
 | |
|     /** \brief Custom general-purpose pointer that will be stored in #VmaAllocation, can be read as VmaAllocationInfo::pUserData and changed using vmaSetAllocationUserData().
 | |
| 
 | |
|     If #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT is used, it must be either
 | |
|     null or pointer to a null-terminated string. The string will be then copied to
 | |
|     internal buffer, so it doesn't need to be valid after allocation call.
 | |
|     */
 | |
|     void* VMA_NULLABLE pUserData;
 | |
|     /** \brief A floating-point value between 0 and 1, indicating the priority of the allocation relative to other memory allocations.
 | |
| 
 | |
|     It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object
 | |
|     and this allocation ends up as dedicated or is explicitly forced as dedicated using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
|     Otherwise, it has the priority of a memory block where it is placed and this variable is ignored.
 | |
|     */
 | |
|     float priority;
 | |
| } VmaAllocationCreateInfo;
 | |
| 
 | |
| /// Describes parameter of created #VmaPool.
 | |
| typedef struct VmaPoolCreateInfo
 | |
| {
 | |
|     /** \brief Vulkan memory type index to allocate this pool from.
 | |
|     */
 | |
|     uint32_t memoryTypeIndex;
 | |
|     /** \brief Use combination of #VmaPoolCreateFlagBits.
 | |
|     */
 | |
|     VmaPoolCreateFlags flags;
 | |
|     /** \brief Size of a single `VkDeviceMemory` block to be allocated as part of this pool, in bytes. Optional.
 | |
| 
 | |
|     Specify nonzero to set explicit, constant size of memory blocks used by this
 | |
|     pool.
 | |
| 
 | |
|     Leave 0 to use default and let the library manage block sizes automatically.
 | |
|     Sizes of particular blocks may vary.
 | |
|     In this case, the pool will also support dedicated allocations.
 | |
|     */
 | |
|     VkDeviceSize blockSize;
 | |
|     /** \brief Minimum number of blocks to be always allocated in this pool, even if they stay empty.
 | |
| 
 | |
|     Set to 0 to have no preallocated blocks and allow the pool be completely empty.
 | |
|     */
 | |
|     size_t minBlockCount;
 | |
|     /** \brief Maximum number of blocks that can be allocated in this pool. Optional.
 | |
| 
 | |
|     Set to 0 to use default, which is `SIZE_MAX`, which means no limit.
 | |
| 
 | |
|     Set to same value as VmaPoolCreateInfo::minBlockCount to have fixed amount of memory allocated
 | |
|     throughout whole lifetime of this pool.
 | |
|     */
 | |
|     size_t maxBlockCount;
 | |
|     /** \brief A floating-point value between 0 and 1, indicating the priority of the allocations in this pool relative to other memory allocations.
 | |
| 
 | |
|     It is used only when #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT flag was used during creation of the #VmaAllocator object.
 | |
|     Otherwise, this variable is ignored.
 | |
|     */
 | |
|     float priority;
 | |
|     /** \brief Additional minimum alignment to be used for all allocations created from this pool. Can be 0.
 | |
| 
 | |
|     Leave 0 (default) not to impose any additional alignment. If not 0, it must be a power of two.
 | |
|     It can be useful in cases where alignment returned by Vulkan by functions like `vkGetBufferMemoryRequirements` is not enough,
 | |
|     e.g. when doing interop with OpenGL.
 | |
|     */
 | |
|     VkDeviceSize minAllocationAlignment;
 | |
|     /** \brief Additional `pNext` chain to be attached to `VkMemoryAllocateInfo` used for every allocation made by this pool. Optional.
 | |
| 
 | |
|     Optional, can be null. If not null, it must point to a `pNext` chain of structures that can be attached to `VkMemoryAllocateInfo`.
 | |
|     It can be useful for special needs such as adding `VkExportMemoryAllocateInfoKHR`.
 | |
|     Structures pointed by this member must remain alive and unchanged for the whole lifetime of the custom pool.
 | |
| 
 | |
|     Please note that some structures, e.g. `VkMemoryPriorityAllocateInfoEXT`, `VkMemoryDedicatedAllocateInfoKHR`,
 | |
|     can be attached automatically by this library when using other, more convenient of its features.
 | |
|     */
 | |
|     void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkMemoryAllocateInfo) pMemoryAllocateNext;
 | |
| } VmaPoolCreateInfo;
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_alloc
 | |
| @{
 | |
| */
 | |
| 
 | |
| /// Parameters of #VmaAllocation objects, that can be retrieved using function vmaGetAllocationInfo().
 | |
| typedef struct VmaAllocationInfo
 | |
| {
 | |
|     /** \brief Memory type index that this allocation was allocated from.
 | |
| 
 | |
|     It never changes.
 | |
|     */
 | |
|     uint32_t memoryType;
 | |
|     /** \brief Handle to Vulkan memory object.
 | |
| 
 | |
|     Same memory object can be shared by multiple allocations.
 | |
| 
 | |
|     It can change after the allocation is moved during \ref defragmentation.
 | |
|     */
 | |
|     VkDeviceMemory VMA_NULLABLE_NON_DISPATCHABLE deviceMemory;
 | |
|     /** \brief Offset in `VkDeviceMemory` object to the beginning of this allocation, in bytes. `(deviceMemory, offset)` pair is unique to this allocation.
 | |
| 
 | |
|     You usually don't need to use this offset. If you create a buffer or an image together with the allocation using e.g. function
 | |
|     vmaCreateBuffer(), vmaCreateImage(), functions that operate on these resources refer to the beginning of the buffer or image,
 | |
|     not entire device memory block. Functions like vmaMapMemory(), vmaBindBufferMemory() also refer to the beginning of the allocation
 | |
|     and apply this offset automatically.
 | |
| 
 | |
|     It can change after the allocation is moved during \ref defragmentation.
 | |
|     */
 | |
|     VkDeviceSize offset;
 | |
|     /** \brief Size of this allocation, in bytes.
 | |
| 
 | |
|     It never changes.
 | |
| 
 | |
|     \note Allocation size returned in this variable may be greater than the size
 | |
|     requested for the resource e.g. as `VkBufferCreateInfo::size`. Whole size of the
 | |
|     allocation is accessible for operations on memory e.g. using a pointer after
 | |
|     mapping with vmaMapMemory(), but operations on the resource e.g. using
 | |
|     `vkCmdCopyBuffer` must be limited to the size of the resource.
 | |
|     */
 | |
|     VkDeviceSize size;
 | |
|     /** \brief Pointer to the beginning of this allocation as mapped data.
 | |
| 
 | |
|     If the allocation hasn't been mapped using vmaMapMemory() and hasn't been
 | |
|     created with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag, this value is null.
 | |
| 
 | |
|     It can change after call to vmaMapMemory(), vmaUnmapMemory().
 | |
|     It can also change after the allocation is moved during \ref defragmentation.
 | |
|     */
 | |
|     void* VMA_NULLABLE pMappedData;
 | |
|     /** \brief Custom general-purpose pointer that was passed as VmaAllocationCreateInfo::pUserData or set using vmaSetAllocationUserData().
 | |
| 
 | |
|     It can change after call to vmaSetAllocationUserData() for this allocation.
 | |
|     */
 | |
|     void* VMA_NULLABLE pUserData;
 | |
|     /** \brief Custom allocation name that was set with vmaSetAllocationName().
 | |
| 
 | |
|     It can change after call to vmaSetAllocationName() for this allocation.
 | |
| 
 | |
|     Another way to set custom name is to pass it in VmaAllocationCreateInfo::pUserData with
 | |
|     additional flag #VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT set [DEPRECATED].
 | |
|     */
 | |
|     const char* VMA_NULLABLE pName;
 | |
| } VmaAllocationInfo;
 | |
| 
 | |
| /** Callback function called during vmaBeginDefragmentation() to check custom criterion about ending current defragmentation pass.
 | |
| 
 | |
| Should return true if the defragmentation needs to stop current pass.
 | |
| */
 | |
| typedef VkBool32 (VKAPI_PTR* PFN_vmaCheckDefragmentationBreakFunction)(void* VMA_NULLABLE pUserData);
 | |
| 
 | |
| /** \brief Parameters for defragmentation.
 | |
| 
 | |
| To be used with function vmaBeginDefragmentation().
 | |
| */
 | |
| typedef struct VmaDefragmentationInfo
 | |
| {
 | |
|     /// \brief Use combination of #VmaDefragmentationFlagBits.
 | |
|     VmaDefragmentationFlags flags;
 | |
|     /** \brief Custom pool to be defragmented.
 | |
| 
 | |
|     If null then default pools will undergo defragmentation process.
 | |
|     */
 | |
|     VmaPool VMA_NULLABLE pool;
 | |
|     /** \brief Maximum numbers of bytes that can be copied during single pass, while moving allocations to different places.
 | |
| 
 | |
|     `0` means no limit.
 | |
|     */
 | |
|     VkDeviceSize maxBytesPerPass;
 | |
|     /** \brief Maximum number of allocations that can be moved during single pass to a different place.
 | |
| 
 | |
|     `0` means no limit.
 | |
|     */
 | |
|     uint32_t maxAllocationsPerPass;
 | |
|     /** \brief Optional custom callback for stopping vmaBeginDefragmentation().
 | |
| 
 | |
|     Have to return true for breaking current defragmentation pass.
 | |
|     */
 | |
|     PFN_vmaCheckDefragmentationBreakFunction VMA_NULLABLE pfnBreakCallback;
 | |
|     /// \brief Optional data to pass to custom callback for stopping pass of defragmentation.
 | |
|     void* VMA_NULLABLE pBreakCallbackUserData;
 | |
| } VmaDefragmentationInfo;
 | |
| 
 | |
| /// Single move of an allocation to be done for defragmentation.
 | |
| typedef struct VmaDefragmentationMove
 | |
| {
 | |
|     /// Operation to be performed on the allocation by vmaEndDefragmentationPass(). Default value is #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY. You can modify it.
 | |
|     VmaDefragmentationMoveOperation operation;
 | |
|     /// Allocation that should be moved.
 | |
|     VmaAllocation VMA_NOT_NULL srcAllocation;
 | |
|     /** \brief Temporary allocation pointing to destination memory that will replace `srcAllocation`.
 | |
| 
 | |
|     \warning Do not store this allocation in your data structures! It exists only temporarily, for the duration of the defragmentation pass,
 | |
|     to be used for binding new buffer/image to the destination memory using e.g. vmaBindBufferMemory().
 | |
|     vmaEndDefragmentationPass() will destroy it and make `srcAllocation` point to this memory.
 | |
|     */
 | |
|     VmaAllocation VMA_NOT_NULL dstTmpAllocation;
 | |
| } VmaDefragmentationMove;
 | |
| 
 | |
| /** \brief Parameters for incremental defragmentation steps.
 | |
| 
 | |
| To be used with function vmaBeginDefragmentationPass().
 | |
| */
 | |
| typedef struct VmaDefragmentationPassMoveInfo
 | |
| {
 | |
|     /// Number of elements in the `pMoves` array.
 | |
|     uint32_t moveCount;
 | |
|     /** \brief Array of moves to be performed by the user in the current defragmentation pass.
 | |
| 
 | |
|     Pointer to an array of `moveCount` elements, owned by VMA, created in vmaBeginDefragmentationPass(), destroyed in vmaEndDefragmentationPass().
 | |
| 
 | |
|     For each element, you should:
 | |
| 
 | |
|     1. Create a new buffer/image in the place pointed by VmaDefragmentationMove::dstMemory + VmaDefragmentationMove::dstOffset.
 | |
|     2. Copy data from the VmaDefragmentationMove::srcAllocation e.g. using `vkCmdCopyBuffer`, `vkCmdCopyImage`.
 | |
|     3. Make sure these commands finished executing on the GPU.
 | |
|     4. Destroy the old buffer/image.
 | |
| 
 | |
|     Only then you can finish defragmentation pass by calling vmaEndDefragmentationPass().
 | |
|     After this call, the allocation will point to the new place in memory.
 | |
| 
 | |
|     Alternatively, if you cannot move specific allocation, you can set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
 | |
| 
 | |
|     Alternatively, if you decide you want to completely remove the allocation:
 | |
| 
 | |
|     1. Destroy its buffer/image.
 | |
|     2. Set VmaDefragmentationMove::operation to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
 | |
| 
 | |
|     Then, after vmaEndDefragmentationPass() the allocation will be freed.
 | |
|     */
 | |
|     VmaDefragmentationMove* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(moveCount) pMoves;
 | |
| } VmaDefragmentationPassMoveInfo;
 | |
| 
 | |
| /// Statistics returned for defragmentation process in function vmaEndDefragmentation().
 | |
| typedef struct VmaDefragmentationStats
 | |
| {
 | |
|     /// Total number of bytes that have been copied while moving allocations to different places.
 | |
|     VkDeviceSize bytesMoved;
 | |
|     /// Total number of bytes that have been released to the system by freeing empty `VkDeviceMemory` objects.
 | |
|     VkDeviceSize bytesFreed;
 | |
|     /// Number of allocations that have been moved to different places.
 | |
|     uint32_t allocationsMoved;
 | |
|     /// Number of empty `VkDeviceMemory` objects that have been released to the system.
 | |
|     uint32_t deviceMemoryBlocksFreed;
 | |
| } VmaDefragmentationStats;
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_virtual
 | |
| @{
 | |
| */
 | |
| 
 | |
| /// Parameters of created #VmaVirtualBlock object to be passed to vmaCreateVirtualBlock().
 | |
| typedef struct VmaVirtualBlockCreateInfo
 | |
| {
 | |
|     /** \brief Total size of the virtual block.
 | |
| 
 | |
|     Sizes can be expressed in bytes or any units you want as long as you are consistent in using them.
 | |
|     For example, if you allocate from some array of structures, 1 can mean single instance of entire structure.
 | |
|     */
 | |
|     VkDeviceSize size;
 | |
| 
 | |
|     /** \brief Use combination of #VmaVirtualBlockCreateFlagBits.
 | |
|     */
 | |
|     VmaVirtualBlockCreateFlags flags;
 | |
| 
 | |
|     /** \brief Custom CPU memory allocation callbacks. Optional.
 | |
| 
 | |
|     Optional, can be null. When specified, they will be used for all CPU-side memory allocations.
 | |
|     */
 | |
|     const VkAllocationCallbacks* VMA_NULLABLE pAllocationCallbacks;
 | |
| } VmaVirtualBlockCreateInfo;
 | |
| 
 | |
| /// Parameters of created virtual allocation to be passed to vmaVirtualAllocate().
 | |
| typedef struct VmaVirtualAllocationCreateInfo
 | |
| {
 | |
|     /** \brief Size of the allocation.
 | |
| 
 | |
|     Cannot be zero.
 | |
|     */
 | |
|     VkDeviceSize size;
 | |
|     /** \brief Required alignment of the allocation. Optional.
 | |
| 
 | |
|     Must be power of two. Special value 0 has the same meaning as 1 - means no special alignment is required, so allocation can start at any offset.
 | |
|     */
 | |
|     VkDeviceSize alignment;
 | |
|     /** \brief Use combination of #VmaVirtualAllocationCreateFlagBits.
 | |
|     */
 | |
|     VmaVirtualAllocationCreateFlags flags;
 | |
|     /** \brief Custom pointer to be associated with the allocation. Optional.
 | |
| 
 | |
|     It can be any value and can be used for user-defined purposes. It can be fetched or changed later.
 | |
|     */
 | |
|     void* VMA_NULLABLE pUserData;
 | |
| } VmaVirtualAllocationCreateInfo;
 | |
| 
 | |
| /// Parameters of an existing virtual allocation, returned by vmaGetVirtualAllocationInfo().
 | |
| typedef struct VmaVirtualAllocationInfo
 | |
| {
 | |
|     /** \brief Offset of the allocation.
 | |
| 
 | |
|     Offset at which the allocation was made.
 | |
|     */
 | |
|     VkDeviceSize offset;
 | |
|     /** \brief Size of the allocation.
 | |
| 
 | |
|     Same value as passed in VmaVirtualAllocationCreateInfo::size.
 | |
|     */
 | |
|     VkDeviceSize size;
 | |
|     /** \brief Custom pointer associated with the allocation.
 | |
| 
 | |
|     Same value as passed in VmaVirtualAllocationCreateInfo::pUserData or to vmaSetVirtualAllocationUserData().
 | |
|     */
 | |
|     void* VMA_NULLABLE pUserData;
 | |
| } VmaVirtualAllocationInfo;
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| #endif // _VMA_DATA_TYPES_DECLARATIONS
 | |
| 
 | |
| #ifndef _VMA_FUNCTION_HEADERS
 | |
| 
 | |
| /**
 | |
| \addtogroup group_init
 | |
| @{
 | |
| */
 | |
| 
 | |
| /// Creates #VmaAllocator object.
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
 | |
|     const VmaAllocatorCreateInfo* VMA_NOT_NULL pCreateInfo,
 | |
|     VmaAllocator VMA_NULLABLE* VMA_NOT_NULL pAllocator);
 | |
| 
 | |
| /// Destroys allocator object.
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
 | |
|     VmaAllocator VMA_NULLABLE allocator);
 | |
| 
 | |
| /** \brief Returns information about existing #VmaAllocator object - handle to Vulkan device etc.
 | |
| 
 | |
| It might be useful if you want to keep just the #VmaAllocator handle and fetch other required handles to
 | |
| `VkPhysicalDevice`, `VkDevice` etc. every time using this function.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocatorInfo* VMA_NOT_NULL pAllocatorInfo);
 | |
| 
 | |
| /**
 | |
| PhysicalDeviceProperties are fetched from physicalDevice by the allocator.
 | |
| You can access it here, without fetching it again on your own.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkPhysicalDeviceProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceProperties);
 | |
| 
 | |
| /**
 | |
| PhysicalDeviceMemoryProperties are fetched from physicalDevice by the allocator.
 | |
| You can access it here, without fetching it again on your own.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkPhysicalDeviceMemoryProperties* VMA_NULLABLE* VMA_NOT_NULL ppPhysicalDeviceMemoryProperties);
 | |
| 
 | |
| /**
 | |
| \brief Given Memory Type Index, returns Property Flags of this memory type.
 | |
| 
 | |
| This is just a convenience function. Same information can be obtained using
 | |
| vmaGetMemoryProperties().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     uint32_t memoryTypeIndex,
 | |
|     VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
 | |
| 
 | |
| /** \brief Sets index of the current frame.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     uint32_t frameIndex);
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_stats
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \brief Retrieves statistics from current state of the Allocator.
 | |
| 
 | |
| This function is called "calculate" not "get" because it has to traverse all
 | |
| internal data structures, so it may be quite slow. Use it for debugging purposes.
 | |
| For faster but more brief statistics suitable to be called every frame or every allocation,
 | |
| use vmaGetHeapBudgets().
 | |
| 
 | |
| Note that when using allocator from multiple threads, returned information may immediately
 | |
| become outdated.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaTotalStatistics* VMA_NOT_NULL pStats);
 | |
| 
 | |
| /** \brief Retrieves information about current memory usage and budget for all memory heaps.
 | |
| 
 | |
| \param allocator
 | |
| \param[out] pBudgets Must point to array with number of elements at least equal to number of memory heaps in physical device used.
 | |
| 
 | |
| This function is called "get" not "calculate" because it is very fast, suitable to be called
 | |
| every frame or every allocation. For more detailed statistics use vmaCalculateStatistics().
 | |
| 
 | |
| Note that when using allocator from multiple threads, returned information may immediately
 | |
| become outdated.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaBudget* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL("VkPhysicalDeviceMemoryProperties::memoryHeapCount") pBudgets);
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_alloc
 | |
| @{
 | |
| */
 | |
| 
 | |
| /**
 | |
| \brief Helps to find memoryTypeIndex, given memoryTypeBits and VmaAllocationCreateInfo.
 | |
| 
 | |
| This algorithm tries to find a memory type that:
 | |
| 
 | |
| - Is allowed by memoryTypeBits.
 | |
| - Contains all the flags from pAllocationCreateInfo->requiredFlags.
 | |
| - Matches intended usage.
 | |
| - Has as many flags from pAllocationCreateInfo->preferredFlags as possible.
 | |
| 
 | |
| \return Returns VK_ERROR_FEATURE_NOT_PRESENT if not found. Receiving such result
 | |
| from this function or any other allocating function probably means that your
 | |
| device doesn't support any memory type with requested features for the specific
 | |
| type of resource you want to use it for. Please check parameters of your
 | |
| resource, like image layout (OPTIMAL versus LINEAR) or mip level count.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     uint32_t memoryTypeBits,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | |
|     uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
 | |
| 
 | |
| /**
 | |
| \brief Helps to find memoryTypeIndex, given VkBufferCreateInfo and VmaAllocationCreateInfo.
 | |
| 
 | |
| It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
 | |
| It internally creates a temporary, dummy buffer that never has memory bound.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | |
|     uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
 | |
| 
 | |
| /**
 | |
| \brief Helps to find memoryTypeIndex, given VkImageCreateInfo and VmaAllocationCreateInfo.
 | |
| 
 | |
| It can be useful e.g. to determine value to be used as VmaPoolCreateInfo::memoryTypeIndex.
 | |
| It internally creates a temporary, dummy image that never has memory bound.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | |
|     uint32_t* VMA_NOT_NULL pMemoryTypeIndex);
 | |
| 
 | |
| /** \brief Allocates Vulkan device memory and creates #VmaPool object.
 | |
| 
 | |
| \param allocator Allocator object.
 | |
| \param pCreateInfo Parameters of pool to create.
 | |
| \param[out] pPool Handle to created pool.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VmaPoolCreateInfo* VMA_NOT_NULL pCreateInfo,
 | |
|     VmaPool VMA_NULLABLE* VMA_NOT_NULL pPool);
 | |
| 
 | |
| /** \brief Destroys #VmaPool object and frees Vulkan device memory.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaPool VMA_NULLABLE pool);
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_stats
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \brief Retrieves statistics of existing #VmaPool object.
 | |
| 
 | |
| \param allocator Allocator object.
 | |
| \param pool Pool object.
 | |
| \param[out] pPoolStats Statistics of specified pool.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaPool VMA_NOT_NULL pool,
 | |
|     VmaStatistics* VMA_NOT_NULL pPoolStats);
 | |
| 
 | |
| /** \brief Retrieves detailed statistics of existing #VmaPool object.
 | |
| 
 | |
| \param allocator Allocator object.
 | |
| \param pool Pool object.
 | |
| \param[out] pPoolStats Statistics of specified pool.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaPool VMA_NOT_NULL pool,
 | |
|     VmaDetailedStatistics* VMA_NOT_NULL pPoolStats);
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_alloc
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \brief Checks magic number in margins around all allocations in given memory pool in search for corruptions.
 | |
| 
 | |
| Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
 | |
| `VMA_DEBUG_MARGIN` is defined to nonzero and the pool is created in memory type that is
 | |
| `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
 | |
| 
 | |
| Possible return values:
 | |
| 
 | |
| - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for specified pool.
 | |
| - `VK_SUCCESS` - corruption detection has been performed and succeeded.
 | |
| - `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
 | |
|   `VMA_ASSERT` is also fired in that case.
 | |
| - Other value: Error returned by Vulkan, e.g. memory mapping failure.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaPool VMA_NOT_NULL pool);
 | |
| 
 | |
| /** \brief Retrieves name of a custom pool.
 | |
| 
 | |
| After the call `ppName` is either null or points to an internally-owned null-terminated string
 | |
| containing name of the pool that was previously set. The pointer becomes invalid when the pool is
 | |
| destroyed or its name is changed using vmaSetPoolName().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaPool VMA_NOT_NULL pool,
 | |
|     const char* VMA_NULLABLE* VMA_NOT_NULL ppName);
 | |
| 
 | |
| /** \brief Sets name of a custom pool.
 | |
| 
 | |
| `pName` can be either null or pointer to a null-terminated string with new name for the pool.
 | |
| Function makes internal copy of the string, so it can be changed or freed immediately after this call.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaPool VMA_NOT_NULL pool,
 | |
|     const char* VMA_NULLABLE pName);
 | |
| 
 | |
| /** \brief General purpose memory allocation.
 | |
| 
 | |
| \param allocator
 | |
| \param pVkMemoryRequirements
 | |
| \param pCreateInfo
 | |
| \param[out] pAllocation Handle to allocated memory.
 | |
| \param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | |
| 
 | |
| You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
 | |
| 
 | |
| It is recommended to use vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage(),
 | |
| vmaCreateBuffer(), vmaCreateImage() instead whenever possible.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkMemoryRequirements* VMA_NOT_NULL pVkMemoryRequirements,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
 | |
|     VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | |
|     VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | |
| 
 | |
| /** \brief General purpose memory allocation for multiple allocation objects at once.
 | |
| 
 | |
| \param allocator Allocator object.
 | |
| \param pVkMemoryRequirements Memory requirements for each allocation.
 | |
| \param pCreateInfo Creation parameters for each allocation.
 | |
| \param allocationCount Number of allocations to make.
 | |
| \param[out] pAllocations Pointer to array that will be filled with handles to created allocations.
 | |
| \param[out] pAllocationInfo Optional. Pointer to array that will be filled with parameters of created allocations.
 | |
| 
 | |
| You should free the memory using vmaFreeMemory() or vmaFreeMemoryPages().
 | |
| 
 | |
| Word "pages" is just a suggestion to use this function to allocate pieces of memory needed for sparse binding.
 | |
| It is just a general purpose allocation function able to make multiple allocations at once.
 | |
| It may be internally optimized to be more efficient than calling vmaAllocateMemory() `allocationCount` times.
 | |
| 
 | |
| All allocations are made using same parameters. All of them are created out of the same memory pool and type.
 | |
| If any allocation fails, all allocations already made within this function call are also freed, so that when
 | |
| returned result is not `VK_SUCCESS`, `pAllocation` array is always entirely filled with `VK_NULL_HANDLE`.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkMemoryRequirements* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pVkMemoryRequirements,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pCreateInfo,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations,
 | |
|     VmaAllocationInfo* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) pAllocationInfo);
 | |
| 
 | |
| /** \brief Allocates memory suitable for given `VkBuffer`.
 | |
| 
 | |
| \param allocator
 | |
| \param buffer
 | |
| \param pCreateInfo
 | |
| \param[out] pAllocation Handle to allocated memory.
 | |
| \param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | |
| 
 | |
| It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindBufferMemory().
 | |
| 
 | |
| This is a special-purpose function. In most cases you should use vmaCreateBuffer().
 | |
| 
 | |
| You must free the allocation using vmaFreeMemory() when no longer needed.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
 | |
|     VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | |
|     VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | |
| 
 | |
| /** \brief Allocates memory suitable for given `VkImage`.
 | |
| 
 | |
| \param allocator
 | |
| \param image
 | |
| \param pCreateInfo
 | |
| \param[out] pAllocation Handle to allocated memory.
 | |
| \param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | |
| 
 | |
| It only creates #VmaAllocation. To bind the memory to the buffer, use vmaBindImageMemory().
 | |
| 
 | |
| This is a special-purpose function. In most cases you should use vmaCreateImage().
 | |
| 
 | |
| You must free the allocation using vmaFreeMemory() when no longer needed.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
 | |
|     VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | |
|     VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | |
| 
 | |
| /** \brief Frees memory previously allocated using vmaAllocateMemory(), vmaAllocateMemoryForBuffer(), or vmaAllocateMemoryForImage().
 | |
| 
 | |
| Passing `VK_NULL_HANDLE` as `allocation` is valid. Such function call is just skipped.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VmaAllocation VMA_NULLABLE allocation);
 | |
| 
 | |
| /** \brief Frees memory and destroys multiple allocations.
 | |
| 
 | |
| Word "pages" is just a suggestion to use this function to free pieces of memory used for sparse binding.
 | |
| It is just a general purpose function to free memory and destroy allocations made using e.g. vmaAllocateMemory(),
 | |
| vmaAllocateMemoryPages() and other functions.
 | |
| It may be internally optimized to be more efficient than calling vmaFreeMemory() `allocationCount` times.
 | |
| 
 | |
| Allocations in `pAllocations` array can come from any memory pools and types.
 | |
| Passing `VK_NULL_HANDLE` as elements of `pAllocations` array is valid. Such entries are just skipped.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     size_t allocationCount,
 | |
|     const VmaAllocation VMA_NULLABLE* VMA_NOT_NULL VMA_LEN_IF_NOT_NULL(allocationCount) pAllocations);
 | |
| 
 | |
| /** \brief Returns current information about specified allocation.
 | |
| 
 | |
| Current parameters of given allocation are returned in `pAllocationInfo`.
 | |
| 
 | |
| Although this function doesn't lock any mutex, so it should be quite efficient,
 | |
| you should avoid calling it too often.
 | |
| You can retrieve same VmaAllocationInfo structure while creating your resource, from function
 | |
| vmaCreateBuffer(), vmaCreateImage(). You can remember it if you are sure parameters don't change
 | |
| (e.g. due to defragmentation).
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VmaAllocationInfo* VMA_NOT_NULL pAllocationInfo);
 | |
| 
 | |
| /** \brief Sets pUserData in given allocation to new value.
 | |
| 
 | |
| The value of pointer `pUserData` is copied to allocation's `pUserData`.
 | |
| It is opaque, so you can use it however you want - e.g.
 | |
| as a pointer, ordinal number or some handle to you own data.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     void* VMA_NULLABLE pUserData);
 | |
| 
 | |
| /** \brief Sets pName in given allocation to new value.
 | |
| 
 | |
| `pName` must be either null, or pointer to a null-terminated string. The function
 | |
| makes local copy of the string and sets it as allocation's `pName`. String
 | |
| passed as pName doesn't need to be valid for whole lifetime of the allocation -
 | |
| you can free it after this call. String previously pointed by allocation's
 | |
| `pName` is freed from memory.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     const char* VMA_NULLABLE pName);
 | |
| 
 | |
| /**
 | |
| \brief Given an allocation, returns Property Flags of its memory type.
 | |
| 
 | |
| This is just a convenience function. Same information can be obtained using
 | |
| vmaGetAllocationInfo() + vmaGetMemoryProperties().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkMemoryPropertyFlags* VMA_NOT_NULL pFlags);
 | |
| 
 | |
| /** \brief Maps memory represented by given allocation and returns pointer to it.
 | |
| 
 | |
| Maps memory represented by given allocation to make it accessible to CPU code.
 | |
| When succeeded, `*ppData` contains pointer to first byte of this memory.
 | |
| 
 | |
| \warning
 | |
| If the allocation is part of a bigger `VkDeviceMemory` block, returned pointer is
 | |
| correctly offsetted to the beginning of region assigned to this particular allocation.
 | |
| Unlike the result of `vkMapMemory`, it points to the allocation, not to the beginning of the whole block.
 | |
| You should not add VmaAllocationInfo::offset to it!
 | |
| 
 | |
| Mapping is internally reference-counted and synchronized, so despite raw Vulkan
 | |
| function `vkMapMemory()` cannot be used to map same block of `VkDeviceMemory`
 | |
| multiple times simultaneously, it is safe to call this function on allocations
 | |
| assigned to the same memory block. Actual Vulkan memory will be mapped on first
 | |
| mapping and unmapped on last unmapping.
 | |
| 
 | |
| If the function succeeded, you must call vmaUnmapMemory() to unmap the
 | |
| allocation when mapping is no longer needed or before freeing the allocation, at
 | |
| the latest.
 | |
| 
 | |
| It also safe to call this function multiple times on the same allocation. You
 | |
| must call vmaUnmapMemory() same number of times as you called vmaMapMemory().
 | |
| 
 | |
| It is also safe to call this function on allocation created with
 | |
| #VMA_ALLOCATION_CREATE_MAPPED_BIT flag. Its memory stays mapped all the time.
 | |
| You must still call vmaUnmapMemory() same number of times as you called
 | |
| vmaMapMemory(). You must not call vmaUnmapMemory() additional time to free the
 | |
| "0-th" mapping made automatically due to #VMA_ALLOCATION_CREATE_MAPPED_BIT flag.
 | |
| 
 | |
| This function fails when used on allocation made in memory type that is not
 | |
| `HOST_VISIBLE`.
 | |
| 
 | |
| This function doesn't automatically flush or invalidate caches.
 | |
| If the allocation is made from a memory types that is not `HOST_COHERENT`,
 | |
| you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     void* VMA_NULLABLE* VMA_NOT_NULL ppData);
 | |
| 
 | |
| /** \brief Unmaps memory represented by given allocation, mapped previously using vmaMapMemory().
 | |
| 
 | |
| For details, see description of vmaMapMemory().
 | |
| 
 | |
| This function doesn't automatically flush or invalidate caches.
 | |
| If the allocation is made from a memory types that is not `HOST_COHERENT`,
 | |
| you also need to use vmaInvalidateAllocation() / vmaFlushAllocation(), as required by Vulkan specification.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation);
 | |
| 
 | |
| /** \brief Flushes memory of given allocation.
 | |
| 
 | |
| Calls `vkFlushMappedMemoryRanges()` for memory associated with given range of given allocation.
 | |
| It needs to be called after writing to a mapped memory for memory types that are not `HOST_COHERENT`.
 | |
| Unmap operation doesn't do that automatically.
 | |
| 
 | |
| - `offset` must be relative to the beginning of allocation.
 | |
| - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
 | |
| - `offset` and `size` don't have to be aligned.
 | |
|   They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
 | |
| - If `size` is 0, this call is ignored.
 | |
| - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
 | |
|   this call is ignored.
 | |
| 
 | |
| Warning! `offset` and `size` are relative to the contents of given `allocation`.
 | |
| If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
 | |
| Do not pass allocation's offset as `offset`!!!
 | |
| 
 | |
| This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
 | |
| called, otherwise `VK_SUCCESS`.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkDeviceSize offset,
 | |
|     VkDeviceSize size);
 | |
| 
 | |
| /** \brief Invalidates memory of given allocation.
 | |
| 
 | |
| Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given range of given allocation.
 | |
| It needs to be called before reading from a mapped memory for memory types that are not `HOST_COHERENT`.
 | |
| Map operation doesn't do that automatically.
 | |
| 
 | |
| - `offset` must be relative to the beginning of allocation.
 | |
| - `size` can be `VK_WHOLE_SIZE`. It means all memory from `offset` the the end of given allocation.
 | |
| - `offset` and `size` don't have to be aligned.
 | |
|   They are internally rounded down/up to multiply of `nonCoherentAtomSize`.
 | |
| - If `size` is 0, this call is ignored.
 | |
| - If memory type that the `allocation` belongs to is not `HOST_VISIBLE` or it is `HOST_COHERENT`,
 | |
|   this call is ignored.
 | |
| 
 | |
| Warning! `offset` and `size` are relative to the contents of given `allocation`.
 | |
| If you mean whole allocation, you can pass 0 and `VK_WHOLE_SIZE`, respectively.
 | |
| Do not pass allocation's offset as `offset`!!!
 | |
| 
 | |
| This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if
 | |
| it is called, otherwise `VK_SUCCESS`.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkDeviceSize offset,
 | |
|     VkDeviceSize size);
 | |
| 
 | |
| /** \brief Flushes memory of given set of allocations.
 | |
| 
 | |
| Calls `vkFlushMappedMemoryRanges()` for memory associated with given ranges of given allocations.
 | |
| For more information, see documentation of vmaFlushAllocation().
 | |
| 
 | |
| \param allocator
 | |
| \param allocationCount
 | |
| \param allocations
 | |
| \param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
 | |
| \param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
 | |
| 
 | |
| This function returns the `VkResult` from `vkFlushMappedMemoryRanges` if it is
 | |
| called, otherwise `VK_SUCCESS`.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     uint32_t allocationCount,
 | |
|     const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
 | |
|     const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
 | |
|     const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
 | |
| 
 | |
| /** \brief Invalidates memory of given set of allocations.
 | |
| 
 | |
| Calls `vkInvalidateMappedMemoryRanges()` for memory associated with given ranges of given allocations.
 | |
| For more information, see documentation of vmaInvalidateAllocation().
 | |
| 
 | |
| \param allocator
 | |
| \param allocationCount
 | |
| \param allocations
 | |
| \param offsets If not null, it must point to an array of offsets of regions to flush, relative to the beginning of respective allocations. Null means all ofsets are zero.
 | |
| \param sizes If not null, it must point to an array of sizes of regions to flush in respective allocations. Null means `VK_WHOLE_SIZE` for all allocations.
 | |
| 
 | |
| This function returns the `VkResult` from `vkInvalidateMappedMemoryRanges` if it is
 | |
| called, otherwise `VK_SUCCESS`.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     uint32_t allocationCount,
 | |
|     const VmaAllocation VMA_NOT_NULL* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) allocations,
 | |
|     const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) offsets,
 | |
|     const VkDeviceSize* VMA_NULLABLE VMA_LEN_IF_NOT_NULL(allocationCount) sizes);
 | |
| 
 | |
| /** \brief Checks magic number in margins around all allocations in given memory types (in both default and custom pools) in search for corruptions.
 | |
| 
 | |
| \param allocator
 | |
| \param memoryTypeBits Bit mask, where each bit set means that a memory type with that index should be checked.
 | |
| 
 | |
| Corruption detection is enabled only when `VMA_DEBUG_DETECT_CORRUPTION` macro is defined to nonzero,
 | |
| `VMA_DEBUG_MARGIN` is defined to nonzero and only for memory types that are
 | |
| `HOST_VISIBLE` and `HOST_COHERENT`. For more information, see [Corruption detection](@ref debugging_memory_usage_corruption_detection).
 | |
| 
 | |
| Possible return values:
 | |
| 
 | |
| - `VK_ERROR_FEATURE_NOT_PRESENT` - corruption detection is not enabled for any of specified memory types.
 | |
| - `VK_SUCCESS` - corruption detection has been performed and succeeded.
 | |
| - `VK_ERROR_UNKNOWN` - corruption detection has been performed and found memory corruptions around one of the allocations.
 | |
|   `VMA_ASSERT` is also fired in that case.
 | |
| - Other value: Error returned by Vulkan, e.g. memory mapping failure.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     uint32_t memoryTypeBits);
 | |
| 
 | |
| /** \brief Begins defragmentation process.
 | |
| 
 | |
| \param allocator Allocator object.
 | |
| \param pInfo Structure filled with parameters of defragmentation.
 | |
| \param[out] pContext Context object that must be passed to vmaEndDefragmentation() to finish defragmentation.
 | |
| \returns
 | |
| - `VK_SUCCESS` if defragmentation can begin.
 | |
| - `VK_ERROR_FEATURE_NOT_PRESENT` if defragmentation is not supported.
 | |
| 
 | |
| For more information about defragmentation, see documentation chapter:
 | |
| [Defragmentation](@ref defragmentation).
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VmaDefragmentationInfo* VMA_NOT_NULL pInfo,
 | |
|     VmaDefragmentationContext VMA_NULLABLE* VMA_NOT_NULL pContext);
 | |
| 
 | |
| /** \brief Ends defragmentation process.
 | |
| 
 | |
| \param allocator Allocator object.
 | |
| \param context Context object that has been created by vmaBeginDefragmentation().
 | |
| \param[out] pStats Optional stats for the defragmentation. Can be null.
 | |
| 
 | |
| Use this function to finish defragmentation started by vmaBeginDefragmentation().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaDefragmentationContext VMA_NOT_NULL context,
 | |
|     VmaDefragmentationStats* VMA_NULLABLE pStats);
 | |
| 
 | |
| /** \brief Starts single defragmentation pass.
 | |
| 
 | |
| \param allocator Allocator object.
 | |
| \param context Context object that has been created by vmaBeginDefragmentation().
 | |
| \param[out] pPassInfo Computed information for current pass.
 | |
| \returns
 | |
| - `VK_SUCCESS` if no more moves are possible. Then you can omit call to vmaEndDefragmentationPass() and simply end whole defragmentation.
 | |
| - `VK_INCOMPLETE` if there are pending moves returned in `pPassInfo`. You need to perform them, call vmaEndDefragmentationPass(),
 | |
|   and then preferably try another pass with vmaBeginDefragmentationPass().
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaDefragmentationContext VMA_NOT_NULL context,
 | |
|     VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
 | |
| 
 | |
| /** \brief Ends single defragmentation pass.
 | |
| 
 | |
| \param allocator Allocator object.
 | |
| \param context Context object that has been created by vmaBeginDefragmentation().
 | |
| \param pPassInfo Computed information for current pass filled by vmaBeginDefragmentationPass() and possibly modified by you.
 | |
| 
 | |
| Returns `VK_SUCCESS` if no more moves are possible or `VK_INCOMPLETE` if more defragmentations are possible.
 | |
| 
 | |
| Ends incremental defragmentation pass and commits all defragmentation moves from `pPassInfo`.
 | |
| After this call:
 | |
| 
 | |
| - Allocations at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY
 | |
|   (which is the default) will be pointing to the new destination place.
 | |
| - Allocation at `pPassInfo[i].srcAllocation` that had `pPassInfo[i].operation ==` #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY
 | |
|   will be freed.
 | |
| 
 | |
| If no more moves are possible you can end whole defragmentation.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaDefragmentationContext VMA_NOT_NULL context,
 | |
|     VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo);
 | |
| 
 | |
| /** \brief Binds buffer to allocation.
 | |
| 
 | |
| Binds specified buffer to region of memory represented by specified allocation.
 | |
| Gets `VkDeviceMemory` handle and offset from the allocation.
 | |
| If you want to create a buffer, allocate memory for it and bind them together separately,
 | |
| you should use this function for binding instead of standard `vkBindBufferMemory()`,
 | |
| because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
 | |
| allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
 | |
| (which is illegal in Vulkan).
 | |
| 
 | |
| It is recommended to use function vmaCreateBuffer() instead of this one.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer);
 | |
| 
 | |
| /** \brief Binds buffer to allocation with additional parameters.
 | |
| 
 | |
| \param allocator
 | |
| \param allocation
 | |
| \param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
 | |
| \param buffer
 | |
| \param pNext A chain of structures to be attached to `VkBindBufferMemoryInfoKHR` structure used internally. Normally it should be null.
 | |
| 
 | |
| This function is similar to vmaBindBufferMemory(), but it provides additional parameters.
 | |
| 
 | |
| If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
 | |
| or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkBuffer VMA_NOT_NULL_NON_DISPATCHABLE buffer,
 | |
|     const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindBufferMemoryInfoKHR) pNext);
 | |
| 
 | |
| /** \brief Binds image to allocation.
 | |
| 
 | |
| Binds specified image to region of memory represented by specified allocation.
 | |
| Gets `VkDeviceMemory` handle and offset from the allocation.
 | |
| If you want to create an image, allocate memory for it and bind them together separately,
 | |
| you should use this function for binding instead of standard `vkBindImageMemory()`,
 | |
| because it ensures proper synchronization so that when a `VkDeviceMemory` object is used by multiple
 | |
| allocations, calls to `vkBind*Memory()` or `vkMapMemory()` won't happen from multiple threads simultaneously
 | |
| (which is illegal in Vulkan).
 | |
| 
 | |
| It is recommended to use function vmaCreateImage() instead of this one.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkImage VMA_NOT_NULL_NON_DISPATCHABLE image);
 | |
| 
 | |
| /** \brief Binds image to allocation with additional parameters.
 | |
| 
 | |
| \param allocator
 | |
| \param allocation
 | |
| \param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the `allocation`. Normally it should be 0.
 | |
| \param image
 | |
| \param pNext A chain of structures to be attached to `VkBindImageMemoryInfoKHR` structure used internally. Normally it should be null.
 | |
| 
 | |
| This function is similar to vmaBindImageMemory(), but it provides additional parameters.
 | |
| 
 | |
| If `pNext` is not null, #VmaAllocator object must have been created with #VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT flag
 | |
| or with VmaAllocatorCreateInfo::vulkanApiVersion `>= VK_API_VERSION_1_1`. Otherwise the call fails.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkImage VMA_NOT_NULL_NON_DISPATCHABLE image,
 | |
|     const void* VMA_NULLABLE VMA_EXTENDS_VK_STRUCT(VkBindImageMemoryInfoKHR) pNext);
 | |
| 
 | |
| /** \brief Creates a new `VkBuffer`, allocates and binds memory for it.
 | |
| 
 | |
| \param allocator
 | |
| \param pBufferCreateInfo
 | |
| \param pAllocationCreateInfo
 | |
| \param[out] pBuffer Buffer that was created.
 | |
| \param[out] pAllocation Allocation that was created.
 | |
| \param[out] pAllocationInfo Optional. Information about allocated memory. It can be later fetched using function vmaGetAllocationInfo().
 | |
| 
 | |
| This function automatically:
 | |
| 
 | |
| -# Creates buffer.
 | |
| -# Allocates appropriate memory for it.
 | |
| -# Binds the buffer with the memory.
 | |
| 
 | |
| If any of these operations fail, buffer and allocation are not created,
 | |
| returned value is negative error code, `*pBuffer` and `*pAllocation` are null.
 | |
| 
 | |
| If the function succeeded, you must destroy both buffer and allocation when you
 | |
| no longer need them using either convenience function vmaDestroyBuffer() or
 | |
| separately, using `vkDestroyBuffer()` and vmaFreeMemory().
 | |
| 
 | |
| If #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag was used,
 | |
| VK_KHR_dedicated_allocation extension is used internally to query driver whether
 | |
| it requires or prefers the new buffer to have dedicated allocation. If yes,
 | |
| and if dedicated allocation is possible
 | |
| (#VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT is not used), it creates dedicated
 | |
| allocation for this buffer, just like when using
 | |
| #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
| 
 | |
| \note This function creates a new `VkBuffer`. Sub-allocation of parts of one large buffer,
 | |
| although recommended as a good practice, is out of scope of this library and could be implemented
 | |
| by the user as a higher-level logic on top of VMA.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | |
|     VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
 | |
|     VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | |
|     VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | |
| 
 | |
| /** \brief Creates a buffer with additional minimum alignment.
 | |
| 
 | |
| Similar to vmaCreateBuffer() but provides additional parameter `minAlignment` which allows to specify custom,
 | |
| minimum alignment to be used when placing the buffer inside a larger memory block, which may be needed e.g.
 | |
| for interop with OpenGL.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | |
|     VkDeviceSize minAlignment,
 | |
|     VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer,
 | |
|     VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | |
|     VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | |
| 
 | |
| /** \brief Creates a new `VkBuffer`, binds already created memory for it.
 | |
| 
 | |
| \param allocator
 | |
| \param allocation Allocation that provides memory to be used for binding new buffer to it.
 | |
| \param pBufferCreateInfo
 | |
| \param[out] pBuffer Buffer that was created.
 | |
| 
 | |
| This function automatically:
 | |
| 
 | |
| -# Creates buffer.
 | |
| -# Binds the buffer with the supplied memory.
 | |
| 
 | |
| If any of these operations fail, buffer is not created,
 | |
| returned value is negative error code and `*pBuffer` is null.
 | |
| 
 | |
| If the function succeeded, you must destroy the buffer when you
 | |
| no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
 | |
| allocation you can use convenience function vmaDestroyBuffer().
 | |
| 
 | |
| \note There is a new version of this function augmented with parameter `allocationLocalOffset` - see vmaCreateAliasingBuffer2().
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | |
|     VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
 | |
| 
 | |
| /** \brief Creates a new `VkBuffer`, binds already created memory for it.
 | |
| 
 | |
| \param allocator
 | |
| \param allocation Allocation that provides memory to be used for binding new buffer to it.
 | |
| \param allocationLocalOffset Additional offset to be added while binding, relative to the beginning of the allocation. Normally it should be 0.
 | |
| \param pBufferCreateInfo 
 | |
| \param[out] pBuffer Buffer that was created.
 | |
| 
 | |
| This function automatically:
 | |
| 
 | |
| -# Creates buffer.
 | |
| -# Binds the buffer with the supplied memory.
 | |
| 
 | |
| If any of these operations fail, buffer is not created,
 | |
| returned value is negative error code and `*pBuffer` is null.
 | |
| 
 | |
| If the function succeeded, you must destroy the buffer when you
 | |
| no longer need it using `vkDestroyBuffer()`. If you want to also destroy the corresponding
 | |
| allocation you can use convenience function vmaDestroyBuffer().
 | |
| 
 | |
| \note This is a new version of the function augmented with parameter `allocationLocalOffset`.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | |
|     VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer);
 | |
| 
 | |
| /** \brief Destroys Vulkan buffer and frees allocated memory.
 | |
| 
 | |
| This is just a convenience function equivalent to:
 | |
| 
 | |
| \code
 | |
| vkDestroyBuffer(device, buffer, allocationCallbacks);
 | |
| vmaFreeMemory(allocator, allocation);
 | |
| \endcode
 | |
| 
 | |
| It is safe to pass null as buffer and/or allocation.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VkBuffer VMA_NULLABLE_NON_DISPATCHABLE buffer,
 | |
|     VmaAllocation VMA_NULLABLE allocation);
 | |
| 
 | |
| /// Function similar to vmaCreateBuffer().
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | |
|     const VmaAllocationCreateInfo* VMA_NOT_NULL pAllocationCreateInfo,
 | |
|     VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage,
 | |
|     VmaAllocation VMA_NULLABLE* VMA_NOT_NULL pAllocation,
 | |
|     VmaAllocationInfo* VMA_NULLABLE pAllocationInfo);
 | |
| 
 | |
| /// Function similar to vmaCreateAliasingBuffer() but for images.
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | |
|     VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
 | |
| 
 | |
| /// Function similar to vmaCreateAliasingBuffer2() but for images.
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | |
|     VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage);
 | |
| 
 | |
| /** \brief Destroys Vulkan image and frees allocated memory.
 | |
| 
 | |
| This is just a convenience function equivalent to:
 | |
| 
 | |
| \code
 | |
| vkDestroyImage(device, image, allocationCallbacks);
 | |
| vmaFreeMemory(allocator, allocation);
 | |
| \endcode
 | |
| 
 | |
| It is safe to pass null as image and/or allocation.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
 | |
|     VmaAllocation VMA_NULLABLE allocation);
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| /**
 | |
| \addtogroup group_virtual
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \brief Creates new #VmaVirtualBlock object.
 | |
| 
 | |
| \param pCreateInfo Parameters for creation.
 | |
| \param[out] pVirtualBlock Returned virtual block object or `VMA_NULL` if creation failed.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
 | |
|     const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
 | |
|     VmaVirtualBlock VMA_NULLABLE* VMA_NOT_NULL pVirtualBlock);
 | |
| 
 | |
| /** \brief Destroys #VmaVirtualBlock object.
 | |
| 
 | |
| Please note that you should consciously handle virtual allocations that could remain unfreed in the block.
 | |
| You should either free them individually using vmaVirtualFree() or call vmaClearVirtualBlock()
 | |
| if you are sure this is what you want. If you do neither, an assert is called.
 | |
| 
 | |
| If you keep pointers to some additional metadata associated with your virtual allocations in their `pUserData`,
 | |
| don't forget to free them.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(
 | |
|     VmaVirtualBlock VMA_NULLABLE virtualBlock);
 | |
| 
 | |
| /** \brief Returns true of the #VmaVirtualBlock is empty - contains 0 virtual allocations and has all its space available for new allocations.
 | |
| */
 | |
| VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock);
 | |
| 
 | |
| /** \brief Returns information about a specific virtual allocation within a virtual block, like its size and `pUserData` pointer.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo);
 | |
| 
 | |
| /** \brief Allocates new virtual allocation inside given #VmaVirtualBlock.
 | |
| 
 | |
| If the allocation fails due to not enough free space available, `VK_ERROR_OUT_OF_DEVICE_MEMORY` is returned
 | |
| (despite the function doesn't ever allocate actual GPU memory).
 | |
| `pAllocation` is then set to `VK_NULL_HANDLE` and `pOffset`, if not null, it set to `UINT64_MAX`.
 | |
| 
 | |
| \param virtualBlock Virtual block
 | |
| \param pCreateInfo Parameters for the allocation
 | |
| \param[out] pAllocation Returned handle of the new allocation
 | |
| \param[out] pOffset Returned offset of the new allocation. Optional, can be null.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo,
 | |
|     VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
 | |
|     VkDeviceSize* VMA_NULLABLE pOffset);
 | |
| 
 | |
| /** \brief Frees virtual allocation inside given #VmaVirtualBlock.
 | |
| 
 | |
| It is correct to call this function with `allocation == VK_NULL_HANDLE` - it does nothing.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation);
 | |
| 
 | |
| /** \brief Frees all virtual allocations inside given #VmaVirtualBlock.
 | |
| 
 | |
| You must either call this function or free each virtual allocation individually with vmaVirtualFree()
 | |
| before destroying a virtual block. Otherwise, an assert is called.
 | |
| 
 | |
| If you keep pointer to some additional metadata associated with your virtual allocation in its `pUserData`,
 | |
| don't forget to free it as well.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock);
 | |
| 
 | |
| /** \brief Changes custom pointer associated with given virtual allocation.
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation,
 | |
|     void* VMA_NULLABLE pUserData);
 | |
| 
 | |
| /** \brief Calculates and returns statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
 | |
| 
 | |
| This function is fast to call. For more detailed statistics, see vmaCalculateVirtualBlockStatistics().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaStatistics* VMA_NOT_NULL pStats);
 | |
| 
 | |
| /** \brief Calculates and returns detailed statistics about virtual allocations and memory usage in given #VmaVirtualBlock.
 | |
| 
 | |
| This function is slow to call. Use for debugging purposes.
 | |
| For less detailed statistics, see vmaGetVirtualBlockStatistics().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaDetailedStatistics* VMA_NOT_NULL pStats);
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| /**
 | |
| \addtogroup group_stats
 | |
| @{
 | |
| */
 | |
| 
 | |
| /** \brief Builds and returns a null-terminated string in JSON format with information about given #VmaVirtualBlock.
 | |
| \param virtualBlock Virtual block.
 | |
| \param[out] ppStatsString Returned string.
 | |
| \param detailedMap Pass `VK_FALSE` to only obtain statistics as returned by vmaCalculateVirtualBlockStatistics(). Pass `VK_TRUE` to also obtain full list of allocations and free spaces.
 | |
| 
 | |
| Returned string must be freed using vmaFreeVirtualBlockStatsString().
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
 | |
|     VkBool32 detailedMap);
 | |
| 
 | |
| /// Frees a string returned by vmaBuildVirtualBlockStatsString().
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(
 | |
|     VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     char* VMA_NULLABLE pStatsString);
 | |
| 
 | |
| /** \brief Builds and returns statistics as a null-terminated string in JSON format.
 | |
| \param allocator
 | |
| \param[out] ppStatsString Must be freed using vmaFreeStatsString() function.
 | |
| \param detailedMap
 | |
| */
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     char* VMA_NULLABLE* VMA_NOT_NULL ppStatsString,
 | |
|     VkBool32 detailedMap);
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     char* VMA_NULLABLE pStatsString);
 | |
| 
 | |
| /** @} */
 | |
| 
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| #endif // _VMA_FUNCTION_HEADERS
 | |
| 
 | |
| #ifdef __cplusplus
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #endif // AMD_VULKAN_MEMORY_ALLOCATOR_H
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| //
 | |
| //    IMPLEMENTATION
 | |
| //
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| // For Visual Studio IntelliSense.
 | |
| #if defined(__cplusplus) && defined(__INTELLISENSE__)
 | |
| #define VMA_IMPLEMENTATION
 | |
| #endif
 | |
| 
 | |
| #ifdef VMA_IMPLEMENTATION
 | |
| #undef VMA_IMPLEMENTATION
 | |
| 
 | |
| #include <cstdint>
 | |
| #include <cstdlib>
 | |
| #include <cstring>
 | |
| #include <utility>
 | |
| #include <type_traits>
 | |
| 
 | |
| #if !defined(VMA_CPP20)
 | |
|     #if __cplusplus >= 202002L || _MSVC_LANG >= 202002L // C++20
 | |
|         #define VMA_CPP20 1
 | |
|     #else
 | |
|         #define VMA_CPP20 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|     #include <intrin.h> // For functions like __popcnt, _BitScanForward etc.
 | |
| #endif
 | |
| #if VMA_CPP20
 | |
|     #include <bit> // For std::popcount
 | |
| #endif
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     #include <cstdio> // For snprintf
 | |
| #endif
 | |
| 
 | |
| /*******************************************************************************
 | |
| CONFIGURATION SECTION
 | |
| 
 | |
| Define some of these macros before each #include of this header or change them
 | |
| here if you need other then default behavior depending on your environment.
 | |
| */
 | |
| #ifndef _VMA_CONFIGURATION
 | |
| 
 | |
| /*
 | |
| Define this macro to 1 to make the library fetch pointers to Vulkan functions
 | |
| internally, like:
 | |
| 
 | |
|     vulkanFunctions.vkAllocateMemory = &vkAllocateMemory;
 | |
| */
 | |
| #if !defined(VMA_STATIC_VULKAN_FUNCTIONS) && !defined(VK_NO_PROTOTYPES)
 | |
|     #define VMA_STATIC_VULKAN_FUNCTIONS 1
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| Define this macro to 1 to make the library fetch pointers to Vulkan functions
 | |
| internally, like:
 | |
| 
 | |
|     vulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkGetDeviceProcAddr(device, "vkAllocateMemory");
 | |
| 
 | |
| To use this feature in new versions of VMA you now have to pass
 | |
| VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as
 | |
| VmaAllocatorCreateInfo::pVulkanFunctions. Other members can be null.
 | |
| */
 | |
| #if !defined(VMA_DYNAMIC_VULKAN_FUNCTIONS)
 | |
|     #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_USE_STL_SHARED_MUTEX
 | |
|     #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
 | |
|         #define VMA_USE_STL_SHARED_MUTEX 1
 | |
|     // Visual studio defines __cplusplus properly only when passed additional parameter: /Zc:__cplusplus
 | |
|     // Otherwise it is always 199711L, despite shared_mutex works since Visual Studio 2015 Update 2.
 | |
|     #elif defined(_MSC_FULL_VER) && _MSC_FULL_VER >= 190023918 && __cplusplus == 199711L && _MSVC_LANG >= 201703L
 | |
|         #define VMA_USE_STL_SHARED_MUTEX 1
 | |
|     #else
 | |
|         #define VMA_USE_STL_SHARED_MUTEX 0
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| Define this macro to include custom header files without having to edit this file directly, e.g.:
 | |
| 
 | |
|     // Inside of "my_vma_configuration_user_includes.h":
 | |
| 
 | |
|     #include "my_custom_assert.h" // for MY_CUSTOM_ASSERT
 | |
|     #include "my_custom_min.h" // for my_custom_min
 | |
|     #include <algorithm>
 | |
|     #include <mutex>
 | |
| 
 | |
|     // Inside a different file, which includes "vk_mem_alloc.h":
 | |
| 
 | |
|     #define VMA_CONFIGURATION_USER_INCLUDES_H "my_vma_configuration_user_includes.h"
 | |
|     #define VMA_ASSERT(expr) MY_CUSTOM_ASSERT(expr)
 | |
|     #define VMA_MIN(v1, v2)  (my_custom_min(v1, v2))
 | |
|     #include "vk_mem_alloc.h"
 | |
|     ...
 | |
| 
 | |
| The following headers are used in this CONFIGURATION section only, so feel free to
 | |
| remove them if not needed.
 | |
| */
 | |
| #if !defined(VMA_CONFIGURATION_USER_INCLUDES_H)
 | |
|     #include <cassert> // for assert
 | |
|     #include <algorithm> // for min, max
 | |
|     #include <mutex>
 | |
| #else
 | |
|     #include VMA_CONFIGURATION_USER_INCLUDES_H
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_NULL
 | |
|    // Value used as null pointer. Define it to e.g.: nullptr, NULL, 0, (void*)0.
 | |
|    #define VMA_NULL   nullptr
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_FALLTHROUGH
 | |
|     #if __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
 | |
|         #define VMA_FALLTHROUGH [[fallthrough]]
 | |
|     #else
 | |
|         #define VMA_FALLTHROUGH
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| // Normal assert to check for programmer's errors, especially in Debug configuration.
 | |
| #ifndef VMA_ASSERT
 | |
|    #ifdef NDEBUG
 | |
|        #define VMA_ASSERT(expr)
 | |
|    #else
 | |
|        #define VMA_ASSERT(expr)         assert(expr)
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| // Assert that will be called very often, like inside data structures e.g. operator[].
 | |
| // Making it non-empty can make program slow.
 | |
| #ifndef VMA_HEAVY_ASSERT
 | |
|    #ifdef NDEBUG
 | |
|        #define VMA_HEAVY_ASSERT(expr)
 | |
|    #else
 | |
|        #define VMA_HEAVY_ASSERT(expr)   //VMA_ASSERT(expr)
 | |
|    #endif
 | |
| #endif
 | |
| 
 | |
| // If your compiler is not compatible with C++17 and definition of
 | |
| // aligned_alloc() function is missing, uncommenting following line may help:
 | |
| 
 | |
| //#include <malloc.h>
 | |
| 
 | |
| #if defined(__ANDROID_API__) && (__ANDROID_API__ < 16)
 | |
| #include <cstdlib>
 | |
| static void* vma_aligned_alloc(size_t alignment, size_t size)
 | |
| {
 | |
|     // alignment must be >= sizeof(void*)
 | |
|     if(alignment < sizeof(void*))
 | |
|     {
 | |
|         alignment = sizeof(void*);
 | |
|     }
 | |
| 
 | |
|     return memalign(alignment, size);
 | |
| }
 | |
| #elif defined(__APPLE__) || defined(__ANDROID__) || (defined(__linux__) && defined(__GLIBCXX__) && !defined(_GLIBCXX_HAVE_ALIGNED_ALLOC))
 | |
| #include <cstdlib>
 | |
| 
 | |
| #if defined(__APPLE__)
 | |
| #include <AvailabilityMacros.h>
 | |
| #endif
 | |
| 
 | |
| static void* vma_aligned_alloc(size_t alignment, size_t size)
 | |
| {
 | |
|     // Unfortunately, aligned_alloc causes VMA to crash due to it returning null pointers. (At least under 11.4)
 | |
|     // Therefore, for now disable this specific exception until a proper solution is found.
 | |
|     //#if defined(__APPLE__) && (defined(MAC_OS_X_VERSION_10_16) || defined(__IPHONE_14_0))
 | |
|     //#if MAC_OS_X_VERSION_MAX_ALLOWED >= MAC_OS_X_VERSION_10_16 || __IPHONE_OS_VERSION_MAX_ALLOWED >= __IPHONE_14_0
 | |
|     //    // For C++14, usr/include/malloc/_malloc.h declares aligned_alloc()) only
 | |
|     //    // with the MacOSX11.0 SDK in Xcode 12 (which is what adds
 | |
|     //    // MAC_OS_X_VERSION_10_16), even though the function is marked
 | |
|     //    // available for 10.15. That is why the preprocessor checks for 10.16 but
 | |
|     //    // the __builtin_available checks for 10.15.
 | |
|     //    // People who use C++17 could call aligned_alloc with the 10.15 SDK already.
 | |
|     //    if (__builtin_available(macOS 10.15, iOS 13, *))
 | |
|     //        return aligned_alloc(alignment, size);
 | |
|     //#endif
 | |
|     //#endif
 | |
| 
 | |
|     // alignment must be >= sizeof(void*)
 | |
|     if(alignment < sizeof(void*))
 | |
|     {
 | |
|         alignment = sizeof(void*);
 | |
|     }
 | |
| 
 | |
|     void *pointer;
 | |
|     if(posix_memalign(&pointer, alignment, size) == 0)
 | |
|         return pointer;
 | |
|     return VMA_NULL;
 | |
| }
 | |
| #elif defined(_WIN32)
 | |
| static void* vma_aligned_alloc(size_t alignment, size_t size)
 | |
| {
 | |
|     return _aligned_malloc(size, alignment);
 | |
| }
 | |
| #elif __cplusplus >= 201703L || _MSVC_LANG >= 201703L // C++17
 | |
| static void* vma_aligned_alloc(size_t alignment, size_t size)
 | |
| {
 | |
|     return aligned_alloc(alignment, size);
 | |
| }
 | |
| #else
 | |
| static void* vma_aligned_alloc(size_t alignment, size_t size)
 | |
| {
 | |
|     VMA_ASSERT(0 && "Could not implement aligned_alloc automatically. Please enable C++17 or later in your compiler or provide custom implementation of macro VMA_SYSTEM_ALIGNED_MALLOC (and VMA_SYSTEM_ALIGNED_FREE if needed) using the API of your system.");
 | |
|     return VMA_NULL;
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN32)
 | |
| static void vma_aligned_free(void* ptr)
 | |
| {
 | |
|     _aligned_free(ptr);
 | |
| }
 | |
| #else
 | |
| static void vma_aligned_free(void* VMA_NULLABLE ptr)
 | |
| {
 | |
|     free(ptr);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_ALIGN_OF
 | |
|    #define VMA_ALIGN_OF(type)       (alignof(type))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SYSTEM_ALIGNED_MALLOC
 | |
|    #define VMA_SYSTEM_ALIGNED_MALLOC(size, alignment) vma_aligned_alloc((alignment), (size))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SYSTEM_ALIGNED_FREE
 | |
|    // VMA_SYSTEM_FREE is the old name, but might have been defined by the user
 | |
|    #if defined(VMA_SYSTEM_FREE)
 | |
|       #define VMA_SYSTEM_ALIGNED_FREE(ptr)     VMA_SYSTEM_FREE(ptr)
 | |
|    #else
 | |
|       #define VMA_SYSTEM_ALIGNED_FREE(ptr)     vma_aligned_free(ptr)
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_COUNT_BITS_SET
 | |
|     // Returns number of bits set to 1 in (v)
 | |
|     #define VMA_COUNT_BITS_SET(v) VmaCountBitsSet(v)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_BITSCAN_LSB
 | |
|     // Scans integer for index of first nonzero value from the Least Significant Bit (LSB). If mask is 0 then returns UINT8_MAX
 | |
|     #define VMA_BITSCAN_LSB(mask) VmaBitScanLSB(mask)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_BITSCAN_MSB
 | |
|     // Scans integer for index of first nonzero value from the Most Significant Bit (MSB). If mask is 0 then returns UINT8_MAX
 | |
|     #define VMA_BITSCAN_MSB(mask) VmaBitScanMSB(mask)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_MIN
 | |
|    #define VMA_MIN(v1, v2)    ((std::min)((v1), (v2)))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_MAX
 | |
|    #define VMA_MAX(v1, v2)    ((std::max)((v1), (v2)))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SWAP
 | |
|    #define VMA_SWAP(v1, v2)   std::swap((v1), (v2))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SORT
 | |
|    #define VMA_SORT(beg, end, cmp)  std::sort(beg, end, cmp)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_LOG_FORMAT
 | |
|    #define VMA_DEBUG_LOG_FORMAT(format, ...)
 | |
|    /*
 | |
|    #define VMA_DEBUG_LOG_FORMAT(format, ...) do { \
 | |
|        printf((format), __VA_ARGS__); \
 | |
|        printf("\n"); \
 | |
|    } while(false)
 | |
|    */
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_LOG
 | |
|     #define VMA_DEBUG_LOG(str)   VMA_DEBUG_LOG_FORMAT("%s", (str))
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_CLASS_NO_COPY
 | |
|     #define VMA_CLASS_NO_COPY(className) \
 | |
|         private: \
 | |
|             className(const className&) = delete; \
 | |
|             className& operator=(const className&) = delete;
 | |
| #endif
 | |
| #ifndef VMA_CLASS_NO_COPY_NO_MOVE
 | |
|     #define VMA_CLASS_NO_COPY_NO_MOVE(className) \
 | |
|         private: \
 | |
|             className(const className&) = delete; \
 | |
|             className(className&&) = delete; \
 | |
|             className& operator=(const className&) = delete; \
 | |
|             className& operator=(className&&) = delete;
 | |
| #endif
 | |
| 
 | |
| // Define this macro to 1 to enable functions: vmaBuildStatsString, vmaFreeStatsString.
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     static inline void VmaUint32ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint32_t num)
 | |
|     {
 | |
|         snprintf(outStr, strLen, "%u", static_cast<unsigned int>(num));
 | |
|     }
 | |
|     static inline void VmaUint64ToStr(char* VMA_NOT_NULL outStr, size_t strLen, uint64_t num)
 | |
|     {
 | |
|         snprintf(outStr, strLen, "%llu", static_cast<unsigned long long>(num));
 | |
|     }
 | |
|     static inline void VmaPtrToStr(char* VMA_NOT_NULL outStr, size_t strLen, const void* ptr)
 | |
|     {
 | |
|         snprintf(outStr, strLen, "%p", ptr);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_MUTEX
 | |
|     class VmaMutex
 | |
|     {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaMutex)
 | |
|     public:
 | |
|         VmaMutex() { }
 | |
|         void Lock() { m_Mutex.lock(); }
 | |
|         void Unlock() { m_Mutex.unlock(); }
 | |
|         bool TryLock() { return m_Mutex.try_lock(); }
 | |
|     private:
 | |
|         std::mutex m_Mutex;
 | |
|     };
 | |
|     #define VMA_MUTEX VmaMutex
 | |
| #endif
 | |
| 
 | |
| // Read-write mutex, where "read" is shared access, "write" is exclusive access.
 | |
| #ifndef VMA_RW_MUTEX
 | |
|     #if VMA_USE_STL_SHARED_MUTEX
 | |
|         // Use std::shared_mutex from C++17.
 | |
|         #include <shared_mutex>
 | |
|         class VmaRWMutex
 | |
|         {
 | |
|         public:
 | |
|             void LockRead() { m_Mutex.lock_shared(); }
 | |
|             void UnlockRead() { m_Mutex.unlock_shared(); }
 | |
|             bool TryLockRead() { return m_Mutex.try_lock_shared(); }
 | |
|             void LockWrite() { m_Mutex.lock(); }
 | |
|             void UnlockWrite() { m_Mutex.unlock(); }
 | |
|             bool TryLockWrite() { return m_Mutex.try_lock(); }
 | |
|         private:
 | |
|             std::shared_mutex m_Mutex;
 | |
|         };
 | |
|         #define VMA_RW_MUTEX VmaRWMutex
 | |
|     #elif defined(_WIN32) && defined(WINVER) && WINVER >= 0x0600
 | |
|         // Use SRWLOCK from WinAPI.
 | |
|         // Minimum supported client = Windows Vista, server = Windows Server 2008.
 | |
|         class VmaRWMutex
 | |
|         {
 | |
|         public:
 | |
|             VmaRWMutex() { InitializeSRWLock(&m_Lock); }
 | |
|             void LockRead() { AcquireSRWLockShared(&m_Lock); }
 | |
|             void UnlockRead() { ReleaseSRWLockShared(&m_Lock); }
 | |
|             bool TryLockRead() { return TryAcquireSRWLockShared(&m_Lock) != FALSE; }
 | |
|             void LockWrite() { AcquireSRWLockExclusive(&m_Lock); }
 | |
|             void UnlockWrite() { ReleaseSRWLockExclusive(&m_Lock); }
 | |
|             bool TryLockWrite() { return TryAcquireSRWLockExclusive(&m_Lock) != FALSE; }
 | |
|         private:
 | |
|             SRWLOCK m_Lock;
 | |
|         };
 | |
|         #define VMA_RW_MUTEX VmaRWMutex
 | |
|     #else
 | |
|         // Less efficient fallback: Use normal mutex.
 | |
|         class VmaRWMutex
 | |
|         {
 | |
|         public:
 | |
|             void LockRead() { m_Mutex.Lock(); }
 | |
|             void UnlockRead() { m_Mutex.Unlock(); }
 | |
|             bool TryLockRead() { return m_Mutex.TryLock(); }
 | |
|             void LockWrite() { m_Mutex.Lock(); }
 | |
|             void UnlockWrite() { m_Mutex.Unlock(); }
 | |
|             bool TryLockWrite() { return m_Mutex.TryLock(); }
 | |
|         private:
 | |
|             VMA_MUTEX m_Mutex;
 | |
|         };
 | |
|         #define VMA_RW_MUTEX VmaRWMutex
 | |
|     #endif // #if VMA_USE_STL_SHARED_MUTEX
 | |
| #endif // #ifndef VMA_RW_MUTEX
 | |
| 
 | |
| /*
 | |
| If providing your own implementation, you need to implement a subset of std::atomic.
 | |
| */
 | |
| #ifndef VMA_ATOMIC_UINT32
 | |
|     #include <atomic>
 | |
|     #define VMA_ATOMIC_UINT32 std::atomic<uint32_t>
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_ATOMIC_UINT64
 | |
|     #include <atomic>
 | |
|     #define VMA_ATOMIC_UINT64 std::atomic<uint64_t>
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_ALWAYS_DEDICATED_MEMORY
 | |
|     /**
 | |
|     Every allocation will have its own memory block.
 | |
|     Define to 1 for debugging purposes only.
 | |
|     */
 | |
|     #define VMA_DEBUG_ALWAYS_DEDICATED_MEMORY (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_MIN_ALIGNMENT
 | |
|     /**
 | |
|     Minimum alignment of all allocations, in bytes.
 | |
|     Set to more than 1 for debugging purposes. Must be power of two.
 | |
|     */
 | |
|     #ifdef VMA_DEBUG_ALIGNMENT // Old name
 | |
|         #define VMA_MIN_ALIGNMENT VMA_DEBUG_ALIGNMENT
 | |
|     #else
 | |
|         #define VMA_MIN_ALIGNMENT (1)
 | |
|     #endif
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_MARGIN
 | |
|     /**
 | |
|     Minimum margin after every allocation, in bytes.
 | |
|     Set nonzero for debugging purposes only.
 | |
|     */
 | |
|     #define VMA_DEBUG_MARGIN (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_INITIALIZE_ALLOCATIONS
 | |
|     /**
 | |
|     Define this macro to 1 to automatically fill new allocations and destroyed
 | |
|     allocations with some bit pattern.
 | |
|     */
 | |
|     #define VMA_DEBUG_INITIALIZE_ALLOCATIONS (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_DETECT_CORRUPTION
 | |
|     /**
 | |
|     Define this macro to 1 together with non-zero value of VMA_DEBUG_MARGIN to
 | |
|     enable writing magic value to the margin after every allocation and
 | |
|     validating it, so that memory corruptions (out-of-bounds writes) are detected.
 | |
|     */
 | |
|     #define VMA_DEBUG_DETECT_CORRUPTION (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_GLOBAL_MUTEX
 | |
|     /**
 | |
|     Set this to 1 for debugging purposes only, to enable single mutex protecting all
 | |
|     entry calls to the library. Can be useful for debugging multithreading issues.
 | |
|     */
 | |
|     #define VMA_DEBUG_GLOBAL_MUTEX (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY
 | |
|     /**
 | |
|     Minimum value for VkPhysicalDeviceLimits::bufferImageGranularity.
 | |
|     Set to more than 1 for debugging purposes only. Must be power of two.
 | |
|     */
 | |
|     #define VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY (1)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
 | |
|     /*
 | |
|     Set this to 1 to make VMA never exceed VkPhysicalDeviceLimits::maxMemoryAllocationCount
 | |
|     and return error instead of leaving up to Vulkan implementation what to do in such cases.
 | |
|     */
 | |
|     #define VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT (0)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_SMALL_HEAP_MAX_SIZE
 | |
|    /// Maximum size of a memory heap in Vulkan to consider it "small".
 | |
|    #define VMA_SMALL_HEAP_MAX_SIZE (1024ull * 1024 * 1024)
 | |
| #endif
 | |
| 
 | |
| #ifndef VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE
 | |
|    /// Default size of a block allocated as single VkDeviceMemory from a "large" heap.
 | |
|    #define VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE (256ull * 1024 * 1024)
 | |
| #endif
 | |
| 
 | |
| /*
 | |
| Mapping hysteresis is a logic that launches when vmaMapMemory/vmaUnmapMemory is called
 | |
| or a persistently mapped allocation is created and destroyed several times in a row.
 | |
| It keeps additional +1 mapping of a device memory block to prevent calling actual
 | |
| vkMapMemory/vkUnmapMemory too many times, which may improve performance and help
 | |
| tools like RenderDoc.
 | |
| */
 | |
| #ifndef VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|     #define VMA_MAPPING_HYSTERESIS_ENABLED 1
 | |
| #endif
 | |
| 
 | |
| #define VMA_VALIDATE(cond) do { if(!(cond)) { \
 | |
|         VMA_ASSERT(0 && "Validation failed: " #cond); \
 | |
|         return false; \
 | |
|     } } while(false)
 | |
| 
 | |
| /*******************************************************************************
 | |
| END OF CONFIGURATION
 | |
| */
 | |
| #endif // _VMA_CONFIGURATION
 | |
| 
 | |
| 
 | |
| static const uint8_t VMA_ALLOCATION_FILL_PATTERN_CREATED = 0xDC;
 | |
| static const uint8_t VMA_ALLOCATION_FILL_PATTERN_DESTROYED = 0xEF;
 | |
| // Decimal 2139416166, float NaN, little-endian binary 66 E6 84 7F.
 | |
| static const uint32_t VMA_CORRUPTION_DETECTION_MAGIC_VALUE = 0x7F84E666;
 | |
| 
 | |
| // Copy of some Vulkan definitions so we don't need to check their existence just to handle few constants.
 | |
| static const uint32_t VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY = 0x00000040;
 | |
| static const uint32_t VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY = 0x00000080;
 | |
| static const uint32_t VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY = 0x00020000;
 | |
| static const uint32_t VK_IMAGE_CREATE_DISJOINT_BIT_COPY = 0x00000200;
 | |
| static const int32_t VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY = 1000158000;
 | |
| static const uint32_t VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET = 0x10000000u;
 | |
| static const uint32_t VMA_ALLOCATION_TRY_COUNT = 32;
 | |
| static const uint32_t VMA_VENDOR_ID_AMD = 4098;
 | |
| 
 | |
| // This one is tricky. Vulkan specification defines this code as available since
 | |
| // Vulkan 1.0, but doesn't actually define it in Vulkan SDK earlier than 1.2.131.
 | |
| // See pull request #207.
 | |
| #define VK_ERROR_UNKNOWN_COPY ((VkResult)-13)
 | |
| 
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| // Correspond to values of enum VmaSuballocationType.
 | |
| static const char* VMA_SUBALLOCATION_TYPE_NAMES[] =
 | |
| {
 | |
|     "FREE",
 | |
|     "UNKNOWN",
 | |
|     "BUFFER",
 | |
|     "IMAGE_UNKNOWN",
 | |
|     "IMAGE_LINEAR",
 | |
|     "IMAGE_OPTIMAL",
 | |
| };
 | |
| #endif
 | |
| 
 | |
| static VkAllocationCallbacks VmaEmptyAllocationCallbacks =
 | |
|     { VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL, VMA_NULL };
 | |
| 
 | |
| 
 | |
| #ifndef _VMA_ENUM_DECLARATIONS
 | |
| 
 | |
| enum VmaSuballocationType
 | |
| {
 | |
|     VMA_SUBALLOCATION_TYPE_FREE = 0,
 | |
|     VMA_SUBALLOCATION_TYPE_UNKNOWN = 1,
 | |
|     VMA_SUBALLOCATION_TYPE_BUFFER = 2,
 | |
|     VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN = 3,
 | |
|     VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR = 4,
 | |
|     VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL = 5,
 | |
|     VMA_SUBALLOCATION_TYPE_MAX_ENUM = 0x7FFFFFFF
 | |
| };
 | |
| 
 | |
| enum VMA_CACHE_OPERATION
 | |
| {
 | |
|     VMA_CACHE_FLUSH,
 | |
|     VMA_CACHE_INVALIDATE
 | |
| };
 | |
| 
 | |
| enum class VmaAllocationRequestType
 | |
| {
 | |
|     Normal,
 | |
|     TLSF,
 | |
|     // Used by "Linear" algorithm.
 | |
|     UpperAddress,
 | |
|     EndOf1st,
 | |
|     EndOf2nd,
 | |
| };
 | |
| 
 | |
| #endif // _VMA_ENUM_DECLARATIONS
 | |
| 
 | |
| #ifndef _VMA_FORWARD_DECLARATIONS
 | |
| // Opaque handle used by allocation algorithms to identify single allocation in any conforming way.
 | |
| VK_DEFINE_NON_DISPATCHABLE_HANDLE(VmaAllocHandle)
 | |
| 
 | |
| struct VmaMutexLock;
 | |
| struct VmaMutexLockRead;
 | |
| struct VmaMutexLockWrite;
 | |
| 
 | |
| template<typename T>
 | |
| struct AtomicTransactionalIncrement;
 | |
| 
 | |
| template<typename T>
 | |
| struct VmaStlAllocator;
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| class VmaVector;
 | |
| 
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| class VmaSmallVector;
 | |
| 
 | |
| template<typename T>
 | |
| class VmaPoolAllocator;
 | |
| 
 | |
| template<typename T>
 | |
| struct VmaListItem;
 | |
| 
 | |
| template<typename T>
 | |
| class VmaRawList;
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| class VmaList;
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| class VmaIntrusiveLinkedList;
 | |
| 
 | |
| // Unused in this version
 | |
| #if 0
 | |
| template<typename T1, typename T2>
 | |
| struct VmaPair;
 | |
| template<typename FirstT, typename SecondT>
 | |
| struct VmaPairFirstLess;
 | |
| 
 | |
| template<typename KeyT, typename ValueT>
 | |
| class VmaMap;
 | |
| #endif
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| class VmaStringBuilder;
 | |
| class VmaJsonWriter;
 | |
| #endif
 | |
| 
 | |
| class VmaDeviceMemoryBlock;
 | |
| 
 | |
| struct VmaDedicatedAllocationListItemTraits;
 | |
| class VmaDedicatedAllocationList;
 | |
| 
 | |
| struct VmaSuballocation;
 | |
| struct VmaSuballocationOffsetLess;
 | |
| struct VmaSuballocationOffsetGreater;
 | |
| struct VmaSuballocationItemSizeLess;
 | |
| 
 | |
| typedef VmaList<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> VmaSuballocationList;
 | |
| 
 | |
| struct VmaAllocationRequest;
 | |
| 
 | |
| class VmaBlockMetadata;
 | |
| class VmaBlockMetadata_Linear;
 | |
| class VmaBlockMetadata_TLSF;
 | |
| 
 | |
| class VmaBlockVector;
 | |
| 
 | |
| struct VmaPoolListItemTraits;
 | |
| 
 | |
| struct VmaCurrentBudgetData;
 | |
| 
 | |
| class VmaAllocationObjectAllocator;
 | |
| 
 | |
| #endif // _VMA_FORWARD_DECLARATIONS
 | |
| 
 | |
| 
 | |
| #ifndef _VMA_FUNCTIONS
 | |
| 
 | |
| /*
 | |
| Returns number of bits set to 1 in (v).
 | |
| 
 | |
| On specific platforms and compilers you can use instrinsics like:
 | |
| 
 | |
| Visual Studio:
 | |
|     return __popcnt(v);
 | |
| GCC, Clang:
 | |
|     return static_cast<uint32_t>(__builtin_popcount(v));
 | |
| 
 | |
| Define macro VMA_COUNT_BITS_SET to provide your optimized implementation.
 | |
| But you need to check in runtime whether user's CPU supports these, as some old processors don't.
 | |
| */
 | |
| static inline uint32_t VmaCountBitsSet(uint32_t v)
 | |
| {
 | |
| #if VMA_CPP20
 | |
|     return std::popcount(v);
 | |
| #else
 | |
|     uint32_t c = v - ((v >> 1) & 0x55555555);
 | |
|     c = ((c >> 2) & 0x33333333) + (c & 0x33333333);
 | |
|     c = ((c >> 4) + c) & 0x0F0F0F0F;
 | |
|     c = ((c >> 8) + c) & 0x00FF00FF;
 | |
|     c = ((c >> 16) + c) & 0x0000FFFF;
 | |
|     return c;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline uint8_t VmaBitScanLSB(uint64_t mask)
 | |
| {
 | |
| #if defined(_MSC_VER) && defined(_WIN64)
 | |
|     unsigned long pos;
 | |
|     if (_BitScanForward64(&pos, mask))
 | |
|         return static_cast<uint8_t>(pos);
 | |
|     return UINT8_MAX;
 | |
| #elif defined __GNUC__ || defined __clang__
 | |
|     return static_cast<uint8_t>(__builtin_ffsll(mask)) - 1U;
 | |
| #else
 | |
|     uint8_t pos = 0;
 | |
|     uint64_t bit = 1;
 | |
|     do
 | |
|     {
 | |
|         if (mask & bit)
 | |
|             return pos;
 | |
|         bit <<= 1;
 | |
|     } while (pos++ < 63);
 | |
|     return UINT8_MAX;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline uint8_t VmaBitScanLSB(uint32_t mask)
 | |
| {
 | |
| #ifdef _MSC_VER
 | |
|     unsigned long pos;
 | |
|     if (_BitScanForward(&pos, mask))
 | |
|         return static_cast<uint8_t>(pos);
 | |
|     return UINT8_MAX;
 | |
| #elif defined __GNUC__ || defined __clang__
 | |
|     return static_cast<uint8_t>(__builtin_ffs(mask)) - 1U;
 | |
| #else
 | |
|     uint8_t pos = 0;
 | |
|     uint32_t bit = 1;
 | |
|     do
 | |
|     {
 | |
|         if (mask & bit)
 | |
|             return pos;
 | |
|         bit <<= 1;
 | |
|     } while (pos++ < 31);
 | |
|     return UINT8_MAX;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static inline uint8_t VmaBitScanMSB(uint64_t mask)
 | |
| {
 | |
| #if defined(_MSC_VER) && defined(_WIN64)
 | |
|     unsigned long pos;
 | |
|     if (_BitScanReverse64(&pos, mask))
 | |
|         return static_cast<uint8_t>(pos);
 | |
| #elif defined __GNUC__ || defined __clang__
 | |
|     if (mask)
 | |
|         return 63 - static_cast<uint8_t>(__builtin_clzll(mask));
 | |
| #else
 | |
|     uint8_t pos = 63;
 | |
|     uint64_t bit = 1ULL << 63;
 | |
|     do
 | |
|     {
 | |
|         if (mask & bit)
 | |
|             return pos;
 | |
|         bit >>= 1;
 | |
|     } while (pos-- > 0);
 | |
| #endif
 | |
|     return UINT8_MAX;
 | |
| }
 | |
| 
 | |
| static inline uint8_t VmaBitScanMSB(uint32_t mask)
 | |
| {
 | |
| #ifdef _MSC_VER
 | |
|     unsigned long pos;
 | |
|     if (_BitScanReverse(&pos, mask))
 | |
|         return static_cast<uint8_t>(pos);
 | |
| #elif defined __GNUC__ || defined __clang__
 | |
|     if (mask)
 | |
|         return 31 - static_cast<uint8_t>(__builtin_clz(mask));
 | |
| #else
 | |
|     uint8_t pos = 31;
 | |
|     uint32_t bit = 1UL << 31;
 | |
|     do
 | |
|     {
 | |
|         if (mask & bit)
 | |
|             return pos;
 | |
|         bit >>= 1;
 | |
|     } while (pos-- > 0);
 | |
| #endif
 | |
|     return UINT8_MAX;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Returns true if given number is a power of two.
 | |
| T must be unsigned integer number or signed integer but always nonnegative.
 | |
| For 0 returns true.
 | |
| */
 | |
| template <typename T>
 | |
| inline bool VmaIsPow2(T x)
 | |
| {
 | |
|     return (x & (x - 1)) == 0;
 | |
| }
 | |
| 
 | |
| // Aligns given value up to nearest multiply of align value. For example: VmaAlignUp(11, 8) = 16.
 | |
| // Use types like uint32_t, uint64_t as T.
 | |
| template <typename T>
 | |
| static inline T VmaAlignUp(T val, T alignment)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
 | |
|     return (val + alignment - 1) & ~(alignment - 1);
 | |
| }
 | |
| 
 | |
| // Aligns given value down to nearest multiply of align value. For example: VmaAlignDown(11, 8) = 8.
 | |
| // Use types like uint32_t, uint64_t as T.
 | |
| template <typename T>
 | |
| static inline T VmaAlignDown(T val, T alignment)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(VmaIsPow2(alignment));
 | |
|     return val & ~(alignment - 1);
 | |
| }
 | |
| 
 | |
| // Division with mathematical rounding to nearest number.
 | |
| template <typename T>
 | |
| static inline T VmaRoundDiv(T x, T y)
 | |
| {
 | |
|     return (x + (y / (T)2)) / y;
 | |
| }
 | |
| 
 | |
| // Divide by 'y' and round up to nearest integer.
 | |
| template <typename T>
 | |
| static inline T VmaDivideRoundingUp(T x, T y)
 | |
| {
 | |
|     return (x + y - (T)1) / y;
 | |
| }
 | |
| 
 | |
| // Returns smallest power of 2 greater or equal to v.
 | |
| static inline uint32_t VmaNextPow2(uint32_t v)
 | |
| {
 | |
|     v--;
 | |
|     v |= v >> 1;
 | |
|     v |= v >> 2;
 | |
|     v |= v >> 4;
 | |
|     v |= v >> 8;
 | |
|     v |= v >> 16;
 | |
|     v++;
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static inline uint64_t VmaNextPow2(uint64_t v)
 | |
| {
 | |
|     v--;
 | |
|     v |= v >> 1;
 | |
|     v |= v >> 2;
 | |
|     v |= v >> 4;
 | |
|     v |= v >> 8;
 | |
|     v |= v >> 16;
 | |
|     v |= v >> 32;
 | |
|     v++;
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| // Returns largest power of 2 less or equal to v.
 | |
| static inline uint32_t VmaPrevPow2(uint32_t v)
 | |
| {
 | |
|     v |= v >> 1;
 | |
|     v |= v >> 2;
 | |
|     v |= v >> 4;
 | |
|     v |= v >> 8;
 | |
|     v |= v >> 16;
 | |
|     v = v ^ (v >> 1);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static inline uint64_t VmaPrevPow2(uint64_t v)
 | |
| {
 | |
|     v |= v >> 1;
 | |
|     v |= v >> 2;
 | |
|     v |= v >> 4;
 | |
|     v |= v >> 8;
 | |
|     v |= v >> 16;
 | |
|     v |= v >> 32;
 | |
|     v = v ^ (v >> 1);
 | |
|     return v;
 | |
| }
 | |
| 
 | |
| static inline bool VmaStrIsEmpty(const char* pStr)
 | |
| {
 | |
|     return pStr == VMA_NULL || *pStr == '\0';
 | |
| }
 | |
| 
 | |
| /*
 | |
| Returns true if two memory blocks occupy overlapping pages.
 | |
| ResourceA must be in less memory offset than ResourceB.
 | |
| 
 | |
| Algorithm is based on "Vulkan 1.0.39 - A Specification (with all registered Vulkan extensions)"
 | |
| chapter 11.6 "Resource Memory Association", paragraph "Buffer-Image Granularity".
 | |
| */
 | |
| static inline bool VmaBlocksOnSamePage(
 | |
|     VkDeviceSize resourceAOffset,
 | |
|     VkDeviceSize resourceASize,
 | |
|     VkDeviceSize resourceBOffset,
 | |
|     VkDeviceSize pageSize)
 | |
| {
 | |
|     VMA_ASSERT(resourceAOffset + resourceASize <= resourceBOffset && resourceASize > 0 && pageSize > 0);
 | |
|     VkDeviceSize resourceAEnd = resourceAOffset + resourceASize - 1;
 | |
|     VkDeviceSize resourceAEndPage = resourceAEnd & ~(pageSize - 1);
 | |
|     VkDeviceSize resourceBStart = resourceBOffset;
 | |
|     VkDeviceSize resourceBStartPage = resourceBStart & ~(pageSize - 1);
 | |
|     return resourceAEndPage == resourceBStartPage;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Returns true if given suballocation types could conflict and must respect
 | |
| VkPhysicalDeviceLimits::bufferImageGranularity. They conflict if one is buffer
 | |
| or linear image and another one is optimal image. If type is unknown, behave
 | |
| conservatively.
 | |
| */
 | |
| static inline bool VmaIsBufferImageGranularityConflict(
 | |
|     VmaSuballocationType suballocType1,
 | |
|     VmaSuballocationType suballocType2)
 | |
| {
 | |
|     if (suballocType1 > suballocType2)
 | |
|     {
 | |
|         VMA_SWAP(suballocType1, suballocType2);
 | |
|     }
 | |
| 
 | |
|     switch (suballocType1)
 | |
|     {
 | |
|     case VMA_SUBALLOCATION_TYPE_FREE:
 | |
|         return false;
 | |
|     case VMA_SUBALLOCATION_TYPE_UNKNOWN:
 | |
|         return true;
 | |
|     case VMA_SUBALLOCATION_TYPE_BUFFER:
 | |
|         return
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | |
|     case VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN:
 | |
|         return
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR ||
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | |
|     case VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR:
 | |
|         return
 | |
|             suballocType2 == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL;
 | |
|     case VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL:
 | |
|         return false;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return true;
 | |
|     }
 | |
| }
 | |
| 
 | |
| static void VmaWriteMagicValue(void* pData, VkDeviceSize offset)
 | |
| {
 | |
| #if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
 | |
|     uint32_t* pDst = (uint32_t*)((char*)pData + offset);
 | |
|     const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
 | |
|     for (size_t i = 0; i < numberCount; ++i, ++pDst)
 | |
|     {
 | |
|         *pDst = VMA_CORRUPTION_DETECTION_MAGIC_VALUE;
 | |
|     }
 | |
| #else
 | |
|     // no-op
 | |
| #endif
 | |
| }
 | |
| 
 | |
| static bool VmaValidateMagicValue(const void* pData, VkDeviceSize offset)
 | |
| {
 | |
| #if VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_DETECT_CORRUPTION
 | |
|     const uint32_t* pSrc = (const uint32_t*)((const char*)pData + offset);
 | |
|     const size_t numberCount = VMA_DEBUG_MARGIN / sizeof(uint32_t);
 | |
|     for (size_t i = 0; i < numberCount; ++i, ++pSrc)
 | |
|     {
 | |
|         if (*pSrc != VMA_CORRUPTION_DETECTION_MAGIC_VALUE)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Fills structure with parameters of an example buffer to be used for transfers
 | |
| during GPU memory defragmentation.
 | |
| */
 | |
| static void VmaFillGpuDefragmentationBufferCreateInfo(VkBufferCreateInfo& outBufCreateInfo)
 | |
| {
 | |
|     memset(&outBufCreateInfo, 0, sizeof(outBufCreateInfo));
 | |
|     outBufCreateInfo.sType = VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO;
 | |
|     outBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
|     outBufCreateInfo.size = (VkDeviceSize)VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE; // Example size.
 | |
| }
 | |
| 
 | |
| 
 | |
| /*
 | |
| Performs binary search and returns iterator to first element that is greater or
 | |
| equal to (key), according to comparison (cmp).
 | |
| 
 | |
| Cmp should return true if first argument is less than second argument.
 | |
| 
 | |
| Returned value is the found element, if present in the collection or place where
 | |
| new element with value (key) should be inserted.
 | |
| */
 | |
| template <typename CmpLess, typename IterT, typename KeyT>
 | |
| static IterT VmaBinaryFindFirstNotLess(IterT beg, IterT end, const KeyT& key, const CmpLess& cmp)
 | |
| {
 | |
|     size_t down = 0, up = size_t(end - beg);
 | |
|     while (down < up)
 | |
|     {
 | |
|         const size_t mid = down + (up - down) / 2;  // Overflow-safe midpoint calculation
 | |
|         if (cmp(*(beg + mid), key))
 | |
|         {
 | |
|             down = mid + 1;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             up = mid;
 | |
|         }
 | |
|     }
 | |
|     return beg + down;
 | |
| }
 | |
| 
 | |
| template<typename CmpLess, typename IterT, typename KeyT>
 | |
| IterT VmaBinaryFindSorted(const IterT& beg, const IterT& end, const KeyT& value, const CmpLess& cmp)
 | |
| {
 | |
|     IterT it = VmaBinaryFindFirstNotLess<CmpLess, IterT, KeyT>(
 | |
|         beg, end, value, cmp);
 | |
|     if (it == end ||
 | |
|         (!cmp(*it, value) && !cmp(value, *it)))
 | |
|     {
 | |
|         return it;
 | |
|     }
 | |
|     return end;
 | |
| }
 | |
| 
 | |
| /*
 | |
| Returns true if all pointers in the array are not-null and unique.
 | |
| Warning! O(n^2) complexity. Use only inside VMA_HEAVY_ASSERT.
 | |
| T must be pointer type, e.g. VmaAllocation, VmaPool.
 | |
| */
 | |
| template<typename T>
 | |
| static bool VmaValidatePointerArray(uint32_t count, const T* arr)
 | |
| {
 | |
|     for (uint32_t i = 0; i < count; ++i)
 | |
|     {
 | |
|         const T iPtr = arr[i];
 | |
|         if (iPtr == VMA_NULL)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|         for (uint32_t j = i + 1; j < count; ++j)
 | |
|         {
 | |
|             if (iPtr == arr[j])
 | |
|             {
 | |
|                 return false;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| template<typename MainT, typename NewT>
 | |
| static inline void VmaPnextChainPushFront(MainT* mainStruct, NewT* newStruct)
 | |
| {
 | |
|     newStruct->pNext = mainStruct->pNext;
 | |
|     mainStruct->pNext = newStruct;
 | |
| }
 | |
| 
 | |
| // This is the main algorithm that guides the selection of a memory type best for an allocation -
 | |
| // converts usage to required/preferred/not preferred flags.
 | |
| static bool FindMemoryPreferences(
 | |
|     bool isIntegratedGPU,
 | |
|     const VmaAllocationCreateInfo& allocCreateInfo,
 | |
|     VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown.
 | |
|     VkMemoryPropertyFlags& outRequiredFlags,
 | |
|     VkMemoryPropertyFlags& outPreferredFlags,
 | |
|     VkMemoryPropertyFlags& outNotPreferredFlags)
 | |
| {
 | |
|     outRequiredFlags = allocCreateInfo.requiredFlags;
 | |
|     outPreferredFlags = allocCreateInfo.preferredFlags;
 | |
|     outNotPreferredFlags = 0;
 | |
| 
 | |
|     switch(allocCreateInfo.usage)
 | |
|     {
 | |
|     case VMA_MEMORY_USAGE_UNKNOWN:
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_GPU_ONLY:
 | |
|         if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | |
|         {
 | |
|             outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|         }
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_CPU_ONLY:
 | |
|         outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_CPU_TO_GPU:
 | |
|         outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|         if(!isIntegratedGPU || (outPreferredFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | |
|         {
 | |
|             outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|         }
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_GPU_TO_CPU:
 | |
|         outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|         outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_CPU_COPY:
 | |
|         outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED:
 | |
|         outRequiredFlags |= VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT;
 | |
|         break;
 | |
|     case VMA_MEMORY_USAGE_AUTO:
 | |
|     case VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE:
 | |
|     case VMA_MEMORY_USAGE_AUTO_PREFER_HOST:
 | |
|     {
 | |
|         if(bufImgUsage == UINT32_MAX)
 | |
|         {
 | |
|             VMA_ASSERT(0 && "VMA_MEMORY_USAGE_AUTO* values can only be used with functions like vmaCreateBuffer, vmaCreateImage so that the details of the created resource are known.");
 | |
|             return false;
 | |
|         }
 | |
|         // This relies on values of VK_IMAGE_USAGE_TRANSFER* being the same VK_BUFFER_IMAGE_TRANSFER*.
 | |
|         const bool deviceAccess = (bufImgUsage & ~static_cast<VkFlags>(VK_BUFFER_USAGE_TRANSFER_DST_BIT | VK_BUFFER_USAGE_TRANSFER_SRC_BIT)) != 0;
 | |
|         const bool hostAccessSequentialWrite = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT) != 0;
 | |
|         const bool hostAccessRandom = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) != 0;
 | |
|         const bool hostAccessAllowTransferInstead = (allocCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) != 0;
 | |
|         const bool preferDevice = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE;
 | |
|         const bool preferHost = allocCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST;
 | |
| 
 | |
|         // CPU random access - e.g. a buffer written to or transferred from GPU to read back on CPU.
 | |
|         if(hostAccessRandom)
 | |
|         {
 | |
|             // Prefer cached. Cannot require it, because some platforms don't have it (e.g. Raspberry Pi - see #362)!
 | |
|             outPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | |
| 
 | |
|             if (!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
 | |
|             {
 | |
|                 // Nice if it will end up in HOST_VISIBLE, but more importantly prefer DEVICE_LOCAL.
 | |
|                 // Omitting HOST_VISIBLE here is intentional.
 | |
|                 // In case there is DEVICE_LOCAL | HOST_VISIBLE | HOST_CACHED, it will pick that one.
 | |
|                 // Otherwise, this will give same weight to DEVICE_LOCAL as HOST_VISIBLE | HOST_CACHED and select the former if occurs first on the list.
 | |
|                 outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Always CPU memory.
 | |
|                 outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|             }
 | |
|         }
 | |
|         // CPU sequential write - may be CPU or host-visible GPU memory, uncached and write-combined.
 | |
|         else if(hostAccessSequentialWrite)
 | |
|         {
 | |
|             // Want uncached and write-combined.
 | |
|             outNotPreferredFlags |= VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | |
| 
 | |
|             if(!isIntegratedGPU && deviceAccess && hostAccessAllowTransferInstead && !preferHost)
 | |
|             {
 | |
|                 outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 outRequiredFlags |= VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|                 // Direct GPU access, CPU sequential write (e.g. a dynamic uniform buffer updated every frame)
 | |
|                 if(deviceAccess)
 | |
|                 {
 | |
|                     // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose GPU memory.
 | |
|                     if(preferHost)
 | |
|                         outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|                     else
 | |
|                         outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|                 }
 | |
|                 // GPU no direct access, CPU sequential write (e.g. an upload buffer to be transferred to the GPU)
 | |
|                 else
 | |
|                 {
 | |
|                     // Could go to CPU memory or GPU BAR/unified. Up to the user to decide. If no preference, choose CPU memory.
 | |
|                     if(preferDevice)
 | |
|                         outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|                     else
 | |
|                         outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         // No CPU access
 | |
|         else
 | |
|         {
 | |
|             // if(deviceAccess)
 | |
|             //
 | |
|             // GPU access, no CPU access (e.g. a color attachment image) - prefer GPU memory,
 | |
|             // unless there is a clear preference from the user not to do so.
 | |
|             //
 | |
|             // else:
 | |
|             //
 | |
|             // No direct GPU access, no CPU access, just transfers.
 | |
|             // It may be staging copy intended for e.g. preserving image for next frame (then better GPU memory) or
 | |
|             // a "swap file" copy to free some GPU memory (then better CPU memory).
 | |
|             // Up to the user to decide. If no preferece, assume the former and choose GPU memory.
 | |
| 
 | |
|             if(preferHost)
 | |
|                 outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|             else
 | |
|                 outPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
| 
 | |
|     // Avoid DEVICE_COHERENT unless explicitly requested.
 | |
|     if(((allocCreateInfo.requiredFlags | allocCreateInfo.preferredFlags) &
 | |
|         (VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)) == 0)
 | |
|     {
 | |
|         outNotPreferredFlags |= VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| ////////////////////////////////////////////////////////////////////////////////
 | |
| // Memory allocation
 | |
| 
 | |
| static void* VmaMalloc(const VkAllocationCallbacks* pAllocationCallbacks, size_t size, size_t alignment)
 | |
| {
 | |
|     void* result = VMA_NULL;
 | |
|     if ((pAllocationCallbacks != VMA_NULL) &&
 | |
|         (pAllocationCallbacks->pfnAllocation != VMA_NULL))
 | |
|     {
 | |
|         result = (*pAllocationCallbacks->pfnAllocation)(
 | |
|             pAllocationCallbacks->pUserData,
 | |
|             size,
 | |
|             alignment,
 | |
|             VK_SYSTEM_ALLOCATION_SCOPE_OBJECT);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         result = VMA_SYSTEM_ALIGNED_MALLOC(size, alignment);
 | |
|     }
 | |
|     VMA_ASSERT(result != VMA_NULL && "CPU memory allocation failed.");
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| static void VmaFree(const VkAllocationCallbacks* pAllocationCallbacks, void* ptr)
 | |
| {
 | |
|     if ((pAllocationCallbacks != VMA_NULL) &&
 | |
|         (pAllocationCallbacks->pfnFree != VMA_NULL))
 | |
|     {
 | |
|         (*pAllocationCallbacks->pfnFree)(pAllocationCallbacks->pUserData, ptr);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_SYSTEM_ALIGNED_FREE(ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T* VmaAllocate(const VkAllocationCallbacks* pAllocationCallbacks)
 | |
| {
 | |
|     return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T), VMA_ALIGN_OF(T));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T* VmaAllocateArray(const VkAllocationCallbacks* pAllocationCallbacks, size_t count)
 | |
| {
 | |
|     return (T*)VmaMalloc(pAllocationCallbacks, sizeof(T) * count, VMA_ALIGN_OF(T));
 | |
| }
 | |
| 
 | |
| #define vma_new(allocator, type)   new(VmaAllocate<type>(allocator))(type)
 | |
| 
 | |
| #define vma_new_array(allocator, type, count)   new(VmaAllocateArray<type>((allocator), (count)))(type)
 | |
| 
 | |
| template<typename T>
 | |
| static void vma_delete(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr)
 | |
| {
 | |
|     ptr->~T();
 | |
|     VmaFree(pAllocationCallbacks, ptr);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void vma_delete_array(const VkAllocationCallbacks* pAllocationCallbacks, T* ptr, size_t count)
 | |
| {
 | |
|     if (ptr != VMA_NULL)
 | |
|     {
 | |
|         for (size_t i = count; i--; )
 | |
|         {
 | |
|             ptr[i].~T();
 | |
|         }
 | |
|         VmaFree(pAllocationCallbacks, ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr)
 | |
| {
 | |
|     if (srcStr != VMA_NULL)
 | |
|     {
 | |
|         const size_t len = strlen(srcStr);
 | |
|         char* const result = vma_new_array(allocs, char, len + 1);
 | |
|         memcpy(result, srcStr, len + 1);
 | |
|         return result;
 | |
|     }
 | |
|     return VMA_NULL;
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| static char* VmaCreateStringCopy(const VkAllocationCallbacks* allocs, const char* srcStr, size_t strLen)
 | |
| {
 | |
|     if (srcStr != VMA_NULL)
 | |
|     {
 | |
|         char* const result = vma_new_array(allocs, char, strLen + 1);
 | |
|         memcpy(result, srcStr, strLen);
 | |
|         result[strLen] = '\0';
 | |
|         return result;
 | |
|     }
 | |
|     return VMA_NULL;
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| static void VmaFreeString(const VkAllocationCallbacks* allocs, char* str)
 | |
| {
 | |
|     if (str != VMA_NULL)
 | |
|     {
 | |
|         const size_t len = strlen(str);
 | |
|         vma_delete_array(allocs, str, len + 1);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename CmpLess, typename VectorT>
 | |
| size_t VmaVectorInsertSorted(VectorT& vector, const typename VectorT::value_type& value)
 | |
| {
 | |
|     const size_t indexToInsert = VmaBinaryFindFirstNotLess(
 | |
|         vector.data(),
 | |
|         vector.data() + vector.size(),
 | |
|         value,
 | |
|         CmpLess()) - vector.data();
 | |
|     VmaVectorInsert(vector, indexToInsert, value);
 | |
|     return indexToInsert;
 | |
| }
 | |
| 
 | |
| template<typename CmpLess, typename VectorT>
 | |
| bool VmaVectorRemoveSorted(VectorT& vector, const typename VectorT::value_type& value)
 | |
| {
 | |
|     CmpLess comparator;
 | |
|     typename VectorT::iterator it = VmaBinaryFindFirstNotLess(
 | |
|         vector.begin(),
 | |
|         vector.end(),
 | |
|         value,
 | |
|         comparator);
 | |
|     if ((it != vector.end()) && !comparator(*it, value) && !comparator(value, *it))
 | |
|     {
 | |
|         size_t indexToRemove = it - vector.begin();
 | |
|         VmaVectorRemove(vector, indexToRemove);
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| #endif // _VMA_FUNCTIONS
 | |
| 
 | |
| #ifndef _VMA_STATISTICS_FUNCTIONS
 | |
| 
 | |
| static void VmaClearStatistics(VmaStatistics& outStats)
 | |
| {
 | |
|     outStats.blockCount = 0;
 | |
|     outStats.allocationCount = 0;
 | |
|     outStats.blockBytes = 0;
 | |
|     outStats.allocationBytes = 0;
 | |
| }
 | |
| 
 | |
| static void VmaAddStatistics(VmaStatistics& inoutStats, const VmaStatistics& src)
 | |
| {
 | |
|     inoutStats.blockCount += src.blockCount;
 | |
|     inoutStats.allocationCount += src.allocationCount;
 | |
|     inoutStats.blockBytes += src.blockBytes;
 | |
|     inoutStats.allocationBytes += src.allocationBytes;
 | |
| }
 | |
| 
 | |
| static void VmaClearDetailedStatistics(VmaDetailedStatistics& outStats)
 | |
| {
 | |
|     VmaClearStatistics(outStats.statistics);
 | |
|     outStats.unusedRangeCount = 0;
 | |
|     outStats.allocationSizeMin = VK_WHOLE_SIZE;
 | |
|     outStats.allocationSizeMax = 0;
 | |
|     outStats.unusedRangeSizeMin = VK_WHOLE_SIZE;
 | |
|     outStats.unusedRangeSizeMax = 0;
 | |
| }
 | |
| 
 | |
| static void VmaAddDetailedStatisticsAllocation(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
 | |
| {
 | |
|     inoutStats.statistics.allocationCount++;
 | |
|     inoutStats.statistics.allocationBytes += size;
 | |
|     inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, size);
 | |
|     inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, size);
 | |
| }
 | |
| 
 | |
| static void VmaAddDetailedStatisticsUnusedRange(VmaDetailedStatistics& inoutStats, VkDeviceSize size)
 | |
| {
 | |
|     inoutStats.unusedRangeCount++;
 | |
|     inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, size);
 | |
|     inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, size);
 | |
| }
 | |
| 
 | |
| static void VmaAddDetailedStatistics(VmaDetailedStatistics& inoutStats, const VmaDetailedStatistics& src)
 | |
| {
 | |
|     VmaAddStatistics(inoutStats.statistics, src.statistics);
 | |
|     inoutStats.unusedRangeCount += src.unusedRangeCount;
 | |
|     inoutStats.allocationSizeMin = VMA_MIN(inoutStats.allocationSizeMin, src.allocationSizeMin);
 | |
|     inoutStats.allocationSizeMax = VMA_MAX(inoutStats.allocationSizeMax, src.allocationSizeMax);
 | |
|     inoutStats.unusedRangeSizeMin = VMA_MIN(inoutStats.unusedRangeSizeMin, src.unusedRangeSizeMin);
 | |
|     inoutStats.unusedRangeSizeMax = VMA_MAX(inoutStats.unusedRangeSizeMax, src.unusedRangeSizeMax);
 | |
| }
 | |
| 
 | |
| #endif // _VMA_STATISTICS_FUNCTIONS
 | |
| 
 | |
| #ifndef _VMA_MUTEX_LOCK
 | |
| // Helper RAII class to lock a mutex in constructor and unlock it in destructor (at the end of scope).
 | |
| struct VmaMutexLock
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLock)
 | |
| public:
 | |
|     VmaMutexLock(VMA_MUTEX& mutex, bool useMutex = true) :
 | |
|         m_pMutex(useMutex ? &mutex : VMA_NULL)
 | |
|     {
 | |
|         if (m_pMutex) { m_pMutex->Lock(); }
 | |
|     }
 | |
|     ~VmaMutexLock() {  if (m_pMutex) { m_pMutex->Unlock(); } }
 | |
| 
 | |
| private:
 | |
|     VMA_MUTEX* m_pMutex;
 | |
| };
 | |
| 
 | |
| // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for reading.
 | |
| struct VmaMutexLockRead
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockRead)
 | |
| public:
 | |
|     VmaMutexLockRead(VMA_RW_MUTEX& mutex, bool useMutex) :
 | |
|         m_pMutex(useMutex ? &mutex : VMA_NULL)
 | |
|     {
 | |
|         if (m_pMutex) { m_pMutex->LockRead(); }
 | |
|     }
 | |
|     ~VmaMutexLockRead() { if (m_pMutex) { m_pMutex->UnlockRead(); } }
 | |
| 
 | |
| private:
 | |
|     VMA_RW_MUTEX* m_pMutex;
 | |
| };
 | |
| 
 | |
| // Helper RAII class to lock a RW mutex in constructor and unlock it in destructor (at the end of scope), for writing.
 | |
| struct VmaMutexLockWrite
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaMutexLockWrite)
 | |
| public:
 | |
|     VmaMutexLockWrite(VMA_RW_MUTEX& mutex, bool useMutex)
 | |
|         : m_pMutex(useMutex ? &mutex : VMA_NULL)
 | |
|     {
 | |
|         if (m_pMutex) { m_pMutex->LockWrite(); }
 | |
|     }
 | |
|     ~VmaMutexLockWrite() { if (m_pMutex) { m_pMutex->UnlockWrite(); } }
 | |
| 
 | |
| private:
 | |
|     VMA_RW_MUTEX* m_pMutex;
 | |
| };
 | |
| 
 | |
| #if VMA_DEBUG_GLOBAL_MUTEX
 | |
|     static VMA_MUTEX gDebugGlobalMutex;
 | |
|     #define VMA_DEBUG_GLOBAL_MUTEX_LOCK VmaMutexLock debugGlobalMutexLock(gDebugGlobalMutex, true);
 | |
| #else
 | |
|     #define VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| #endif
 | |
| #endif // _VMA_MUTEX_LOCK
 | |
| 
 | |
| #ifndef _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
 | |
| // An object that increments given atomic but decrements it back in the destructor unless Commit() is called.
 | |
| template<typename AtomicT>
 | |
| struct AtomicTransactionalIncrement
 | |
| {
 | |
| public:
 | |
|     using T = decltype(AtomicT().load());
 | |
| 
 | |
|     ~AtomicTransactionalIncrement()
 | |
|     {
 | |
|         if(m_Atomic)
 | |
|             --(*m_Atomic);
 | |
|     }
 | |
| 
 | |
|     void Commit() { m_Atomic = nullptr; }
 | |
|     T Increment(AtomicT* atomic)
 | |
|     {
 | |
|         m_Atomic = atomic;
 | |
|         return m_Atomic->fetch_add(1);
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     AtomicT* m_Atomic = nullptr;
 | |
| };
 | |
| #endif // _VMA_ATOMIC_TRANSACTIONAL_INCREMENT
 | |
| 
 | |
| #ifndef _VMA_STL_ALLOCATOR
 | |
| // STL-compatible allocator.
 | |
| template<typename T>
 | |
| struct VmaStlAllocator
 | |
| {
 | |
|     const VkAllocationCallbacks* const m_pCallbacks;
 | |
|     typedef T value_type;
 | |
| 
 | |
|     VmaStlAllocator(const VkAllocationCallbacks* pCallbacks) : m_pCallbacks(pCallbacks) {}
 | |
|     template<typename U>
 | |
|     VmaStlAllocator(const VmaStlAllocator<U>& src) : m_pCallbacks(src.m_pCallbacks) {}
 | |
|     VmaStlAllocator(const VmaStlAllocator&) = default;
 | |
|     VmaStlAllocator& operator=(const VmaStlAllocator&) = delete;
 | |
| 
 | |
|     T* allocate(size_t n) { return VmaAllocateArray<T>(m_pCallbacks, n); }
 | |
|     void deallocate(T* p, size_t n) { VmaFree(m_pCallbacks, p); }
 | |
| 
 | |
|     template<typename U>
 | |
|     bool operator==(const VmaStlAllocator<U>& rhs) const
 | |
|     {
 | |
|         return m_pCallbacks == rhs.m_pCallbacks;
 | |
|     }
 | |
|     template<typename U>
 | |
|     bool operator!=(const VmaStlAllocator<U>& rhs) const
 | |
|     {
 | |
|         return m_pCallbacks != rhs.m_pCallbacks;
 | |
|     }
 | |
| };
 | |
| #endif // _VMA_STL_ALLOCATOR
 | |
| 
 | |
| #ifndef _VMA_VECTOR
 | |
| /* Class with interface compatible with subset of std::vector.
 | |
| T must be POD because constructors and destructors are not called and memcpy is
 | |
| used for these objects. */
 | |
| template<typename T, typename AllocatorT>
 | |
| class VmaVector
 | |
| {
 | |
| public:
 | |
|     typedef T value_type;
 | |
|     typedef T* iterator;
 | |
|     typedef const T* const_iterator;
 | |
| 
 | |
|     VmaVector(const AllocatorT& allocator);
 | |
|     VmaVector(size_t count, const AllocatorT& allocator);
 | |
|     // This version of the constructor is here for compatibility with pre-C++14 std::vector.
 | |
|     // value is unused.
 | |
|     VmaVector(size_t count, const T& value, const AllocatorT& allocator) : VmaVector(count, allocator) {}
 | |
|     VmaVector(const VmaVector<T, AllocatorT>& src);
 | |
|     VmaVector& operator=(const VmaVector& rhs);
 | |
|     ~VmaVector() { VmaFree(m_Allocator.m_pCallbacks, m_pArray); }
 | |
| 
 | |
|     bool empty() const { return m_Count == 0; }
 | |
|     size_t size() const { return m_Count; }
 | |
|     T* data() { return m_pArray; }
 | |
|     T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
 | |
|     T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
 | |
|     const T* data() const { return m_pArray; }
 | |
|     const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[0]; }
 | |
|     const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return m_pArray[m_Count - 1]; }
 | |
| 
 | |
|     iterator begin() { return m_pArray; }
 | |
|     iterator end() { return m_pArray + m_Count; }
 | |
|     const_iterator cbegin() const { return m_pArray; }
 | |
|     const_iterator cend() const { return m_pArray + m_Count; }
 | |
|     const_iterator begin() const { return cbegin(); }
 | |
|     const_iterator end() const { return cend(); }
 | |
| 
 | |
|     void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
 | |
|     void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
 | |
|     void push_front(const T& src) { insert(0, src); }
 | |
| 
 | |
|     void push_back(const T& src);
 | |
|     void reserve(size_t newCapacity, bool freeMemory = false);
 | |
|     void resize(size_t newCount);
 | |
|     void clear() { resize(0); }
 | |
|     void shrink_to_fit();
 | |
|     void insert(size_t index, const T& src);
 | |
|     void remove(size_t index);
 | |
| 
 | |
|     T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
 | |
|     const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return m_pArray[index]; }
 | |
| 
 | |
| private:
 | |
|     AllocatorT m_Allocator;
 | |
|     T* m_pArray;
 | |
|     size_t m_Count;
 | |
|     size_t m_Capacity;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_VECTOR_FUNCTIONS
 | |
| template<typename T, typename AllocatorT>
 | |
| VmaVector<T, AllocatorT>::VmaVector(const AllocatorT& allocator)
 | |
|     : m_Allocator(allocator),
 | |
|     m_pArray(VMA_NULL),
 | |
|     m_Count(0),
 | |
|     m_Capacity(0) {}
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| VmaVector<T, AllocatorT>::VmaVector(size_t count, const AllocatorT& allocator)
 | |
|     : m_Allocator(allocator),
 | |
|     m_pArray(count ? (T*)VmaAllocateArray<T>(allocator.m_pCallbacks, count) : VMA_NULL),
 | |
|     m_Count(count),
 | |
|     m_Capacity(count) {}
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| VmaVector<T, AllocatorT>::VmaVector(const VmaVector& src)
 | |
|     : m_Allocator(src.m_Allocator),
 | |
|     m_pArray(src.m_Count ? (T*)VmaAllocateArray<T>(src.m_Allocator.m_pCallbacks, src.m_Count) : VMA_NULL),
 | |
|     m_Count(src.m_Count),
 | |
|     m_Capacity(src.m_Count)
 | |
| {
 | |
|     if (m_Count != 0)
 | |
|     {
 | |
|         memcpy(m_pArray, src.m_pArray, m_Count * sizeof(T));
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| VmaVector<T, AllocatorT>& VmaVector<T, AllocatorT>::operator=(const VmaVector& rhs)
 | |
| {
 | |
|     if (&rhs != this)
 | |
|     {
 | |
|         resize(rhs.m_Count);
 | |
|         if (m_Count != 0)
 | |
|         {
 | |
|             memcpy(m_pArray, rhs.m_pArray, m_Count * sizeof(T));
 | |
|         }
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| void VmaVector<T, AllocatorT>::push_back(const T& src)
 | |
| {
 | |
|     const size_t newIndex = size();
 | |
|     resize(newIndex + 1);
 | |
|     m_pArray[newIndex] = src;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| void VmaVector<T, AllocatorT>::reserve(size_t newCapacity, bool freeMemory)
 | |
| {
 | |
|     newCapacity = VMA_MAX(newCapacity, m_Count);
 | |
| 
 | |
|     if ((newCapacity < m_Capacity) && !freeMemory)
 | |
|     {
 | |
|         newCapacity = m_Capacity;
 | |
|     }
 | |
| 
 | |
|     if (newCapacity != m_Capacity)
 | |
|     {
 | |
|         T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator, newCapacity) : VMA_NULL;
 | |
|         if (m_Count != 0)
 | |
|         {
 | |
|             memcpy(newArray, m_pArray, m_Count * sizeof(T));
 | |
|         }
 | |
|         VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | |
|         m_Capacity = newCapacity;
 | |
|         m_pArray = newArray;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| void VmaVector<T, AllocatorT>::resize(size_t newCount)
 | |
| {
 | |
|     size_t newCapacity = m_Capacity;
 | |
|     if (newCount > m_Capacity)
 | |
|     {
 | |
|         newCapacity = VMA_MAX(newCount, VMA_MAX(m_Capacity * 3 / 2, (size_t)8));
 | |
|     }
 | |
| 
 | |
|     if (newCapacity != m_Capacity)
 | |
|     {
 | |
|         T* const newArray = newCapacity ? VmaAllocateArray<T>(m_Allocator.m_pCallbacks, newCapacity) : VMA_NULL;
 | |
|         const size_t elementsToCopy = VMA_MIN(m_Count, newCount);
 | |
|         if (elementsToCopy != 0)
 | |
|         {
 | |
|             memcpy(newArray, m_pArray, elementsToCopy * sizeof(T));
 | |
|         }
 | |
|         VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | |
|         m_Capacity = newCapacity;
 | |
|         m_pArray = newArray;
 | |
|     }
 | |
| 
 | |
|     m_Count = newCount;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| void VmaVector<T, AllocatorT>::shrink_to_fit()
 | |
| {
 | |
|     if (m_Capacity > m_Count)
 | |
|     {
 | |
|         T* newArray = VMA_NULL;
 | |
|         if (m_Count > 0)
 | |
|         {
 | |
|             newArray = VmaAllocateArray<T>(m_Allocator.m_pCallbacks, m_Count);
 | |
|             memcpy(newArray, m_pArray, m_Count * sizeof(T));
 | |
|         }
 | |
|         VmaFree(m_Allocator.m_pCallbacks, m_pArray);
 | |
|         m_Capacity = m_Count;
 | |
|         m_pArray = newArray;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| void VmaVector<T, AllocatorT>::insert(size_t index, const T& src)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(index <= m_Count);
 | |
|     const size_t oldCount = size();
 | |
|     resize(oldCount + 1);
 | |
|     if (index < oldCount)
 | |
|     {
 | |
|         memmove(m_pArray + (index + 1), m_pArray + index, (oldCount - index) * sizeof(T));
 | |
|     }
 | |
|     m_pArray[index] = src;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| void VmaVector<T, AllocatorT>::remove(size_t index)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(index < m_Count);
 | |
|     const size_t oldCount = size();
 | |
|     if (index < oldCount - 1)
 | |
|     {
 | |
|         memmove(m_pArray + index, m_pArray + (index + 1), (oldCount - index - 1) * sizeof(T));
 | |
|     }
 | |
|     resize(oldCount - 1);
 | |
| }
 | |
| #endif // _VMA_VECTOR_FUNCTIONS
 | |
| 
 | |
| template<typename T, typename allocatorT>
 | |
| static void VmaVectorInsert(VmaVector<T, allocatorT>& vec, size_t index, const T& item)
 | |
| {
 | |
|     vec.insert(index, item);
 | |
| }
 | |
| 
 | |
| template<typename T, typename allocatorT>
 | |
| static void VmaVectorRemove(VmaVector<T, allocatorT>& vec, size_t index)
 | |
| {
 | |
|     vec.remove(index);
 | |
| }
 | |
| #endif // _VMA_VECTOR
 | |
| 
 | |
| #ifndef _VMA_SMALL_VECTOR
 | |
| /*
 | |
| This is a vector (a variable-sized array), optimized for the case when the array is small.
 | |
| 
 | |
| It contains some number of elements in-place, which allows it to avoid heap allocation
 | |
| when the actual number of elements is below that threshold. This allows normal "small"
 | |
| cases to be fast without losing generality for large inputs.
 | |
| */
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| class VmaSmallVector
 | |
| {
 | |
| public:
 | |
|     typedef T value_type;
 | |
|     typedef T* iterator;
 | |
| 
 | |
|     VmaSmallVector(const AllocatorT& allocator);
 | |
|     VmaSmallVector(size_t count, const AllocatorT& allocator);
 | |
|     template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
 | |
|     VmaSmallVector(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
 | |
|     template<typename SrcT, typename SrcAllocatorT, size_t SrcN>
 | |
|     VmaSmallVector<T, AllocatorT, N>& operator=(const VmaSmallVector<SrcT, SrcAllocatorT, SrcN>&) = delete;
 | |
|     ~VmaSmallVector() = default;
 | |
| 
 | |
|     bool empty() const { return m_Count == 0; }
 | |
|     size_t size() const { return m_Count; }
 | |
|     T* data() { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
 | |
|     T& front() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
 | |
|     T& back() { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
 | |
|     const T* data() const { return m_Count > N ? m_DynamicArray.data() : m_StaticArray; }
 | |
|     const T& front() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[0]; }
 | |
|     const T& back() const { VMA_HEAVY_ASSERT(m_Count > 0); return data()[m_Count - 1]; }
 | |
| 
 | |
|     iterator begin() { return data(); }
 | |
|     iterator end() { return data() + m_Count; }
 | |
| 
 | |
|     void pop_front() { VMA_HEAVY_ASSERT(m_Count > 0); remove(0); }
 | |
|     void pop_back() { VMA_HEAVY_ASSERT(m_Count > 0); resize(size() - 1); }
 | |
|     void push_front(const T& src) { insert(0, src); }
 | |
| 
 | |
|     void push_back(const T& src);
 | |
|     void resize(size_t newCount, bool freeMemory = false);
 | |
|     void clear(bool freeMemory = false);
 | |
|     void insert(size_t index, const T& src);
 | |
|     void remove(size_t index);
 | |
| 
 | |
|     T& operator[](size_t index) { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
 | |
|     const T& operator[](size_t index) const { VMA_HEAVY_ASSERT(index < m_Count); return data()[index]; }
 | |
| 
 | |
| private:
 | |
|     size_t m_Count;
 | |
|     T m_StaticArray[N]; // Used when m_Size <= N
 | |
|     VmaVector<T, AllocatorT> m_DynamicArray; // Used when m_Size > N
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_SMALL_VECTOR_FUNCTIONS
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(const AllocatorT& allocator)
 | |
|     : m_Count(0),
 | |
|     m_DynamicArray(allocator) {}
 | |
| 
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| VmaSmallVector<T, AllocatorT, N>::VmaSmallVector(size_t count, const AllocatorT& allocator)
 | |
|     : m_Count(count),
 | |
|     m_DynamicArray(count > N ? count : 0, allocator) {}
 | |
| 
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| void VmaSmallVector<T, AllocatorT, N>::push_back(const T& src)
 | |
| {
 | |
|     const size_t newIndex = size();
 | |
|     resize(newIndex + 1);
 | |
|     data()[newIndex] = src;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| void VmaSmallVector<T, AllocatorT, N>::resize(size_t newCount, bool freeMemory)
 | |
| {
 | |
|     if (newCount > N && m_Count > N)
 | |
|     {
 | |
|         // Any direction, staying in m_DynamicArray
 | |
|         m_DynamicArray.resize(newCount);
 | |
|         if (freeMemory)
 | |
|         {
 | |
|             m_DynamicArray.shrink_to_fit();
 | |
|         }
 | |
|     }
 | |
|     else if (newCount > N && m_Count <= N)
 | |
|     {
 | |
|         // Growing, moving from m_StaticArray to m_DynamicArray
 | |
|         m_DynamicArray.resize(newCount);
 | |
|         if (m_Count > 0)
 | |
|         {
 | |
|             memcpy(m_DynamicArray.data(), m_StaticArray, m_Count * sizeof(T));
 | |
|         }
 | |
|     }
 | |
|     else if (newCount <= N && m_Count > N)
 | |
|     {
 | |
|         // Shrinking, moving from m_DynamicArray to m_StaticArray
 | |
|         if (newCount > 0)
 | |
|         {
 | |
|             memcpy(m_StaticArray, m_DynamicArray.data(), newCount * sizeof(T));
 | |
|         }
 | |
|         m_DynamicArray.resize(0);
 | |
|         if (freeMemory)
 | |
|         {
 | |
|             m_DynamicArray.shrink_to_fit();
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Any direction, staying in m_StaticArray - nothing to do here
 | |
|     }
 | |
|     m_Count = newCount;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| void VmaSmallVector<T, AllocatorT, N>::clear(bool freeMemory)
 | |
| {
 | |
|     m_DynamicArray.clear();
 | |
|     if (freeMemory)
 | |
|     {
 | |
|         m_DynamicArray.shrink_to_fit();
 | |
|     }
 | |
|     m_Count = 0;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| void VmaSmallVector<T, AllocatorT, N>::insert(size_t index, const T& src)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(index <= m_Count);
 | |
|     const size_t oldCount = size();
 | |
|     resize(oldCount + 1);
 | |
|     T* const dataPtr = data();
 | |
|     if (index < oldCount)
 | |
|     {
 | |
|         //  I know, this could be more optimal for case where memmove can be memcpy directly from m_StaticArray to m_DynamicArray.
 | |
|         memmove(dataPtr + (index + 1), dataPtr + index, (oldCount - index) * sizeof(T));
 | |
|     }
 | |
|     dataPtr[index] = src;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT, size_t N>
 | |
| void VmaSmallVector<T, AllocatorT, N>::remove(size_t index)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(index < m_Count);
 | |
|     const size_t oldCount = size();
 | |
|     if (index < oldCount - 1)
 | |
|     {
 | |
|         //  I know, this could be more optimal for case where memmove can be memcpy directly from m_DynamicArray to m_StaticArray.
 | |
|         T* const dataPtr = data();
 | |
|         memmove(dataPtr + index, dataPtr + (index + 1), (oldCount - index - 1) * sizeof(T));
 | |
|     }
 | |
|     resize(oldCount - 1);
 | |
| }
 | |
| #endif // _VMA_SMALL_VECTOR_FUNCTIONS
 | |
| #endif // _VMA_SMALL_VECTOR
 | |
| 
 | |
| #ifndef _VMA_POOL_ALLOCATOR
 | |
| /*
 | |
| Allocator for objects of type T using a list of arrays (pools) to speed up
 | |
| allocation. Number of elements that can be allocated is not bounded because
 | |
| allocator can create multiple blocks.
 | |
| */
 | |
| template<typename T>
 | |
| class VmaPoolAllocator
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaPoolAllocator)
 | |
| public:
 | |
|     VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity);
 | |
|     ~VmaPoolAllocator();
 | |
|     template<typename... Types> T* Alloc(Types&&... args);
 | |
|     void Free(T* ptr);
 | |
| 
 | |
| private:
 | |
|     union Item
 | |
|     {
 | |
|         uint32_t NextFreeIndex;
 | |
|         alignas(T) char Value[sizeof(T)];
 | |
|     };
 | |
|     struct ItemBlock
 | |
|     {
 | |
|         Item* pItems;
 | |
|         uint32_t Capacity;
 | |
|         uint32_t FirstFreeIndex;
 | |
|     };
 | |
| 
 | |
|     const VkAllocationCallbacks* m_pAllocationCallbacks;
 | |
|     const uint32_t m_FirstBlockCapacity;
 | |
|     VmaVector<ItemBlock, VmaStlAllocator<ItemBlock>> m_ItemBlocks;
 | |
| 
 | |
|     ItemBlock& CreateNewBlock();
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_POOL_ALLOCATOR_FUNCTIONS
 | |
| template<typename T>
 | |
| VmaPoolAllocator<T>::VmaPoolAllocator(const VkAllocationCallbacks* pAllocationCallbacks, uint32_t firstBlockCapacity)
 | |
|     : m_pAllocationCallbacks(pAllocationCallbacks),
 | |
|     m_FirstBlockCapacity(firstBlockCapacity),
 | |
|     m_ItemBlocks(VmaStlAllocator<ItemBlock>(pAllocationCallbacks))
 | |
| {
 | |
|     VMA_ASSERT(m_FirstBlockCapacity > 1);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaPoolAllocator<T>::~VmaPoolAllocator()
 | |
| {
 | |
|     for (size_t i = m_ItemBlocks.size(); i--;)
 | |
|         vma_delete_array(m_pAllocationCallbacks, m_ItemBlocks[i].pItems, m_ItemBlocks[i].Capacity);
 | |
|     m_ItemBlocks.clear();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| template<typename... Types> T* VmaPoolAllocator<T>::Alloc(Types&&... args)
 | |
| {
 | |
|     for (size_t i = m_ItemBlocks.size(); i--; )
 | |
|     {
 | |
|         ItemBlock& block = m_ItemBlocks[i];
 | |
|         // This block has some free items: Use first one.
 | |
|         if (block.FirstFreeIndex != UINT32_MAX)
 | |
|         {
 | |
|             Item* const pItem = &block.pItems[block.FirstFreeIndex];
 | |
|             block.FirstFreeIndex = pItem->NextFreeIndex;
 | |
|             T* result = (T*)&pItem->Value;
 | |
|             new(result)T(std::forward<Types>(args)...); // Explicit constructor call.
 | |
|             return result;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // No block has free item: Create new one and use it.
 | |
|     ItemBlock& newBlock = CreateNewBlock();
 | |
|     Item* const pItem = &newBlock.pItems[0];
 | |
|     newBlock.FirstFreeIndex = pItem->NextFreeIndex;
 | |
|     T* result = (T*)&pItem->Value;
 | |
|     new(result) T(std::forward<Types>(args)...); // Explicit constructor call.
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaPoolAllocator<T>::Free(T* ptr)
 | |
| {
 | |
|     // Search all memory blocks to find ptr.
 | |
|     for (size_t i = m_ItemBlocks.size(); i--; )
 | |
|     {
 | |
|         ItemBlock& block = m_ItemBlocks[i];
 | |
| 
 | |
|         // Casting to union.
 | |
|         Item* pItemPtr;
 | |
|         memcpy(&pItemPtr, &ptr, sizeof(pItemPtr));
 | |
| 
 | |
|         // Check if pItemPtr is in address range of this block.
 | |
|         if ((pItemPtr >= block.pItems) && (pItemPtr < block.pItems + block.Capacity))
 | |
|         {
 | |
|             ptr->~T(); // Explicit destructor call.
 | |
|             const uint32_t index = static_cast<uint32_t>(pItemPtr - block.pItems);
 | |
|             pItemPtr->NextFreeIndex = block.FirstFreeIndex;
 | |
|             block.FirstFreeIndex = index;
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     VMA_ASSERT(0 && "Pointer doesn't belong to this memory pool.");
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| typename VmaPoolAllocator<T>::ItemBlock& VmaPoolAllocator<T>::CreateNewBlock()
 | |
| {
 | |
|     const uint32_t newBlockCapacity = m_ItemBlocks.empty() ?
 | |
|         m_FirstBlockCapacity : m_ItemBlocks.back().Capacity * 3 / 2;
 | |
| 
 | |
|     const ItemBlock newBlock =
 | |
|     {
 | |
|         vma_new_array(m_pAllocationCallbacks, Item, newBlockCapacity),
 | |
|         newBlockCapacity,
 | |
|         0
 | |
|     };
 | |
| 
 | |
|     m_ItemBlocks.push_back(newBlock);
 | |
| 
 | |
|     // Setup singly-linked list of all free items in this block.
 | |
|     for (uint32_t i = 0; i < newBlockCapacity - 1; ++i)
 | |
|         newBlock.pItems[i].NextFreeIndex = i + 1;
 | |
|     newBlock.pItems[newBlockCapacity - 1].NextFreeIndex = UINT32_MAX;
 | |
|     return m_ItemBlocks.back();
 | |
| }
 | |
| #endif // _VMA_POOL_ALLOCATOR_FUNCTIONS
 | |
| #endif // _VMA_POOL_ALLOCATOR
 | |
| 
 | |
| #ifndef _VMA_RAW_LIST
 | |
| template<typename T>
 | |
| struct VmaListItem
 | |
| {
 | |
|     VmaListItem* pPrev;
 | |
|     VmaListItem* pNext;
 | |
|     T Value;
 | |
| };
 | |
| 
 | |
| // Doubly linked list.
 | |
| template<typename T>
 | |
| class VmaRawList
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaRawList)
 | |
| public:
 | |
|     typedef VmaListItem<T> ItemType;
 | |
| 
 | |
|     VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks);
 | |
|     // Intentionally not calling Clear, because that would be unnecessary
 | |
|     // computations to return all items to m_ItemAllocator as free.
 | |
|     ~VmaRawList() = default;
 | |
| 
 | |
|     size_t GetCount() const { return m_Count; }
 | |
|     bool IsEmpty() const { return m_Count == 0; }
 | |
| 
 | |
|     ItemType* Front() { return m_pFront; }
 | |
|     ItemType* Back() { return m_pBack; }
 | |
|     const ItemType* Front() const { return m_pFront; }
 | |
|     const ItemType* Back() const { return m_pBack; }
 | |
| 
 | |
|     ItemType* PushFront();
 | |
|     ItemType* PushBack();
 | |
|     ItemType* PushFront(const T& value);
 | |
|     ItemType* PushBack(const T& value);
 | |
|     void PopFront();
 | |
|     void PopBack();
 | |
| 
 | |
|     // Item can be null - it means PushBack.
 | |
|     ItemType* InsertBefore(ItemType* pItem);
 | |
|     // Item can be null - it means PushFront.
 | |
|     ItemType* InsertAfter(ItemType* pItem);
 | |
|     ItemType* InsertBefore(ItemType* pItem, const T& value);
 | |
|     ItemType* InsertAfter(ItemType* pItem, const T& value);
 | |
| 
 | |
|     void Clear();
 | |
|     void Remove(ItemType* pItem);
 | |
| 
 | |
| private:
 | |
|     const VkAllocationCallbacks* const m_pAllocationCallbacks;
 | |
|     VmaPoolAllocator<ItemType> m_ItemAllocator;
 | |
|     ItemType* m_pFront;
 | |
|     ItemType* m_pBack;
 | |
|     size_t m_Count;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_RAW_LIST_FUNCTIONS
 | |
| template<typename T>
 | |
| VmaRawList<T>::VmaRawList(const VkAllocationCallbacks* pAllocationCallbacks)
 | |
|     : m_pAllocationCallbacks(pAllocationCallbacks),
 | |
|     m_ItemAllocator(pAllocationCallbacks, 128),
 | |
|     m_pFront(VMA_NULL),
 | |
|     m_pBack(VMA_NULL),
 | |
|     m_Count(0) {}
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::PushFront()
 | |
| {
 | |
|     ItemType* const pNewItem = m_ItemAllocator.Alloc();
 | |
|     pNewItem->pPrev = VMA_NULL;
 | |
|     if (IsEmpty())
 | |
|     {
 | |
|         pNewItem->pNext = VMA_NULL;
 | |
|         m_pFront = pNewItem;
 | |
|         m_pBack = pNewItem;
 | |
|         m_Count = 1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         pNewItem->pNext = m_pFront;
 | |
|         m_pFront->pPrev = pNewItem;
 | |
|         m_pFront = pNewItem;
 | |
|         ++m_Count;
 | |
|     }
 | |
|     return pNewItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::PushBack()
 | |
| {
 | |
|     ItemType* const pNewItem = m_ItemAllocator.Alloc();
 | |
|     pNewItem->pNext = VMA_NULL;
 | |
|     if(IsEmpty())
 | |
|     {
 | |
|         pNewItem->pPrev = VMA_NULL;
 | |
|         m_pFront = pNewItem;
 | |
|         m_pBack = pNewItem;
 | |
|         m_Count = 1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         pNewItem->pPrev = m_pBack;
 | |
|         m_pBack->pNext = pNewItem;
 | |
|         m_pBack = pNewItem;
 | |
|         ++m_Count;
 | |
|     }
 | |
|     return pNewItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::PushFront(const T& value)
 | |
| {
 | |
|     ItemType* const pNewItem = PushFront();
 | |
|     pNewItem->Value = value;
 | |
|     return pNewItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::PushBack(const T& value)
 | |
| {
 | |
|     ItemType* const pNewItem = PushBack();
 | |
|     pNewItem->Value = value;
 | |
|     return pNewItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaRawList<T>::PopFront()
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|     ItemType* const pFrontItem = m_pFront;
 | |
|     ItemType* const pNextItem = pFrontItem->pNext;
 | |
|     if (pNextItem != VMA_NULL)
 | |
|     {
 | |
|         pNextItem->pPrev = VMA_NULL;
 | |
|     }
 | |
|     m_pFront = pNextItem;
 | |
|     m_ItemAllocator.Free(pFrontItem);
 | |
|     --m_Count;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaRawList<T>::PopBack()
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|     ItemType* const pBackItem = m_pBack;
 | |
|     ItemType* const pPrevItem = pBackItem->pPrev;
 | |
|     if(pPrevItem != VMA_NULL)
 | |
|     {
 | |
|         pPrevItem->pNext = VMA_NULL;
 | |
|     }
 | |
|     m_pBack = pPrevItem;
 | |
|     m_ItemAllocator.Free(pBackItem);
 | |
|     --m_Count;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaRawList<T>::Clear()
 | |
| {
 | |
|     if (IsEmpty() == false)
 | |
|     {
 | |
|         ItemType* pItem = m_pBack;
 | |
|         while (pItem != VMA_NULL)
 | |
|         {
 | |
|             ItemType* const pPrevItem = pItem->pPrev;
 | |
|             m_ItemAllocator.Free(pItem);
 | |
|             pItem = pPrevItem;
 | |
|         }
 | |
|         m_pFront = VMA_NULL;
 | |
|         m_pBack = VMA_NULL;
 | |
|         m_Count = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| void VmaRawList<T>::Remove(ItemType* pItem)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(pItem != VMA_NULL);
 | |
|     VMA_HEAVY_ASSERT(m_Count > 0);
 | |
| 
 | |
|     if(pItem->pPrev != VMA_NULL)
 | |
|     {
 | |
|         pItem->pPrev->pNext = pItem->pNext;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_pFront == pItem);
 | |
|         m_pFront = pItem->pNext;
 | |
|     }
 | |
| 
 | |
|     if(pItem->pNext != VMA_NULL)
 | |
|     {
 | |
|         pItem->pNext->pPrev = pItem->pPrev;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_pBack == pItem);
 | |
|         m_pBack = pItem->pPrev;
 | |
|     }
 | |
| 
 | |
|     m_ItemAllocator.Free(pItem);
 | |
|     --m_Count;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem)
 | |
| {
 | |
|     if(pItem != VMA_NULL)
 | |
|     {
 | |
|         ItemType* const prevItem = pItem->pPrev;
 | |
|         ItemType* const newItem = m_ItemAllocator.Alloc();
 | |
|         newItem->pPrev = prevItem;
 | |
|         newItem->pNext = pItem;
 | |
|         pItem->pPrev = newItem;
 | |
|         if(prevItem != VMA_NULL)
 | |
|         {
 | |
|             prevItem->pNext = newItem;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pFront == pItem);
 | |
|             m_pFront = newItem;
 | |
|         }
 | |
|         ++m_Count;
 | |
|         return newItem;
 | |
|     }
 | |
|     else
 | |
|         return PushBack();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem)
 | |
| {
 | |
|     if(pItem != VMA_NULL)
 | |
|     {
 | |
|         ItemType* const nextItem = pItem->pNext;
 | |
|         ItemType* const newItem = m_ItemAllocator.Alloc();
 | |
|         newItem->pNext = nextItem;
 | |
|         newItem->pPrev = pItem;
 | |
|         pItem->pNext = newItem;
 | |
|         if(nextItem != VMA_NULL)
 | |
|         {
 | |
|             nextItem->pPrev = newItem;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_pBack == pItem);
 | |
|             m_pBack = newItem;
 | |
|         }
 | |
|         ++m_Count;
 | |
|         return newItem;
 | |
|     }
 | |
|     else
 | |
|         return PushFront();
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::InsertBefore(ItemType* pItem, const T& value)
 | |
| {
 | |
|     ItemType* const newItem = InsertBefore(pItem);
 | |
|     newItem->Value = value;
 | |
|     return newItem;
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| VmaListItem<T>* VmaRawList<T>::InsertAfter(ItemType* pItem, const T& value)
 | |
| {
 | |
|     ItemType* const newItem = InsertAfter(pItem);
 | |
|     newItem->Value = value;
 | |
|     return newItem;
 | |
| }
 | |
| #endif // _VMA_RAW_LIST_FUNCTIONS
 | |
| #endif // _VMA_RAW_LIST
 | |
| 
 | |
| #ifndef _VMA_LIST
 | |
| template<typename T, typename AllocatorT>
 | |
| class VmaList
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaList)
 | |
| public:
 | |
|     class reverse_iterator;
 | |
|     class const_iterator;
 | |
|     class const_reverse_iterator;
 | |
| 
 | |
|     class iterator
 | |
|     {
 | |
|         friend class const_iterator;
 | |
|         friend class VmaList<T, AllocatorT>;
 | |
|     public:
 | |
|         iterator() :  m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
 | |
|         iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | |
| 
 | |
|         T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
 | |
|         T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
 | |
| 
 | |
|         bool operator==(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
 | |
|         bool operator!=(const iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
 | |
| 
 | |
|         iterator operator++(int) { iterator result = *this; ++*this; return result; }
 | |
|         iterator operator--(int) { iterator result = *this; --*this; return result; }
 | |
| 
 | |
|         iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
 | |
|         iterator& operator--();
 | |
| 
 | |
|     private:
 | |
|         VmaRawList<T>* m_pList;
 | |
|         VmaListItem<T>* m_pItem;
 | |
| 
 | |
|         iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList),  m_pItem(pItem) {}
 | |
|     };
 | |
|     class reverse_iterator
 | |
|     {
 | |
|         friend class const_reverse_iterator;
 | |
|         friend class VmaList<T, AllocatorT>;
 | |
|     public:
 | |
|         reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
 | |
|         reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | |
| 
 | |
|         T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
 | |
|         T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
 | |
| 
 | |
|         bool operator==(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
 | |
|         bool operator!=(const reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
 | |
| 
 | |
|         reverse_iterator operator++(int) { reverse_iterator result = *this; ++* this; return result; }
 | |
|         reverse_iterator operator--(int) { reverse_iterator result = *this; --* this; return result; }
 | |
| 
 | |
|         reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
 | |
|         reverse_iterator& operator--();
 | |
| 
 | |
|     private:
 | |
|         VmaRawList<T>* m_pList;
 | |
|         VmaListItem<T>* m_pItem;
 | |
| 
 | |
|         reverse_iterator(VmaRawList<T>* pList, VmaListItem<T>* pItem) : m_pList(pList),  m_pItem(pItem) {}
 | |
|     };
 | |
|     class const_iterator
 | |
|     {
 | |
|         friend class VmaList<T, AllocatorT>;
 | |
|     public:
 | |
|         const_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
 | |
|         const_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | |
|         const_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | |
| 
 | |
|         iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
 | |
| 
 | |
|         const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
 | |
|         const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
 | |
| 
 | |
|         bool operator==(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
 | |
|         bool operator!=(const const_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
 | |
| 
 | |
|         const_iterator operator++(int) { const_iterator result = *this; ++* this; return result; }
 | |
|         const_iterator operator--(int) { const_iterator result = *this; --* this; return result; }
 | |
| 
 | |
|         const_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pNext; return *this; }
 | |
|         const_iterator& operator--();
 | |
| 
 | |
|     private:
 | |
|         const VmaRawList<T>* m_pList;
 | |
|         const VmaListItem<T>* m_pItem;
 | |
| 
 | |
|         const_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
 | |
|     };
 | |
|     class const_reverse_iterator
 | |
|     {
 | |
|         friend class VmaList<T, AllocatorT>;
 | |
|     public:
 | |
|         const_reverse_iterator() : m_pList(VMA_NULL), m_pItem(VMA_NULL) {}
 | |
|         const_reverse_iterator(const reverse_iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | |
|         const_reverse_iterator(const iterator& src) : m_pList(src.m_pList), m_pItem(src.m_pItem) {}
 | |
| 
 | |
|         reverse_iterator drop_const() { return { const_cast<VmaRawList<T>*>(m_pList), const_cast<VmaListItem<T>*>(m_pItem) }; }
 | |
| 
 | |
|         const T& operator*() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return m_pItem->Value; }
 | |
|         const T* operator->() const { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); return &m_pItem->Value; }
 | |
| 
 | |
|         bool operator==(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem == rhs.m_pItem; }
 | |
|         bool operator!=(const const_reverse_iterator& rhs) const { VMA_HEAVY_ASSERT(m_pList == rhs.m_pList); return m_pItem != rhs.m_pItem; }
 | |
| 
 | |
|         const_reverse_iterator operator++(int) { const_reverse_iterator result = *this; ++* this; return result; }
 | |
|         const_reverse_iterator operator--(int) { const_reverse_iterator result = *this; --* this; return result; }
 | |
| 
 | |
|         const_reverse_iterator& operator++() { VMA_HEAVY_ASSERT(m_pItem != VMA_NULL); m_pItem = m_pItem->pPrev; return *this; }
 | |
|         const_reverse_iterator& operator--();
 | |
| 
 | |
|     private:
 | |
|         const VmaRawList<T>* m_pList;
 | |
|         const VmaListItem<T>* m_pItem;
 | |
| 
 | |
|         const_reverse_iterator(const VmaRawList<T>* pList, const VmaListItem<T>* pItem) : m_pList(pList), m_pItem(pItem) {}
 | |
|     };
 | |
| 
 | |
|     VmaList(const AllocatorT& allocator) : m_RawList(allocator.m_pCallbacks) {}
 | |
| 
 | |
|     bool empty() const { return m_RawList.IsEmpty(); }
 | |
|     size_t size() const { return m_RawList.GetCount(); }
 | |
| 
 | |
|     iterator begin() { return iterator(&m_RawList, m_RawList.Front()); }
 | |
|     iterator end() { return iterator(&m_RawList, VMA_NULL); }
 | |
| 
 | |
|     const_iterator cbegin() const { return const_iterator(&m_RawList, m_RawList.Front()); }
 | |
|     const_iterator cend() const { return const_iterator(&m_RawList, VMA_NULL); }
 | |
| 
 | |
|     const_iterator begin() const { return cbegin(); }
 | |
|     const_iterator end() const { return cend(); }
 | |
| 
 | |
|     reverse_iterator rbegin() { return reverse_iterator(&m_RawList, m_RawList.Back()); }
 | |
|     reverse_iterator rend() { return reverse_iterator(&m_RawList, VMA_NULL); }
 | |
| 
 | |
|     const_reverse_iterator crbegin() const { return const_reverse_iterator(&m_RawList, m_RawList.Back()); }
 | |
|     const_reverse_iterator crend() const { return const_reverse_iterator(&m_RawList, VMA_NULL); }
 | |
| 
 | |
|     const_reverse_iterator rbegin() const { return crbegin(); }
 | |
|     const_reverse_iterator rend() const { return crend(); }
 | |
| 
 | |
|     void push_back(const T& value) { m_RawList.PushBack(value); }
 | |
|     iterator insert(iterator it, const T& value) { return iterator(&m_RawList, m_RawList.InsertBefore(it.m_pItem, value)); }
 | |
| 
 | |
|     void clear() { m_RawList.Clear(); }
 | |
|     void erase(iterator it) { m_RawList.Remove(it.m_pItem); }
 | |
| 
 | |
| private:
 | |
|     VmaRawList<T> m_RawList;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_LIST_FUNCTIONS
 | |
| template<typename T, typename AllocatorT>
 | |
| typename VmaList<T, AllocatorT>::iterator& VmaList<T, AllocatorT>::iterator::operator--()
 | |
| {
 | |
|     if (m_pItem != VMA_NULL)
 | |
|     {
 | |
|         m_pItem = m_pItem->pPrev;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | |
|         m_pItem = m_pList->Back();
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| typename VmaList<T, AllocatorT>::reverse_iterator& VmaList<T, AllocatorT>::reverse_iterator::operator--()
 | |
| {
 | |
|     if (m_pItem != VMA_NULL)
 | |
|     {
 | |
|         m_pItem = m_pItem->pNext;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | |
|         m_pItem = m_pList->Front();
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| typename VmaList<T, AllocatorT>::const_iterator& VmaList<T, AllocatorT>::const_iterator::operator--()
 | |
| {
 | |
|     if (m_pItem != VMA_NULL)
 | |
|     {
 | |
|         m_pItem = m_pItem->pPrev;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | |
|         m_pItem = m_pList->Back();
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template<typename T, typename AllocatorT>
 | |
| typename VmaList<T, AllocatorT>::const_reverse_iterator& VmaList<T, AllocatorT>::const_reverse_iterator::operator--()
 | |
| {
 | |
|     if (m_pItem != VMA_NULL)
 | |
|     {
 | |
|         m_pItem = m_pItem->pNext;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(!m_pList->IsEmpty());
 | |
|         m_pItem = m_pList->Back();
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| #endif // _VMA_LIST_FUNCTIONS
 | |
| #endif // _VMA_LIST
 | |
| 
 | |
| #ifndef _VMA_INTRUSIVE_LINKED_LIST
 | |
| /*
 | |
| Expected interface of ItemTypeTraits:
 | |
| struct MyItemTypeTraits
 | |
| {
 | |
|     typedef MyItem ItemType;
 | |
|     static ItemType* GetPrev(const ItemType* item) { return item->myPrevPtr; }
 | |
|     static ItemType* GetNext(const ItemType* item) { return item->myNextPtr; }
 | |
|     static ItemType*& AccessPrev(ItemType* item) { return item->myPrevPtr; }
 | |
|     static ItemType*& AccessNext(ItemType* item) { return item->myNextPtr; }
 | |
| };
 | |
| */
 | |
| template<typename ItemTypeTraits>
 | |
| class VmaIntrusiveLinkedList
 | |
| {
 | |
| public:
 | |
|     typedef typename ItemTypeTraits::ItemType ItemType;
 | |
|     static ItemType* GetPrev(const ItemType* item) { return ItemTypeTraits::GetPrev(item); }
 | |
|     static ItemType* GetNext(const ItemType* item) { return ItemTypeTraits::GetNext(item); }
 | |
| 
 | |
|     // Movable, not copyable.
 | |
|     VmaIntrusiveLinkedList() = default;
 | |
|     VmaIntrusiveLinkedList(VmaIntrusiveLinkedList && src);
 | |
|     VmaIntrusiveLinkedList(const VmaIntrusiveLinkedList&) = delete;
 | |
|     VmaIntrusiveLinkedList& operator=(VmaIntrusiveLinkedList&& src);
 | |
|     VmaIntrusiveLinkedList& operator=(const VmaIntrusiveLinkedList&) = delete;
 | |
|     ~VmaIntrusiveLinkedList() { VMA_HEAVY_ASSERT(IsEmpty()); }
 | |
| 
 | |
|     size_t GetCount() const { return m_Count; }
 | |
|     bool IsEmpty() const { return m_Count == 0; }
 | |
|     ItemType* Front() { return m_Front; }
 | |
|     ItemType* Back() { return m_Back; }
 | |
|     const ItemType* Front() const { return m_Front; }
 | |
|     const ItemType* Back() const { return m_Back; }
 | |
| 
 | |
|     void PushBack(ItemType* item);
 | |
|     void PushFront(ItemType* item);
 | |
|     ItemType* PopBack();
 | |
|     ItemType* PopFront();
 | |
| 
 | |
|     // MyItem can be null - it means PushBack.
 | |
|     void InsertBefore(ItemType* existingItem, ItemType* newItem);
 | |
|     // MyItem can be null - it means PushFront.
 | |
|     void InsertAfter(ItemType* existingItem, ItemType* newItem);
 | |
|     void Remove(ItemType* item);
 | |
|     void RemoveAll();
 | |
| 
 | |
| private:
 | |
|     ItemType* m_Front = VMA_NULL;
 | |
|     ItemType* m_Back = VMA_NULL;
 | |
|     size_t m_Count = 0;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
 | |
| template<typename ItemTypeTraits>
 | |
| VmaIntrusiveLinkedList<ItemTypeTraits>::VmaIntrusiveLinkedList(VmaIntrusiveLinkedList&& src)
 | |
|     : m_Front(src.m_Front), m_Back(src.m_Back), m_Count(src.m_Count)
 | |
| {
 | |
|     src.m_Front = src.m_Back = VMA_NULL;
 | |
|     src.m_Count = 0;
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| VmaIntrusiveLinkedList<ItemTypeTraits>& VmaIntrusiveLinkedList<ItemTypeTraits>::operator=(VmaIntrusiveLinkedList&& src)
 | |
| {
 | |
|     if (&src != this)
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(IsEmpty());
 | |
|         m_Front = src.m_Front;
 | |
|         m_Back = src.m_Back;
 | |
|         m_Count = src.m_Count;
 | |
|         src.m_Front = src.m_Back = VMA_NULL;
 | |
|         src.m_Count = 0;
 | |
|     }
 | |
|     return *this;
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| void VmaIntrusiveLinkedList<ItemTypeTraits>::PushBack(ItemType* item)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
 | |
|     if (IsEmpty())
 | |
|     {
 | |
|         m_Front = item;
 | |
|         m_Back = item;
 | |
|         m_Count = 1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         ItemTypeTraits::AccessPrev(item) = m_Back;
 | |
|         ItemTypeTraits::AccessNext(m_Back) = item;
 | |
|         m_Back = item;
 | |
|         ++m_Count;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| void VmaIntrusiveLinkedList<ItemTypeTraits>::PushFront(ItemType* item)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(ItemTypeTraits::GetPrev(item) == VMA_NULL && ItemTypeTraits::GetNext(item) == VMA_NULL);
 | |
|     if (IsEmpty())
 | |
|     {
 | |
|         m_Front = item;
 | |
|         m_Back = item;
 | |
|         m_Count = 1;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         ItemTypeTraits::AccessNext(item) = m_Front;
 | |
|         ItemTypeTraits::AccessPrev(m_Front) = item;
 | |
|         m_Front = item;
 | |
|         ++m_Count;
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopBack()
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|     ItemType* const backItem = m_Back;
 | |
|     ItemType* const prevItem = ItemTypeTraits::GetPrev(backItem);
 | |
|     if (prevItem != VMA_NULL)
 | |
|     {
 | |
|         ItemTypeTraits::AccessNext(prevItem) = VMA_NULL;
 | |
|     }
 | |
|     m_Back = prevItem;
 | |
|     --m_Count;
 | |
|     ItemTypeTraits::AccessPrev(backItem) = VMA_NULL;
 | |
|     ItemTypeTraits::AccessNext(backItem) = VMA_NULL;
 | |
|     return backItem;
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| typename VmaIntrusiveLinkedList<ItemTypeTraits>::ItemType* VmaIntrusiveLinkedList<ItemTypeTraits>::PopFront()
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(m_Count > 0);
 | |
|     ItemType* const frontItem = m_Front;
 | |
|     ItemType* const nextItem = ItemTypeTraits::GetNext(frontItem);
 | |
|     if (nextItem != VMA_NULL)
 | |
|     {
 | |
|         ItemTypeTraits::AccessPrev(nextItem) = VMA_NULL;
 | |
|     }
 | |
|     m_Front = nextItem;
 | |
|     --m_Count;
 | |
|     ItemTypeTraits::AccessPrev(frontItem) = VMA_NULL;
 | |
|     ItemTypeTraits::AccessNext(frontItem) = VMA_NULL;
 | |
|     return frontItem;
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertBefore(ItemType* existingItem, ItemType* newItem)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
 | |
|     if (existingItem != VMA_NULL)
 | |
|     {
 | |
|         ItemType* const prevItem = ItemTypeTraits::GetPrev(existingItem);
 | |
|         ItemTypeTraits::AccessPrev(newItem) = prevItem;
 | |
|         ItemTypeTraits::AccessNext(newItem) = existingItem;
 | |
|         ItemTypeTraits::AccessPrev(existingItem) = newItem;
 | |
|         if (prevItem != VMA_NULL)
 | |
|         {
 | |
|             ItemTypeTraits::AccessNext(prevItem) = newItem;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_Front == existingItem);
 | |
|             m_Front = newItem;
 | |
|         }
 | |
|         ++m_Count;
 | |
|     }
 | |
|     else
 | |
|         PushBack(newItem);
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| void VmaIntrusiveLinkedList<ItemTypeTraits>::InsertAfter(ItemType* existingItem, ItemType* newItem)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(newItem != VMA_NULL && ItemTypeTraits::GetPrev(newItem) == VMA_NULL && ItemTypeTraits::GetNext(newItem) == VMA_NULL);
 | |
|     if (existingItem != VMA_NULL)
 | |
|     {
 | |
|         ItemType* const nextItem = ItemTypeTraits::GetNext(existingItem);
 | |
|         ItemTypeTraits::AccessNext(newItem) = nextItem;
 | |
|         ItemTypeTraits::AccessPrev(newItem) = existingItem;
 | |
|         ItemTypeTraits::AccessNext(existingItem) = newItem;
 | |
|         if (nextItem != VMA_NULL)
 | |
|         {
 | |
|             ItemTypeTraits::AccessPrev(nextItem) = newItem;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_HEAVY_ASSERT(m_Back == existingItem);
 | |
|             m_Back = newItem;
 | |
|         }
 | |
|         ++m_Count;
 | |
|     }
 | |
|     else
 | |
|         return PushFront(newItem);
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| void VmaIntrusiveLinkedList<ItemTypeTraits>::Remove(ItemType* item)
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(item != VMA_NULL && m_Count > 0);
 | |
|     if (ItemTypeTraits::GetPrev(item) != VMA_NULL)
 | |
|     {
 | |
|         ItemTypeTraits::AccessNext(ItemTypeTraits::AccessPrev(item)) = ItemTypeTraits::GetNext(item);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_Front == item);
 | |
|         m_Front = ItemTypeTraits::GetNext(item);
 | |
|     }
 | |
| 
 | |
|     if (ItemTypeTraits::GetNext(item) != VMA_NULL)
 | |
|     {
 | |
|         ItemTypeTraits::AccessPrev(ItemTypeTraits::AccessNext(item)) = ItemTypeTraits::GetPrev(item);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(m_Back == item);
 | |
|         m_Back = ItemTypeTraits::GetPrev(item);
 | |
|     }
 | |
|     ItemTypeTraits::AccessPrev(item) = VMA_NULL;
 | |
|     ItemTypeTraits::AccessNext(item) = VMA_NULL;
 | |
|     --m_Count;
 | |
| }
 | |
| 
 | |
| template<typename ItemTypeTraits>
 | |
| void VmaIntrusiveLinkedList<ItemTypeTraits>::RemoveAll()
 | |
| {
 | |
|     if (!IsEmpty())
 | |
|     {
 | |
|         ItemType* item = m_Back;
 | |
|         while (item != VMA_NULL)
 | |
|         {
 | |
|             ItemType* const prevItem = ItemTypeTraits::AccessPrev(item);
 | |
|             ItemTypeTraits::AccessPrev(item) = VMA_NULL;
 | |
|             ItemTypeTraits::AccessNext(item) = VMA_NULL;
 | |
|             item = prevItem;
 | |
|         }
 | |
|         m_Front = VMA_NULL;
 | |
|         m_Back = VMA_NULL;
 | |
|         m_Count = 0;
 | |
|     }
 | |
| }
 | |
| #endif // _VMA_INTRUSIVE_LINKED_LIST_FUNCTIONS
 | |
| #endif // _VMA_INTRUSIVE_LINKED_LIST
 | |
| 
 | |
| // Unused in this version.
 | |
| #if 0
 | |
| 
 | |
| #ifndef _VMA_PAIR
 | |
| template<typename T1, typename T2>
 | |
| struct VmaPair
 | |
| {
 | |
|     T1 first;
 | |
|     T2 second;
 | |
| 
 | |
|     VmaPair() : first(), second() {}
 | |
|     VmaPair(const T1& firstSrc, const T2& secondSrc) : first(firstSrc), second(secondSrc) {}
 | |
| };
 | |
| 
 | |
| template<typename FirstT, typename SecondT>
 | |
| struct VmaPairFirstLess
 | |
| {
 | |
|     bool operator()(const VmaPair<FirstT, SecondT>& lhs, const VmaPair<FirstT, SecondT>& rhs) const
 | |
|     {
 | |
|         return lhs.first < rhs.first;
 | |
|     }
 | |
|     bool operator()(const VmaPair<FirstT, SecondT>& lhs, const FirstT& rhsFirst) const
 | |
|     {
 | |
|         return lhs.first < rhsFirst;
 | |
|     }
 | |
| };
 | |
| #endif // _VMA_PAIR
 | |
| 
 | |
| #ifndef _VMA_MAP
 | |
| /* Class compatible with subset of interface of std::unordered_map.
 | |
| KeyT, ValueT must be POD because they will be stored in VmaVector.
 | |
| */
 | |
| template<typename KeyT, typename ValueT>
 | |
| class VmaMap
 | |
| {
 | |
| public:
 | |
|     typedef VmaPair<KeyT, ValueT> PairType;
 | |
|     typedef PairType* iterator;
 | |
| 
 | |
|     VmaMap(const VmaStlAllocator<PairType>& allocator) : m_Vector(allocator) {}
 | |
| 
 | |
|     iterator begin() { return m_Vector.begin(); }
 | |
|     iterator end() { return m_Vector.end(); }
 | |
|     size_t size() { return m_Vector.size(); }
 | |
| 
 | |
|     void insert(const PairType& pair);
 | |
|     iterator find(const KeyT& key);
 | |
|     void erase(iterator it);
 | |
| 
 | |
| private:
 | |
|     VmaVector< PairType, VmaStlAllocator<PairType>> m_Vector;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_MAP_FUNCTIONS
 | |
| template<typename KeyT, typename ValueT>
 | |
| void VmaMap<KeyT, ValueT>::insert(const PairType& pair)
 | |
| {
 | |
|     const size_t indexToInsert = VmaBinaryFindFirstNotLess(
 | |
|         m_Vector.data(),
 | |
|         m_Vector.data() + m_Vector.size(),
 | |
|         pair,
 | |
|         VmaPairFirstLess<KeyT, ValueT>()) - m_Vector.data();
 | |
|     VmaVectorInsert(m_Vector, indexToInsert, pair);
 | |
| }
 | |
| 
 | |
| template<typename KeyT, typename ValueT>
 | |
| VmaPair<KeyT, ValueT>* VmaMap<KeyT, ValueT>::find(const KeyT& key)
 | |
| {
 | |
|     PairType* it = VmaBinaryFindFirstNotLess(
 | |
|         m_Vector.data(),
 | |
|         m_Vector.data() + m_Vector.size(),
 | |
|         key,
 | |
|         VmaPairFirstLess<KeyT, ValueT>());
 | |
|     if ((it != m_Vector.end()) && (it->first == key))
 | |
|     {
 | |
|         return it;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return m_Vector.end();
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename KeyT, typename ValueT>
 | |
| void VmaMap<KeyT, ValueT>::erase(iterator it)
 | |
| {
 | |
|     VmaVectorRemove(m_Vector, it - m_Vector.begin());
 | |
| }
 | |
| #endif // _VMA_MAP_FUNCTIONS
 | |
| #endif // _VMA_MAP
 | |
| 
 | |
| #endif // #if 0
 | |
| 
 | |
| #if !defined(_VMA_STRING_BUILDER) && VMA_STATS_STRING_ENABLED
 | |
| class VmaStringBuilder
 | |
| {
 | |
| public:
 | |
|     VmaStringBuilder(const VkAllocationCallbacks* allocationCallbacks) : m_Data(VmaStlAllocator<char>(allocationCallbacks)) {}
 | |
|     ~VmaStringBuilder() = default;
 | |
| 
 | |
|     size_t GetLength() const { return m_Data.size(); }
 | |
|     const char* GetData() const { return m_Data.data(); }
 | |
|     void AddNewLine() { Add('\n'); }
 | |
|     void Add(char ch) { m_Data.push_back(ch); }
 | |
| 
 | |
|     void Add(const char* pStr);
 | |
|     void AddNumber(uint32_t num);
 | |
|     void AddNumber(uint64_t num);
 | |
|     void AddPointer(const void* ptr);
 | |
| 
 | |
| private:
 | |
|     VmaVector<char, VmaStlAllocator<char>> m_Data;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_STRING_BUILDER_FUNCTIONS
 | |
| void VmaStringBuilder::Add(const char* pStr)
 | |
| {
 | |
|     const size_t strLen = strlen(pStr);
 | |
|     if (strLen > 0)
 | |
|     {
 | |
|         const size_t oldCount = m_Data.size();
 | |
|         m_Data.resize(oldCount + strLen);
 | |
|         memcpy(m_Data.data() + oldCount, pStr, strLen);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaStringBuilder::AddNumber(uint32_t num)
 | |
| {
 | |
|     char buf[11];
 | |
|     buf[10] = '\0';
 | |
|     char* p = &buf[10];
 | |
|     do
 | |
|     {
 | |
|         *--p = '0' + (char)(num % 10);
 | |
|         num /= 10;
 | |
|     } while (num);
 | |
|     Add(p);
 | |
| }
 | |
| 
 | |
| void VmaStringBuilder::AddNumber(uint64_t num)
 | |
| {
 | |
|     char buf[21];
 | |
|     buf[20] = '\0';
 | |
|     char* p = &buf[20];
 | |
|     do
 | |
|     {
 | |
|         *--p = '0' + (char)(num % 10);
 | |
|         num /= 10;
 | |
|     } while (num);
 | |
|     Add(p);
 | |
| }
 | |
| 
 | |
| void VmaStringBuilder::AddPointer(const void* ptr)
 | |
| {
 | |
|     char buf[21];
 | |
|     VmaPtrToStr(buf, sizeof(buf), ptr);
 | |
|     Add(buf);
 | |
| }
 | |
| #endif //_VMA_STRING_BUILDER_FUNCTIONS
 | |
| #endif // _VMA_STRING_BUILDER
 | |
| 
 | |
| #if !defined(_VMA_JSON_WRITER) && VMA_STATS_STRING_ENABLED
 | |
| /*
 | |
| Allows to conveniently build a correct JSON document to be written to the
 | |
| VmaStringBuilder passed to the constructor.
 | |
| */
 | |
| class VmaJsonWriter
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaJsonWriter)
 | |
| public:
 | |
|     // sb - string builder to write the document to. Must remain alive for the whole lifetime of this object.
 | |
|     VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb);
 | |
|     ~VmaJsonWriter();
 | |
| 
 | |
|     // Begins object by writing "{".
 | |
|     // Inside an object, you must call pairs of WriteString and a value, e.g.:
 | |
|     // j.BeginObject(true); j.WriteString("A"); j.WriteNumber(1); j.WriteString("B"); j.WriteNumber(2); j.EndObject();
 | |
|     // Will write: { "A": 1, "B": 2 }
 | |
|     void BeginObject(bool singleLine = false);
 | |
|     // Ends object by writing "}".
 | |
|     void EndObject();
 | |
| 
 | |
|     // Begins array by writing "[".
 | |
|     // Inside an array, you can write a sequence of any values.
 | |
|     void BeginArray(bool singleLine = false);
 | |
|     // Ends array by writing "[".
 | |
|     void EndArray();
 | |
| 
 | |
|     // Writes a string value inside "".
 | |
|     // pStr can contain any ANSI characters, including '"', new line etc. - they will be properly escaped.
 | |
|     void WriteString(const char* pStr);
 | |
| 
 | |
|     // Begins writing a string value.
 | |
|     // Call BeginString, ContinueString, ContinueString, ..., EndString instead of
 | |
|     // WriteString to conveniently build the string content incrementally, made of
 | |
|     // parts including numbers.
 | |
|     void BeginString(const char* pStr = VMA_NULL);
 | |
|     // Posts next part of an open string.
 | |
|     void ContinueString(const char* pStr);
 | |
|     // Posts next part of an open string. The number is converted to decimal characters.
 | |
|     void ContinueString(uint32_t n);
 | |
|     void ContinueString(uint64_t n);
 | |
|     // Posts next part of an open string. Pointer value is converted to characters
 | |
|     // using "%p" formatting - shown as hexadecimal number, e.g.: 000000081276Ad00
 | |
|     void ContinueString_Pointer(const void* ptr);
 | |
|     // Ends writing a string value by writing '"'.
 | |
|     void EndString(const char* pStr = VMA_NULL);
 | |
| 
 | |
|     // Writes a number value.
 | |
|     void WriteNumber(uint32_t n);
 | |
|     void WriteNumber(uint64_t n);
 | |
|     // Writes a boolean value - false or true.
 | |
|     void WriteBool(bool b);
 | |
|     // Writes a null value.
 | |
|     void WriteNull();
 | |
| 
 | |
| private:
 | |
|     enum COLLECTION_TYPE
 | |
|     {
 | |
|         COLLECTION_TYPE_OBJECT,
 | |
|         COLLECTION_TYPE_ARRAY,
 | |
|     };
 | |
|     struct StackItem
 | |
|     {
 | |
|         COLLECTION_TYPE type;
 | |
|         uint32_t valueCount;
 | |
|         bool singleLineMode;
 | |
|     };
 | |
| 
 | |
|     static const char* const INDENT;
 | |
| 
 | |
|     VmaStringBuilder& m_SB;
 | |
|     VmaVector< StackItem, VmaStlAllocator<StackItem> > m_Stack;
 | |
|     bool m_InsideString;
 | |
| 
 | |
|     void BeginValue(bool isString);
 | |
|     void WriteIndent(bool oneLess = false);
 | |
| };
 | |
| const char* const VmaJsonWriter::INDENT = "  ";
 | |
| 
 | |
| #ifndef _VMA_JSON_WRITER_FUNCTIONS
 | |
| VmaJsonWriter::VmaJsonWriter(const VkAllocationCallbacks* pAllocationCallbacks, VmaStringBuilder& sb)
 | |
|     : m_SB(sb),
 | |
|     m_Stack(VmaStlAllocator<StackItem>(pAllocationCallbacks)),
 | |
|     m_InsideString(false) {}
 | |
| 
 | |
| VmaJsonWriter::~VmaJsonWriter()
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     VMA_ASSERT(m_Stack.empty());
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::BeginObject(bool singleLine)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     BeginValue(false);
 | |
|     m_SB.Add('{');
 | |
| 
 | |
|     StackItem item;
 | |
|     item.type = COLLECTION_TYPE_OBJECT;
 | |
|     item.valueCount = 0;
 | |
|     item.singleLineMode = singleLine;
 | |
|     m_Stack.push_back(item);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::EndObject()
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     WriteIndent(true);
 | |
|     m_SB.Add('}');
 | |
| 
 | |
|     VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_OBJECT);
 | |
|     m_Stack.pop_back();
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::BeginArray(bool singleLine)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     BeginValue(false);
 | |
|     m_SB.Add('[');
 | |
| 
 | |
|     StackItem item;
 | |
|     item.type = COLLECTION_TYPE_ARRAY;
 | |
|     item.valueCount = 0;
 | |
|     item.singleLineMode = singleLine;
 | |
|     m_Stack.push_back(item);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::EndArray()
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     WriteIndent(true);
 | |
|     m_SB.Add(']');
 | |
| 
 | |
|     VMA_ASSERT(!m_Stack.empty() && m_Stack.back().type == COLLECTION_TYPE_ARRAY);
 | |
|     m_Stack.pop_back();
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteString(const char* pStr)
 | |
| {
 | |
|     BeginString(pStr);
 | |
|     EndString();
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::BeginString(const char* pStr)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
| 
 | |
|     BeginValue(true);
 | |
|     m_SB.Add('"');
 | |
|     m_InsideString = true;
 | |
|     if (pStr != VMA_NULL && pStr[0] != '\0')
 | |
|     {
 | |
|         ContinueString(pStr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::ContinueString(const char* pStr)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
| 
 | |
|     const size_t strLen = strlen(pStr);
 | |
|     for (size_t i = 0; i < strLen; ++i)
 | |
|     {
 | |
|         char ch = pStr[i];
 | |
|         if (ch == '\\')
 | |
|         {
 | |
|             m_SB.Add("\\\\");
 | |
|         }
 | |
|         else if (ch == '"')
 | |
|         {
 | |
|             m_SB.Add("\\\"");
 | |
|         }
 | |
|         else if (ch >= 32)
 | |
|         {
 | |
|             m_SB.Add(ch);
 | |
|         }
 | |
|         else switch (ch)
 | |
|         {
 | |
|         case '\b':
 | |
|             m_SB.Add("\\b");
 | |
|             break;
 | |
|         case '\f':
 | |
|             m_SB.Add("\\f");
 | |
|             break;
 | |
|         case '\n':
 | |
|             m_SB.Add("\\n");
 | |
|             break;
 | |
|         case '\r':
 | |
|             m_SB.Add("\\r");
 | |
|             break;
 | |
|         case '\t':
 | |
|             m_SB.Add("\\t");
 | |
|             break;
 | |
|         default:
 | |
|             VMA_ASSERT(0 && "Character not currently supported.");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::ContinueString(uint32_t n)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
|     m_SB.AddNumber(n);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::ContinueString(uint64_t n)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
|     m_SB.AddNumber(n);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::ContinueString_Pointer(const void* ptr)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
|     m_SB.AddPointer(ptr);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::EndString(const char* pStr)
 | |
| {
 | |
|     VMA_ASSERT(m_InsideString);
 | |
|     if (pStr != VMA_NULL && pStr[0] != '\0')
 | |
|     {
 | |
|         ContinueString(pStr);
 | |
|     }
 | |
|     m_SB.Add('"');
 | |
|     m_InsideString = false;
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteNumber(uint32_t n)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     BeginValue(false);
 | |
|     m_SB.AddNumber(n);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteNumber(uint64_t n)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     BeginValue(false);
 | |
|     m_SB.AddNumber(n);
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteBool(bool b)
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     BeginValue(false);
 | |
|     m_SB.Add(b ? "true" : "false");
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteNull()
 | |
| {
 | |
|     VMA_ASSERT(!m_InsideString);
 | |
|     BeginValue(false);
 | |
|     m_SB.Add("null");
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::BeginValue(bool isString)
 | |
| {
 | |
|     if (!m_Stack.empty())
 | |
|     {
 | |
|         StackItem& currItem = m_Stack.back();
 | |
|         if (currItem.type == COLLECTION_TYPE_OBJECT &&
 | |
|             currItem.valueCount % 2 == 0)
 | |
|         {
 | |
|             VMA_ASSERT(isString);
 | |
|         }
 | |
| 
 | |
|         if (currItem.type == COLLECTION_TYPE_OBJECT &&
 | |
|             currItem.valueCount % 2 != 0)
 | |
|         {
 | |
|             m_SB.Add(": ");
 | |
|         }
 | |
|         else if (currItem.valueCount > 0)
 | |
|         {
 | |
|             m_SB.Add(", ");
 | |
|             WriteIndent();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             WriteIndent();
 | |
|         }
 | |
|         ++currItem.valueCount;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaJsonWriter::WriteIndent(bool oneLess)
 | |
| {
 | |
|     if (!m_Stack.empty() && !m_Stack.back().singleLineMode)
 | |
|     {
 | |
|         m_SB.AddNewLine();
 | |
| 
 | |
|         size_t count = m_Stack.size();
 | |
|         if (count > 0 && oneLess)
 | |
|         {
 | |
|             --count;
 | |
|         }
 | |
|         for (size_t i = 0; i < count; ++i)
 | |
|         {
 | |
|             m_SB.Add(INDENT);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| #endif // _VMA_JSON_WRITER_FUNCTIONS
 | |
| 
 | |
| static void VmaPrintDetailedStatistics(VmaJsonWriter& json, const VmaDetailedStatistics& stat)
 | |
| {
 | |
|     json.BeginObject();
 | |
| 
 | |
|     json.WriteString("BlockCount");
 | |
|     json.WriteNumber(stat.statistics.blockCount);
 | |
|     json.WriteString("BlockBytes");
 | |
|     json.WriteNumber(stat.statistics.blockBytes);
 | |
|     json.WriteString("AllocationCount");
 | |
|     json.WriteNumber(stat.statistics.allocationCount);
 | |
|     json.WriteString("AllocationBytes");
 | |
|     json.WriteNumber(stat.statistics.allocationBytes);
 | |
|     json.WriteString("UnusedRangeCount");
 | |
|     json.WriteNumber(stat.unusedRangeCount);
 | |
| 
 | |
|     if (stat.statistics.allocationCount > 1)
 | |
|     {
 | |
|         json.WriteString("AllocationSizeMin");
 | |
|         json.WriteNumber(stat.allocationSizeMin);
 | |
|         json.WriteString("AllocationSizeMax");
 | |
|         json.WriteNumber(stat.allocationSizeMax);
 | |
|     }
 | |
|     if (stat.unusedRangeCount > 1)
 | |
|     {
 | |
|         json.WriteString("UnusedRangeSizeMin");
 | |
|         json.WriteNumber(stat.unusedRangeSizeMin);
 | |
|         json.WriteString("UnusedRangeSizeMax");
 | |
|         json.WriteNumber(stat.unusedRangeSizeMax);
 | |
|     }
 | |
|     json.EndObject();
 | |
| }
 | |
| #endif // _VMA_JSON_WRITER
 | |
| 
 | |
| #ifndef _VMA_MAPPING_HYSTERESIS
 | |
| 
 | |
| class VmaMappingHysteresis
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaMappingHysteresis)
 | |
| public:
 | |
|     VmaMappingHysteresis() = default;
 | |
| 
 | |
|     uint32_t GetExtraMapping() const { return m_ExtraMapping; }
 | |
| 
 | |
|     // Call when Map was called.
 | |
|     // Returns true if switched to extra +1 mapping reference count.
 | |
|     bool PostMap()
 | |
|     {
 | |
| #if VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|         if(m_ExtraMapping == 0)
 | |
|         {
 | |
|             ++m_MajorCounter;
 | |
|             if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING)
 | |
|             {
 | |
|                 m_ExtraMapping = 1;
 | |
|                 m_MajorCounter = 0;
 | |
|                 m_MinorCounter = 0;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|         else // m_ExtraMapping == 1
 | |
|             PostMinorCounter();
 | |
| #endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Call when Unmap was called.
 | |
|     void PostUnmap()
 | |
|     {
 | |
| #if VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|         if(m_ExtraMapping == 0)
 | |
|             ++m_MajorCounter;
 | |
|         else // m_ExtraMapping == 1
 | |
|             PostMinorCounter();
 | |
| #endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|     }
 | |
| 
 | |
|     // Call when allocation was made from the memory block.
 | |
|     void PostAlloc()
 | |
|     {
 | |
| #if VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|         if(m_ExtraMapping == 1)
 | |
|             ++m_MajorCounter;
 | |
|         else // m_ExtraMapping == 0
 | |
|             PostMinorCounter();
 | |
| #endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|     }
 | |
| 
 | |
|     // Call when allocation was freed from the memory block.
 | |
|     // Returns true if switched to extra -1 mapping reference count.
 | |
|     bool PostFree()
 | |
|     {
 | |
| #if VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|         if(m_ExtraMapping == 1)
 | |
|         {
 | |
|             ++m_MajorCounter;
 | |
|             if(m_MajorCounter >= COUNTER_MIN_EXTRA_MAPPING &&
 | |
|                 m_MajorCounter > m_MinorCounter + 1)
 | |
|             {
 | |
|                 m_ExtraMapping = 0;
 | |
|                 m_MajorCounter = 0;
 | |
|                 m_MinorCounter = 0;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|         else // m_ExtraMapping == 0
 | |
|             PostMinorCounter();
 | |
| #endif // #if VMA_MAPPING_HYSTERESIS_ENABLED
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
| private:
 | |
|     static const int32_t COUNTER_MIN_EXTRA_MAPPING = 7;
 | |
| 
 | |
|     uint32_t m_MinorCounter = 0;
 | |
|     uint32_t m_MajorCounter = 0;
 | |
|     uint32_t m_ExtraMapping = 0; // 0 or 1.
 | |
| 
 | |
|     void PostMinorCounter()
 | |
|     {
 | |
|         if(m_MinorCounter < m_MajorCounter)
 | |
|         {
 | |
|             ++m_MinorCounter;
 | |
|         }
 | |
|         else if(m_MajorCounter > 0)
 | |
|         {
 | |
|             --m_MajorCounter;
 | |
|             --m_MinorCounter;
 | |
|         }
 | |
|     }
 | |
| };
 | |
| 
 | |
| #endif // _VMA_MAPPING_HYSTERESIS
 | |
| 
 | |
| #ifndef _VMA_DEVICE_MEMORY_BLOCK
 | |
| /*
 | |
| Represents a single block of device memory (`VkDeviceMemory`) with all the
 | |
| data about its regions (aka suballocations, #VmaAllocation), assigned and free.
 | |
| 
 | |
| Thread-safety:
 | |
| - Access to m_pMetadata must be externally synchronized.
 | |
| - Map, Unmap, Bind* are synchronized internally.
 | |
| */
 | |
| class VmaDeviceMemoryBlock
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaDeviceMemoryBlock)
 | |
| public:
 | |
|     VmaBlockMetadata* m_pMetadata;
 | |
| 
 | |
|     VmaDeviceMemoryBlock(VmaAllocator hAllocator);
 | |
|     ~VmaDeviceMemoryBlock();
 | |
| 
 | |
|     // Always call after construction.
 | |
|     void Init(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaPool hParentPool,
 | |
|         uint32_t newMemoryTypeIndex,
 | |
|         VkDeviceMemory newMemory,
 | |
|         VkDeviceSize newSize,
 | |
|         uint32_t id,
 | |
|         uint32_t algorithm,
 | |
|         VkDeviceSize bufferImageGranularity);
 | |
|     // Always call before destruction.
 | |
|     void Destroy(VmaAllocator allocator);
 | |
| 
 | |
|     VmaPool GetParentPool() const { return m_hParentPool; }
 | |
|     VkDeviceMemory GetDeviceMemory() const { return m_hMemory; }
 | |
|     uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | |
|     uint32_t GetId() const { return m_Id; }
 | |
|     void* GetMappedData() const { return m_pMappedData; }
 | |
|     uint32_t GetMapRefCount() const { return m_MapCount; }
 | |
| 
 | |
|     // Call when allocation/free was made from m_pMetadata.
 | |
|     // Used for m_MappingHysteresis.
 | |
|     void PostAlloc(VmaAllocator hAllocator);
 | |
|     void PostFree(VmaAllocator hAllocator);
 | |
| 
 | |
|     // Validates all data structures inside this object. If not valid, returns false.
 | |
|     bool Validate() const;
 | |
|     VkResult CheckCorruption(VmaAllocator hAllocator);
 | |
| 
 | |
|     // ppData can be null.
 | |
|     VkResult Map(VmaAllocator hAllocator, uint32_t count, void** ppData);
 | |
|     void Unmap(VmaAllocator hAllocator, uint32_t count);
 | |
| 
 | |
|     VkResult WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
 | |
|     VkResult ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize);
 | |
| 
 | |
|     VkResult BindBufferMemory(
 | |
|         const VmaAllocator hAllocator,
 | |
|         const VmaAllocation hAllocation,
 | |
|         VkDeviceSize allocationLocalOffset,
 | |
|         VkBuffer hBuffer,
 | |
|         const void* pNext);
 | |
|     VkResult BindImageMemory(
 | |
|         const VmaAllocator hAllocator,
 | |
|         const VmaAllocation hAllocation,
 | |
|         VkDeviceSize allocationLocalOffset,
 | |
|         VkImage hImage,
 | |
|         const void* pNext);
 | |
| 
 | |
| private:
 | |
|     VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
 | |
|     uint32_t m_MemoryTypeIndex;
 | |
|     uint32_t m_Id;
 | |
|     VkDeviceMemory m_hMemory;
 | |
| 
 | |
|     /*
 | |
|     Protects access to m_hMemory so it is not used by multiple threads simultaneously, e.g. vkMapMemory, vkBindBufferMemory.
 | |
|     Also protects m_MapCount, m_pMappedData.
 | |
|     Allocations, deallocations, any change in m_pMetadata is protected by parent's VmaBlockVector::m_Mutex.
 | |
|     */
 | |
|     VMA_MUTEX m_MapAndBindMutex;
 | |
|     VmaMappingHysteresis m_MappingHysteresis;
 | |
|     uint32_t m_MapCount;
 | |
|     void* m_pMappedData;
 | |
| };
 | |
| #endif // _VMA_DEVICE_MEMORY_BLOCK
 | |
| 
 | |
| #ifndef _VMA_ALLOCATION_T
 | |
| struct VmaAllocation_T
 | |
| {
 | |
|     friend struct VmaDedicatedAllocationListItemTraits;
 | |
| 
 | |
|     enum FLAGS
 | |
|     {
 | |
|         FLAG_PERSISTENT_MAP   = 0x01,
 | |
|         FLAG_MAPPING_ALLOWED  = 0x02,
 | |
|     };
 | |
| 
 | |
| public:
 | |
|     enum ALLOCATION_TYPE
 | |
|     {
 | |
|         ALLOCATION_TYPE_NONE,
 | |
|         ALLOCATION_TYPE_BLOCK,
 | |
|         ALLOCATION_TYPE_DEDICATED,
 | |
|     };
 | |
| 
 | |
|     // This struct is allocated using VmaPoolAllocator.
 | |
|     VmaAllocation_T(bool mappingAllowed);
 | |
|     ~VmaAllocation_T();
 | |
| 
 | |
|     void InitBlockAllocation(
 | |
|         VmaDeviceMemoryBlock* block,
 | |
|         VmaAllocHandle allocHandle,
 | |
|         VkDeviceSize alignment,
 | |
|         VkDeviceSize size,
 | |
|         uint32_t memoryTypeIndex,
 | |
|         VmaSuballocationType suballocationType,
 | |
|         bool mapped);
 | |
|     // pMappedData not null means allocation is created with MAPPED flag.
 | |
|     void InitDedicatedAllocation(
 | |
|         VmaPool hParentPool,
 | |
|         uint32_t memoryTypeIndex,
 | |
|         VkDeviceMemory hMemory,
 | |
|         VmaSuballocationType suballocationType,
 | |
|         void* pMappedData,
 | |
|         VkDeviceSize size);
 | |
| 
 | |
|     ALLOCATION_TYPE GetType() const { return (ALLOCATION_TYPE)m_Type; }
 | |
|     VkDeviceSize GetAlignment() const { return m_Alignment; }
 | |
|     VkDeviceSize GetSize() const { return m_Size; }
 | |
|     void* GetUserData() const { return m_pUserData; }
 | |
|     const char* GetName() const { return m_pName; }
 | |
|     VmaSuballocationType GetSuballocationType() const { return (VmaSuballocationType)m_SuballocationType; }
 | |
| 
 | |
|     VmaDeviceMemoryBlock* GetBlock() const { VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK); return m_BlockAllocation.m_Block; }
 | |
|     uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | |
|     bool IsPersistentMap() const { return (m_Flags & FLAG_PERSISTENT_MAP) != 0; }
 | |
|     bool IsMappingAllowed() const { return (m_Flags & FLAG_MAPPING_ALLOWED) != 0; }
 | |
| 
 | |
|     void SetUserData(VmaAllocator hAllocator, void* pUserData) { m_pUserData = pUserData; }
 | |
|     void SetName(VmaAllocator hAllocator, const char* pName);
 | |
|     void FreeName(VmaAllocator hAllocator);
 | |
|     uint8_t SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation);
 | |
|     VmaAllocHandle GetAllocHandle() const;
 | |
|     VkDeviceSize GetOffset() const;
 | |
|     VmaPool GetParentPool() const;
 | |
|     VkDeviceMemory GetMemory() const;
 | |
|     void* GetMappedData() const;
 | |
| 
 | |
|     void BlockAllocMap();
 | |
|     void BlockAllocUnmap();
 | |
|     VkResult DedicatedAllocMap(VmaAllocator hAllocator, void** ppData);
 | |
|     void DedicatedAllocUnmap(VmaAllocator hAllocator);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     uint32_t GetBufferImageUsage() const { return m_BufferImageUsage; }
 | |
| 
 | |
|     void InitBufferImageUsage(uint32_t bufferImageUsage);
 | |
|     void PrintParameters(class VmaJsonWriter& json) const;
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|     // Allocation out of VmaDeviceMemoryBlock.
 | |
|     struct BlockAllocation
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* m_Block;
 | |
|         VmaAllocHandle m_AllocHandle;
 | |
|     };
 | |
|     // Allocation for an object that has its own private VkDeviceMemory.
 | |
|     struct DedicatedAllocation
 | |
|     {
 | |
|         VmaPool m_hParentPool; // VK_NULL_HANDLE if not belongs to custom pool.
 | |
|         VkDeviceMemory m_hMemory;
 | |
|         void* m_pMappedData; // Not null means memory is mapped.
 | |
|         VmaAllocation_T* m_Prev;
 | |
|         VmaAllocation_T* m_Next;
 | |
|     };
 | |
|     union
 | |
|     {
 | |
|         // Allocation out of VmaDeviceMemoryBlock.
 | |
|         BlockAllocation m_BlockAllocation;
 | |
|         // Allocation for an object that has its own private VkDeviceMemory.
 | |
|         DedicatedAllocation m_DedicatedAllocation;
 | |
|     };
 | |
| 
 | |
|     VkDeviceSize m_Alignment;
 | |
|     VkDeviceSize m_Size;
 | |
|     void* m_pUserData;
 | |
|     char* m_pName;
 | |
|     uint32_t m_MemoryTypeIndex;
 | |
|     uint8_t m_Type; // ALLOCATION_TYPE
 | |
|     uint8_t m_SuballocationType; // VmaSuballocationType
 | |
|     // Reference counter for vmaMapMemory()/vmaUnmapMemory().
 | |
|     uint8_t m_MapCount;
 | |
|     uint8_t m_Flags; // enum FLAGS
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     uint32_t m_BufferImageUsage; // 0 if unknown.
 | |
| #endif
 | |
| };
 | |
| #endif // _VMA_ALLOCATION_T
 | |
| 
 | |
| #ifndef _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
 | |
| struct VmaDedicatedAllocationListItemTraits
 | |
| {
 | |
|     typedef VmaAllocation_T ItemType;
 | |
| 
 | |
|     static ItemType* GetPrev(const ItemType* item)
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | |
|         return item->m_DedicatedAllocation.m_Prev;
 | |
|     }
 | |
|     static ItemType* GetNext(const ItemType* item)
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | |
|         return item->m_DedicatedAllocation.m_Next;
 | |
|     }
 | |
|     static ItemType*& AccessPrev(ItemType* item)
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | |
|         return item->m_DedicatedAllocation.m_Prev;
 | |
|     }
 | |
|     static ItemType*& AccessNext(ItemType* item)
 | |
|     {
 | |
|         VMA_HEAVY_ASSERT(item->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | |
|         return item->m_DedicatedAllocation.m_Next;
 | |
|     }
 | |
| };
 | |
| #endif // _VMA_DEDICATED_ALLOCATION_LIST_ITEM_TRAITS
 | |
| 
 | |
| #ifndef _VMA_DEDICATED_ALLOCATION_LIST
 | |
| /*
 | |
| Stores linked list of VmaAllocation_T objects.
 | |
| Thread-safe, synchronized internally.
 | |
| */
 | |
| class VmaDedicatedAllocationList
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaDedicatedAllocationList)
 | |
| public:
 | |
|     VmaDedicatedAllocationList() {}
 | |
|     ~VmaDedicatedAllocationList();
 | |
| 
 | |
|     void Init(bool useMutex) { m_UseMutex = useMutex; }
 | |
|     bool Validate();
 | |
| 
 | |
|     void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
 | |
|     void AddStatistics(VmaStatistics& inoutStats);
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     // Writes JSON array with the list of allocations.
 | |
|     void BuildStatsString(VmaJsonWriter& json);
 | |
| #endif
 | |
| 
 | |
|     bool IsEmpty();
 | |
|     void Register(VmaAllocation alloc);
 | |
|     void Unregister(VmaAllocation alloc);
 | |
| 
 | |
| private:
 | |
|     typedef VmaIntrusiveLinkedList<VmaDedicatedAllocationListItemTraits> DedicatedAllocationLinkedList;
 | |
| 
 | |
|     bool m_UseMutex = true;
 | |
|     VMA_RW_MUTEX m_Mutex;
 | |
|     DedicatedAllocationLinkedList m_AllocationList;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
 | |
| 
 | |
| VmaDedicatedAllocationList::~VmaDedicatedAllocationList()
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(Validate());
 | |
| 
 | |
|     if (!m_AllocationList.IsEmpty())
 | |
|     {
 | |
|         VMA_ASSERT(false && "Unfreed dedicated allocations found!");
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaDedicatedAllocationList::Validate()
 | |
| {
 | |
|     const size_t declaredCount = m_AllocationList.GetCount();
 | |
|     size_t actualCount = 0;
 | |
|     VmaMutexLockRead lock(m_Mutex, m_UseMutex);
 | |
|     for (VmaAllocation alloc = m_AllocationList.Front();
 | |
|         alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
 | |
|     {
 | |
|         ++actualCount;
 | |
|     }
 | |
|     VMA_VALIDATE(actualCount == declaredCount);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void VmaDedicatedAllocationList::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
 | |
| {
 | |
|     for(auto* item = m_AllocationList.Front(); item != nullptr; item = DedicatedAllocationLinkedList::GetNext(item))
 | |
|     {
 | |
|         const VkDeviceSize size = item->GetSize();
 | |
|         inoutStats.statistics.blockCount++;
 | |
|         inoutStats.statistics.blockBytes += size;
 | |
|         VmaAddDetailedStatisticsAllocation(inoutStats, item->GetSize());
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaDedicatedAllocationList::AddStatistics(VmaStatistics& inoutStats)
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_UseMutex);
 | |
| 
 | |
|     const uint32_t allocCount = (uint32_t)m_AllocationList.GetCount();
 | |
|     inoutStats.blockCount += allocCount;
 | |
|     inoutStats.allocationCount += allocCount;
 | |
| 
 | |
|     for(auto* item = m_AllocationList.Front(); item != nullptr; item = DedicatedAllocationLinkedList::GetNext(item))
 | |
|     {
 | |
|         const VkDeviceSize size = item->GetSize();
 | |
|         inoutStats.blockBytes += size;
 | |
|         inoutStats.allocationBytes += size;
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaDedicatedAllocationList::BuildStatsString(VmaJsonWriter& json)
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_UseMutex);
 | |
|     json.BeginArray();
 | |
|     for (VmaAllocation alloc = m_AllocationList.Front();
 | |
|         alloc != VMA_NULL; alloc = m_AllocationList.GetNext(alloc))
 | |
|     {
 | |
|         json.BeginObject(true);
 | |
|         alloc->PrintParameters(json);
 | |
|         json.EndObject();
 | |
|     }
 | |
|     json.EndArray();
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| bool VmaDedicatedAllocationList::IsEmpty()
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_UseMutex);
 | |
|     return m_AllocationList.IsEmpty();
 | |
| }
 | |
| 
 | |
| void VmaDedicatedAllocationList::Register(VmaAllocation alloc)
 | |
| {
 | |
|     VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
 | |
|     m_AllocationList.PushBack(alloc);
 | |
| }
 | |
| 
 | |
| void VmaDedicatedAllocationList::Unregister(VmaAllocation alloc)
 | |
| {
 | |
|     VmaMutexLockWrite lock(m_Mutex, m_UseMutex);
 | |
|     m_AllocationList.Remove(alloc);
 | |
| }
 | |
| #endif // _VMA_DEDICATED_ALLOCATION_LIST_FUNCTIONS
 | |
| #endif // _VMA_DEDICATED_ALLOCATION_LIST
 | |
| 
 | |
| #ifndef _VMA_SUBALLOCATION
 | |
| /*
 | |
| Represents a region of VmaDeviceMemoryBlock that is either assigned and returned as
 | |
| allocated memory block or free.
 | |
| */
 | |
| struct VmaSuballocation
 | |
| {
 | |
|     VkDeviceSize offset;
 | |
|     VkDeviceSize size;
 | |
|     void* userData;
 | |
|     VmaSuballocationType type;
 | |
| };
 | |
| 
 | |
| // Comparator for offsets.
 | |
| struct VmaSuballocationOffsetLess
 | |
| {
 | |
|     bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
 | |
|     {
 | |
|         return lhs.offset < rhs.offset;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct VmaSuballocationOffsetGreater
 | |
| {
 | |
|     bool operator()(const VmaSuballocation& lhs, const VmaSuballocation& rhs) const
 | |
|     {
 | |
|         return lhs.offset > rhs.offset;
 | |
|     }
 | |
| };
 | |
| 
 | |
| struct VmaSuballocationItemSizeLess
 | |
| {
 | |
|     bool operator()(const VmaSuballocationList::iterator lhs,
 | |
|         const VmaSuballocationList::iterator rhs) const
 | |
|     {
 | |
|         return lhs->size < rhs->size;
 | |
|     }
 | |
| 
 | |
|     bool operator()(const VmaSuballocationList::iterator lhs,
 | |
|         VkDeviceSize rhsSize) const
 | |
|     {
 | |
|         return lhs->size < rhsSize;
 | |
|     }
 | |
| };
 | |
| #endif // _VMA_SUBALLOCATION
 | |
| 
 | |
| #ifndef _VMA_ALLOCATION_REQUEST
 | |
| /*
 | |
| Parameters of planned allocation inside a VmaDeviceMemoryBlock.
 | |
| item points to a FREE suballocation.
 | |
| */
 | |
| struct VmaAllocationRequest
 | |
| {
 | |
|     VmaAllocHandle allocHandle;
 | |
|     VkDeviceSize size;
 | |
|     VmaSuballocationList::iterator item;
 | |
|     void* customData;
 | |
|     uint64_t algorithmData;
 | |
|     VmaAllocationRequestType type;
 | |
| };
 | |
| #endif // _VMA_ALLOCATION_REQUEST
 | |
| 
 | |
| #ifndef _VMA_BLOCK_METADATA
 | |
| /*
 | |
| Data structure used for bookkeeping of allocations and unused ranges of memory
 | |
| in a single VkDeviceMemory block.
 | |
| */
 | |
| class VmaBlockMetadata
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata)
 | |
| public:
 | |
|     // pAllocationCallbacks, if not null, must be owned externally - alive and unchanged for the whole lifetime of this object.
 | |
|     VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|         VkDeviceSize bufferImageGranularity, bool isVirtual);
 | |
|     virtual ~VmaBlockMetadata() = default;
 | |
| 
 | |
|     virtual void Init(VkDeviceSize size) { m_Size = size; }
 | |
|     bool IsVirtual() const { return m_IsVirtual; }
 | |
|     VkDeviceSize GetSize() const { return m_Size; }
 | |
| 
 | |
|     // Validates all data structures inside this object. If not valid, returns false.
 | |
|     virtual bool Validate() const = 0;
 | |
|     virtual size_t GetAllocationCount() const = 0;
 | |
|     virtual size_t GetFreeRegionsCount() const = 0;
 | |
|     virtual VkDeviceSize GetSumFreeSize() const = 0;
 | |
|     // Returns true if this block is empty - contains only single free suballocation.
 | |
|     virtual bool IsEmpty() const = 0;
 | |
|     virtual void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) = 0;
 | |
|     virtual VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const = 0;
 | |
|     virtual void* GetAllocationUserData(VmaAllocHandle allocHandle) const = 0;
 | |
| 
 | |
|     virtual VmaAllocHandle GetAllocationListBegin() const = 0;
 | |
|     virtual VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const = 0;
 | |
|     virtual VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const = 0;
 | |
| 
 | |
|     // Shouldn't modify blockCount.
 | |
|     virtual void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const = 0;
 | |
|     virtual void AddStatistics(VmaStatistics& inoutStats) const = 0;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     virtual void PrintDetailedMap(class VmaJsonWriter& json) const = 0;
 | |
| #endif
 | |
| 
 | |
|     // Tries to find a place for suballocation with given parameters inside this block.
 | |
|     // If succeeded, fills pAllocationRequest and returns true.
 | |
|     // If failed, returns false.
 | |
|     virtual bool CreateAllocationRequest(
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         // Always one of VMA_ALLOCATION_CREATE_STRATEGY_* or VMA_ALLOCATION_INTERNAL_STRATEGY_* flags.
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest) = 0;
 | |
| 
 | |
|     virtual VkResult CheckCorruption(const void* pBlockData) = 0;
 | |
| 
 | |
|     // Makes actual allocation based on request. Request must already be checked and valid.
 | |
|     virtual void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         void* userData) = 0;
 | |
| 
 | |
|     // Frees suballocation assigned to given memory region.
 | |
|     virtual void Free(VmaAllocHandle allocHandle) = 0;
 | |
| 
 | |
|     // Frees all allocations.
 | |
|     // Careful! Don't call it if there are VmaAllocation objects owned by userData of cleared allocations!
 | |
|     virtual void Clear() = 0;
 | |
| 
 | |
|     virtual void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) = 0;
 | |
|     virtual void DebugLogAllAllocations() const = 0;
 | |
| 
 | |
| protected:
 | |
|     const VkAllocationCallbacks* GetAllocationCallbacks() const { return m_pAllocationCallbacks; }
 | |
|     VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
 | |
|     VkDeviceSize GetDebugMargin() const { return VkDeviceSize(IsVirtual() ? 0 : VMA_DEBUG_MARGIN); }
 | |
| 
 | |
|     void DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const;
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     // mapRefCount == UINT32_MAX means unspecified.
 | |
|     void PrintDetailedMap_Begin(class VmaJsonWriter& json,
 | |
|         VkDeviceSize unusedBytes,
 | |
|         size_t allocationCount,
 | |
|         size_t unusedRangeCount) const;
 | |
|     void PrintDetailedMap_Allocation(class VmaJsonWriter& json,
 | |
|         VkDeviceSize offset, VkDeviceSize size, void* userData) const;
 | |
|     void PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
 | |
|         VkDeviceSize offset,
 | |
|         VkDeviceSize size) const;
 | |
|     void PrintDetailedMap_End(class VmaJsonWriter& json) const;
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|     VkDeviceSize m_Size;
 | |
|     const VkAllocationCallbacks* m_pAllocationCallbacks;
 | |
|     const VkDeviceSize m_BufferImageGranularity;
 | |
|     const bool m_IsVirtual;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_BLOCK_METADATA_FUNCTIONS
 | |
| VmaBlockMetadata::VmaBlockMetadata(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|     VkDeviceSize bufferImageGranularity, bool isVirtual)
 | |
|     : m_Size(0),
 | |
|     m_pAllocationCallbacks(pAllocationCallbacks),
 | |
|     m_BufferImageGranularity(bufferImageGranularity),
 | |
|     m_IsVirtual(isVirtual) {}
 | |
| 
 | |
| void VmaBlockMetadata::DebugLogAllocation(VkDeviceSize offset, VkDeviceSize size, void* userData) const
 | |
| {
 | |
|     if (IsVirtual())
 | |
|     {
 | |
|         VMA_DEBUG_LOG_FORMAT("UNFREED VIRTUAL ALLOCATION; Offset: %llu; Size: %llu; UserData: %p", offset, size, userData);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(userData != VMA_NULL);
 | |
|         VmaAllocation allocation = reinterpret_cast<VmaAllocation>(userData);
 | |
| 
 | |
|         userData = allocation->GetUserData();
 | |
|         const char* name = allocation->GetName();
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|         VMA_DEBUG_LOG_FORMAT("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Name: %s; Type: %s; Usage: %u",
 | |
|             offset, size, userData, name ? name : "vma_empty",
 | |
|             VMA_SUBALLOCATION_TYPE_NAMES[allocation->GetSuballocationType()],
 | |
|             allocation->GetBufferImageUsage());
 | |
| #else
 | |
|         VMA_DEBUG_LOG_FORMAT("UNFREED ALLOCATION; Offset: %llu; Size: %llu; UserData: %p; Name: %s; Type: %u",
 | |
|             offset, size, userData, name ? name : "vma_empty",
 | |
|             (uint32_t)allocation->GetSuballocationType());
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
|     }
 | |
| 
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockMetadata::PrintDetailedMap_Begin(class VmaJsonWriter& json,
 | |
|     VkDeviceSize unusedBytes, size_t allocationCount, size_t unusedRangeCount) const
 | |
| {
 | |
|     json.WriteString("TotalBytes");
 | |
|     json.WriteNumber(GetSize());
 | |
| 
 | |
|     json.WriteString("UnusedBytes");
 | |
|     json.WriteNumber(unusedBytes);
 | |
| 
 | |
|     json.WriteString("Allocations");
 | |
|     json.WriteNumber((uint64_t)allocationCount);
 | |
| 
 | |
|     json.WriteString("UnusedRanges");
 | |
|     json.WriteNumber((uint64_t)unusedRangeCount);
 | |
| 
 | |
|     json.WriteString("Suballocations");
 | |
|     json.BeginArray();
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata::PrintDetailedMap_Allocation(class VmaJsonWriter& json,
 | |
|     VkDeviceSize offset, VkDeviceSize size, void* userData) const
 | |
| {
 | |
|     json.BeginObject(true);
 | |
| 
 | |
|     json.WriteString("Offset");
 | |
|     json.WriteNumber(offset);
 | |
| 
 | |
|     if (IsVirtual())
 | |
|     {
 | |
|         json.WriteString("Size");
 | |
|         json.WriteNumber(size);
 | |
|         if (userData)
 | |
|         {
 | |
|             json.WriteString("CustomData");
 | |
|             json.BeginString();
 | |
|             json.ContinueString_Pointer(userData);
 | |
|             json.EndString();
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         ((VmaAllocation)userData)->PrintParameters(json);
 | |
|     }
 | |
| 
 | |
|     json.EndObject();
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata::PrintDetailedMap_UnusedRange(class VmaJsonWriter& json,
 | |
|     VkDeviceSize offset, VkDeviceSize size) const
 | |
| {
 | |
|     json.BeginObject(true);
 | |
| 
 | |
|     json.WriteString("Offset");
 | |
|     json.WriteNumber(offset);
 | |
| 
 | |
|     json.WriteString("Type");
 | |
|     json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[VMA_SUBALLOCATION_TYPE_FREE]);
 | |
| 
 | |
|     json.WriteString("Size");
 | |
|     json.WriteNumber(size);
 | |
| 
 | |
|     json.EndObject();
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata::PrintDetailedMap_End(class VmaJsonWriter& json) const
 | |
| {
 | |
|     json.EndArray();
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| #endif // _VMA_BLOCK_METADATA_FUNCTIONS
 | |
| #endif // _VMA_BLOCK_METADATA
 | |
| 
 | |
| #ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
 | |
| // Before deleting object of this class remember to call 'Destroy()'
 | |
| class VmaBlockBufferImageGranularity final
 | |
| {
 | |
| public:
 | |
|     struct ValidationContext
 | |
|     {
 | |
|         const VkAllocationCallbacks* allocCallbacks;
 | |
|         uint16_t* pageAllocs;
 | |
|     };
 | |
| 
 | |
|     VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity);
 | |
|     ~VmaBlockBufferImageGranularity();
 | |
| 
 | |
|     bool IsEnabled() const { return m_BufferImageGranularity > MAX_LOW_BUFFER_IMAGE_GRANULARITY; }
 | |
| 
 | |
|     void Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size);
 | |
|     // Before destroying object you must call free it's memory
 | |
|     void Destroy(const VkAllocationCallbacks* pAllocationCallbacks);
 | |
| 
 | |
|     void RoundupAllocRequest(VmaSuballocationType allocType,
 | |
|         VkDeviceSize& inOutAllocSize,
 | |
|         VkDeviceSize& inOutAllocAlignment) const;
 | |
| 
 | |
|     bool CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize blockOffset,
 | |
|         VkDeviceSize blockSize,
 | |
|         VmaSuballocationType allocType) const;
 | |
| 
 | |
|     void AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size);
 | |
|     void FreePages(VkDeviceSize offset, VkDeviceSize size);
 | |
|     void Clear();
 | |
| 
 | |
|     ValidationContext StartValidation(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|         bool isVirutal) const;
 | |
|     bool Validate(ValidationContext& ctx, VkDeviceSize offset, VkDeviceSize size) const;
 | |
|     bool FinishValidation(ValidationContext& ctx) const;
 | |
| 
 | |
| private:
 | |
|     static const uint16_t MAX_LOW_BUFFER_IMAGE_GRANULARITY = 256;
 | |
| 
 | |
|     struct RegionInfo
 | |
|     {
 | |
|         uint8_t allocType;
 | |
|         uint16_t allocCount;
 | |
|     };
 | |
| 
 | |
|     VkDeviceSize m_BufferImageGranularity;
 | |
|     uint32_t m_RegionCount;
 | |
|     RegionInfo* m_RegionInfo;
 | |
| 
 | |
|     uint32_t GetStartPage(VkDeviceSize offset) const { return OffsetToPageIndex(offset & ~(m_BufferImageGranularity - 1)); }
 | |
|     uint32_t GetEndPage(VkDeviceSize offset, VkDeviceSize size) const { return OffsetToPageIndex((offset + size - 1) & ~(m_BufferImageGranularity - 1)); }
 | |
| 
 | |
|     uint32_t OffsetToPageIndex(VkDeviceSize offset) const;
 | |
|     void AllocPage(RegionInfo& page, uint8_t allocType);
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
 | |
| VmaBlockBufferImageGranularity::VmaBlockBufferImageGranularity(VkDeviceSize bufferImageGranularity)
 | |
|     : m_BufferImageGranularity(bufferImageGranularity),
 | |
|     m_RegionCount(0),
 | |
|     m_RegionInfo(VMA_NULL) {}
 | |
| 
 | |
| VmaBlockBufferImageGranularity::~VmaBlockBufferImageGranularity()
 | |
| {
 | |
|     VMA_ASSERT(m_RegionInfo == VMA_NULL && "Free not called before destroying object!");
 | |
| }
 | |
| 
 | |
| void VmaBlockBufferImageGranularity::Init(const VkAllocationCallbacks* pAllocationCallbacks, VkDeviceSize size)
 | |
| {
 | |
|     if (IsEnabled())
 | |
|     {
 | |
|         m_RegionCount = static_cast<uint32_t>(VmaDivideRoundingUp(size, m_BufferImageGranularity));
 | |
|         m_RegionInfo = vma_new_array(pAllocationCallbacks, RegionInfo, m_RegionCount);
 | |
|         memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockBufferImageGranularity::Destroy(const VkAllocationCallbacks* pAllocationCallbacks)
 | |
| {
 | |
|     if (m_RegionInfo)
 | |
|     {
 | |
|         vma_delete_array(pAllocationCallbacks, m_RegionInfo, m_RegionCount);
 | |
|         m_RegionInfo = VMA_NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockBufferImageGranularity::RoundupAllocRequest(VmaSuballocationType allocType,
 | |
|     VkDeviceSize& inOutAllocSize,
 | |
|     VkDeviceSize& inOutAllocAlignment) const
 | |
| {
 | |
|     if (m_BufferImageGranularity > 1 &&
 | |
|         m_BufferImageGranularity <= MAX_LOW_BUFFER_IMAGE_GRANULARITY)
 | |
|     {
 | |
|         if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
 | |
|             allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | |
|             allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
 | |
|         {
 | |
|             inOutAllocAlignment = VMA_MAX(inOutAllocAlignment, m_BufferImageGranularity);
 | |
|             inOutAllocSize = VmaAlignUp(inOutAllocSize, m_BufferImageGranularity);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaBlockBufferImageGranularity::CheckConflictAndAlignUp(VkDeviceSize& inOutAllocOffset,
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize blockOffset,
 | |
|     VkDeviceSize blockSize,
 | |
|     VmaSuballocationType allocType) const
 | |
| {
 | |
|     if (IsEnabled())
 | |
|     {
 | |
|         uint32_t startPage = GetStartPage(inOutAllocOffset);
 | |
|         if (m_RegionInfo[startPage].allocCount > 0 &&
 | |
|             VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[startPage].allocType), allocType))
 | |
|         {
 | |
|             inOutAllocOffset = VmaAlignUp(inOutAllocOffset, m_BufferImageGranularity);
 | |
|             if (blockSize < allocSize + inOutAllocOffset - blockOffset)
 | |
|                 return true;
 | |
|             ++startPage;
 | |
|         }
 | |
|         uint32_t endPage = GetEndPage(inOutAllocOffset, allocSize);
 | |
|         if (endPage != startPage &&
 | |
|             m_RegionInfo[endPage].allocCount > 0 &&
 | |
|             VmaIsBufferImageGranularityConflict(static_cast<VmaSuballocationType>(m_RegionInfo[endPage].allocType), allocType))
 | |
|         {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void VmaBlockBufferImageGranularity::AllocPages(uint8_t allocType, VkDeviceSize offset, VkDeviceSize size)
 | |
| {
 | |
|     if (IsEnabled())
 | |
|     {
 | |
|         uint32_t startPage = GetStartPage(offset);
 | |
|         AllocPage(m_RegionInfo[startPage], allocType);
 | |
| 
 | |
|         uint32_t endPage = GetEndPage(offset, size);
 | |
|         if (startPage != endPage)
 | |
|             AllocPage(m_RegionInfo[endPage], allocType);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockBufferImageGranularity::FreePages(VkDeviceSize offset, VkDeviceSize size)
 | |
| {
 | |
|     if (IsEnabled())
 | |
|     {
 | |
|         uint32_t startPage = GetStartPage(offset);
 | |
|         --m_RegionInfo[startPage].allocCount;
 | |
|         if (m_RegionInfo[startPage].allocCount == 0)
 | |
|             m_RegionInfo[startPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|         uint32_t endPage = GetEndPage(offset, size);
 | |
|         if (startPage != endPage)
 | |
|         {
 | |
|             --m_RegionInfo[endPage].allocCount;
 | |
|             if (m_RegionInfo[endPage].allocCount == 0)
 | |
|                 m_RegionInfo[endPage].allocType = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockBufferImageGranularity::Clear()
 | |
| {
 | |
|     if (m_RegionInfo)
 | |
|         memset(m_RegionInfo, 0, m_RegionCount * sizeof(RegionInfo));
 | |
| }
 | |
| 
 | |
| VmaBlockBufferImageGranularity::ValidationContext VmaBlockBufferImageGranularity::StartValidation(
 | |
|     const VkAllocationCallbacks* pAllocationCallbacks, bool isVirutal) const
 | |
| {
 | |
|     ValidationContext ctx{ pAllocationCallbacks, VMA_NULL };
 | |
|     if (!isVirutal && IsEnabled())
 | |
|     {
 | |
|         ctx.pageAllocs = vma_new_array(pAllocationCallbacks, uint16_t, m_RegionCount);
 | |
|         memset(ctx.pageAllocs, 0, m_RegionCount * sizeof(uint16_t));
 | |
|     }
 | |
|     return ctx;
 | |
| }
 | |
| 
 | |
| bool VmaBlockBufferImageGranularity::Validate(ValidationContext& ctx,
 | |
|     VkDeviceSize offset, VkDeviceSize size) const
 | |
| {
 | |
|     if (IsEnabled())
 | |
|     {
 | |
|         uint32_t start = GetStartPage(offset);
 | |
|         ++ctx.pageAllocs[start];
 | |
|         VMA_VALIDATE(m_RegionInfo[start].allocCount > 0);
 | |
| 
 | |
|         uint32_t end = GetEndPage(offset, size);
 | |
|         if (start != end)
 | |
|         {
 | |
|             ++ctx.pageAllocs[end];
 | |
|             VMA_VALIDATE(m_RegionInfo[end].allocCount > 0);
 | |
|         }
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool VmaBlockBufferImageGranularity::FinishValidation(ValidationContext& ctx) const
 | |
| {
 | |
|     // Check proper page structure
 | |
|     if (IsEnabled())
 | |
|     {
 | |
|         VMA_ASSERT(ctx.pageAllocs != VMA_NULL && "Validation context not initialized!");
 | |
| 
 | |
|         for (uint32_t page = 0; page < m_RegionCount; ++page)
 | |
|         {
 | |
|             VMA_VALIDATE(ctx.pageAllocs[page] == m_RegionInfo[page].allocCount);
 | |
|         }
 | |
|         vma_delete_array(ctx.allocCallbacks, ctx.pageAllocs, m_RegionCount);
 | |
|         ctx.pageAllocs = VMA_NULL;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| uint32_t VmaBlockBufferImageGranularity::OffsetToPageIndex(VkDeviceSize offset) const
 | |
| {
 | |
|     return static_cast<uint32_t>(offset >> VMA_BITSCAN_MSB(m_BufferImageGranularity));
 | |
| }
 | |
| 
 | |
| void VmaBlockBufferImageGranularity::AllocPage(RegionInfo& page, uint8_t allocType)
 | |
| {
 | |
|     // When current alloc type is free then it can be overridden by new type
 | |
|     if (page.allocCount == 0 || (page.allocCount > 0 && page.allocType == VMA_SUBALLOCATION_TYPE_FREE))
 | |
|         page.allocType = allocType;
 | |
| 
 | |
|     ++page.allocCount;
 | |
| }
 | |
| #endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY_FUNCTIONS
 | |
| #endif // _VMA_BLOCK_BUFFER_IMAGE_GRANULARITY
 | |
| 
 | |
| #if 0
 | |
| #ifndef _VMA_BLOCK_METADATA_GENERIC
 | |
| class VmaBlockMetadata_Generic : public VmaBlockMetadata
 | |
| {
 | |
|     friend class VmaDefragmentationAlgorithm_Generic;
 | |
|     friend class VmaDefragmentationAlgorithm_Fast;
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_Generic)
 | |
| public:
 | |
|     VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|         VkDeviceSize bufferImageGranularity, bool isVirtual);
 | |
|     virtual ~VmaBlockMetadata_Generic() = default;
 | |
| 
 | |
|     size_t GetAllocationCount() const override { return m_Suballocations.size() - m_FreeCount; }
 | |
|     VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; }
 | |
|     bool IsEmpty() const override { return (m_Suballocations.size() == 1) && (m_FreeCount == 1); }
 | |
|     void Free(VmaAllocHandle allocHandle) override { FreeSuballocation(FindAtOffset((VkDeviceSize)allocHandle - 1)); }
 | |
|     VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }
 | |
| 
 | |
|     void Init(VkDeviceSize size) override;
 | |
|     bool Validate() const override;
 | |
| 
 | |
|     void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
 | |
|     void AddStatistics(VmaStatistics& inoutStats) const override;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override;
 | |
| #endif
 | |
| 
 | |
|     bool CreateAllocationRequest(
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest) override;
 | |
| 
 | |
|     VkResult CheckCorruption(const void* pBlockData) override;
 | |
| 
 | |
|     void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         void* userData) override;
 | |
| 
 | |
|     void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
 | |
|     void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
 | |
|     VmaAllocHandle GetAllocationListBegin() const override;
 | |
|     VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
 | |
|     void Clear() override;
 | |
|     void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
 | |
|     void DebugLogAllAllocations() const override;
 | |
| 
 | |
| private:
 | |
|     uint32_t m_FreeCount;
 | |
|     VkDeviceSize m_SumFreeSize;
 | |
|     VmaSuballocationList m_Suballocations;
 | |
|     // Suballocations that are free. Sorted by size, ascending.
 | |
|     VmaVector<VmaSuballocationList::iterator, VmaStlAllocator<VmaSuballocationList::iterator>> m_FreeSuballocationsBySize;
 | |
| 
 | |
|     VkDeviceSize AlignAllocationSize(VkDeviceSize size) const { return IsVirtual() ? size : VmaAlignUp(size, (VkDeviceSize)16); }
 | |
| 
 | |
|     VmaSuballocationList::iterator FindAtOffset(VkDeviceSize offset) const;
 | |
|     bool ValidateFreeSuballocationList() const;
 | |
| 
 | |
|     // Checks if requested suballocation with given parameters can be placed in given pFreeSuballocItem.
 | |
|     // If yes, fills pOffset and returns true. If no, returns false.
 | |
|     bool CheckAllocation(
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         VmaSuballocationType allocType,
 | |
|         VmaSuballocationList::const_iterator suballocItem,
 | |
|         VmaAllocHandle* pAllocHandle) const;
 | |
| 
 | |
|     // Given free suballocation, it merges it with following one, which must also be free.
 | |
|     void MergeFreeWithNext(VmaSuballocationList::iterator item);
 | |
|     // Releases given suballocation, making it free.
 | |
|     // Merges it with adjacent free suballocations if applicable.
 | |
|     // Returns iterator to new free suballocation at this place.
 | |
|     VmaSuballocationList::iterator FreeSuballocation(VmaSuballocationList::iterator suballocItem);
 | |
|     // Given free suballocation, it inserts it into sorted list of
 | |
|     // m_FreeSuballocationsBySize if it is suitable.
 | |
|     void RegisterFreeSuballocation(VmaSuballocationList::iterator item);
 | |
|     // Given free suballocation, it removes it from sorted list of
 | |
|     // m_FreeSuballocationsBySize if it is suitable.
 | |
|     void UnregisterFreeSuballocation(VmaSuballocationList::iterator item);
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS
 | |
| VmaBlockMetadata_Generic::VmaBlockMetadata_Generic(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|     VkDeviceSize bufferImageGranularity, bool isVirtual)
 | |
|     : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
 | |
|     m_FreeCount(0),
 | |
|     m_SumFreeSize(0),
 | |
|     m_Suballocations(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
 | |
|     m_FreeSuballocationsBySize(VmaStlAllocator<VmaSuballocationList::iterator>(pAllocationCallbacks)) {}
 | |
| 
 | |
| void VmaBlockMetadata_Generic::Init(VkDeviceSize size)
 | |
| {
 | |
|     VmaBlockMetadata::Init(size);
 | |
| 
 | |
|     m_FreeCount = 1;
 | |
|     m_SumFreeSize = size;
 | |
| 
 | |
|     VmaSuballocation suballoc = {};
 | |
|     suballoc.offset = 0;
 | |
|     suballoc.size = size;
 | |
|     suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
| 
 | |
|     m_Suballocations.push_back(suballoc);
 | |
|     m_FreeSuballocationsBySize.push_back(m_Suballocations.begin());
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::Validate() const
 | |
| {
 | |
|     VMA_VALIDATE(!m_Suballocations.empty());
 | |
| 
 | |
|     // Expected offset of new suballocation as calculated from previous ones.
 | |
|     VkDeviceSize calculatedOffset = 0;
 | |
|     // Expected number of free suballocations as calculated from traversing their list.
 | |
|     uint32_t calculatedFreeCount = 0;
 | |
|     // Expected sum size of free suballocations as calculated from traversing their list.
 | |
|     VkDeviceSize calculatedSumFreeSize = 0;
 | |
|     // Expected number of free suballocations that should be registered in
 | |
|     // m_FreeSuballocationsBySize calculated from traversing their list.
 | |
|     size_t freeSuballocationsToRegister = 0;
 | |
|     // True if previous visited suballocation was free.
 | |
|     bool prevFree = false;
 | |
| 
 | |
|     const VkDeviceSize debugMargin = GetDebugMargin();
 | |
| 
 | |
|     for (const auto& subAlloc : m_Suballocations)
 | |
|     {
 | |
|         // Actual offset of this suballocation doesn't match expected one.
 | |
|         VMA_VALIDATE(subAlloc.offset == calculatedOffset);
 | |
| 
 | |
|         const bool currFree = (subAlloc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|         // Two adjacent free suballocations are invalid. They should be merged.
 | |
|         VMA_VALIDATE(!prevFree || !currFree);
 | |
| 
 | |
|         VmaAllocation alloc = (VmaAllocation)subAlloc.userData;
 | |
|         if (!IsVirtual())
 | |
|         {
 | |
|             VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
 | |
|         }
 | |
| 
 | |
|         if (currFree)
 | |
|         {
 | |
|             calculatedSumFreeSize += subAlloc.size;
 | |
|             ++calculatedFreeCount;
 | |
|             ++freeSuballocationsToRegister;
 | |
| 
 | |
|             // Margin required between allocations - every free space must be at least that large.
 | |
|             VMA_VALIDATE(subAlloc.size >= debugMargin);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if (!IsVirtual())
 | |
|             {
 | |
|                 VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == subAlloc.offset + 1);
 | |
|                 VMA_VALIDATE(alloc->GetSize() == subAlloc.size);
 | |
|             }
 | |
| 
 | |
|             // Margin required between allocations - previous allocation must be free.
 | |
|             VMA_VALIDATE(debugMargin == 0 || prevFree);
 | |
|         }
 | |
| 
 | |
|         calculatedOffset += subAlloc.size;
 | |
|         prevFree = currFree;
 | |
|     }
 | |
| 
 | |
|     // Number of free suballocations registered in m_FreeSuballocationsBySize doesn't
 | |
|     // match expected one.
 | |
|     VMA_VALIDATE(m_FreeSuballocationsBySize.size() == freeSuballocationsToRegister);
 | |
| 
 | |
|     VkDeviceSize lastSize = 0;
 | |
|     for (size_t i = 0; i < m_FreeSuballocationsBySize.size(); ++i)
 | |
|     {
 | |
|         VmaSuballocationList::iterator suballocItem = m_FreeSuballocationsBySize[i];
 | |
| 
 | |
|         // Only free suballocations can be registered in m_FreeSuballocationsBySize.
 | |
|         VMA_VALIDATE(suballocItem->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|         // They must be sorted by size ascending.
 | |
|         VMA_VALIDATE(suballocItem->size >= lastSize);
 | |
| 
 | |
|         lastSize = suballocItem->size;
 | |
|     }
 | |
| 
 | |
|     // Check if totals match calculated values.
 | |
|     VMA_VALIDATE(ValidateFreeSuballocationList());
 | |
|     VMA_VALIDATE(calculatedOffset == GetSize());
 | |
|     VMA_VALIDATE(calculatedSumFreeSize == m_SumFreeSize);
 | |
|     VMA_VALIDATE(calculatedFreeCount == m_FreeCount);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
 | |
| {
 | |
|     const uint32_t rangeCount = (uint32_t)m_Suballocations.size();
 | |
|     inoutStats.statistics.blockCount++;
 | |
|     inoutStats.statistics.blockBytes += GetSize();
 | |
| 
 | |
|     for (const auto& suballoc : m_Suballocations)
 | |
|     {
 | |
|         if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|             VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
 | |
|         else
 | |
|             VmaAddDetailedStatisticsUnusedRange(inoutStats, suballoc.size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::AddStatistics(VmaStatistics& inoutStats) const
 | |
| {
 | |
|     inoutStats.blockCount++;
 | |
|     inoutStats.allocationCount += (uint32_t)m_Suballocations.size() - m_FreeCount;
 | |
|     inoutStats.blockBytes += GetSize();
 | |
|     inoutStats.allocationBytes += GetSize() - m_SumFreeSize;
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockMetadata_Generic::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const
 | |
| {
 | |
|     PrintDetailedMap_Begin(json,
 | |
|         m_SumFreeSize, // unusedBytes
 | |
|         m_Suballocations.size() - (size_t)m_FreeCount, // allocationCount
 | |
|         m_FreeCount, // unusedRangeCount
 | |
|         mapRefCount);
 | |
| 
 | |
|     for (const auto& suballoc : m_Suballocations)
 | |
|     {
 | |
|         if (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             PrintDetailedMap_UnusedRange(json, suballoc.offset, suballoc.size);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     PrintDetailedMap_End(json);
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::CreateAllocationRequest(
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     bool upperAddress,
 | |
|     VmaSuballocationType allocType,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(allocSize > 0);
 | |
|     VMA_ASSERT(!upperAddress);
 | |
|     VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(pAllocationRequest != VMA_NULL);
 | |
|     VMA_HEAVY_ASSERT(Validate());
 | |
| 
 | |
|     allocSize = AlignAllocationSize(allocSize);
 | |
| 
 | |
|     pAllocationRequest->type = VmaAllocationRequestType::Normal;
 | |
|     pAllocationRequest->size = allocSize;
 | |
| 
 | |
|     const VkDeviceSize debugMargin = GetDebugMargin();
 | |
| 
 | |
|     // There is not enough total free space in this block to fulfill the request: Early return.
 | |
|     if (m_SumFreeSize < allocSize + debugMargin)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // New algorithm, efficiently searching freeSuballocationsBySize.
 | |
|     const size_t freeSuballocCount = m_FreeSuballocationsBySize.size();
 | |
|     if (freeSuballocCount > 0)
 | |
|     {
 | |
|         if (strategy == 0 ||
 | |
|             strategy == VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT)
 | |
|         {
 | |
|             // Find first free suballocation with size not less than allocSize + debugMargin.
 | |
|             VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
 | |
|                 m_FreeSuballocationsBySize.data(),
 | |
|                 m_FreeSuballocationsBySize.data() + freeSuballocCount,
 | |
|                 allocSize + debugMargin,
 | |
|                 VmaSuballocationItemSizeLess());
 | |
|             size_t index = it - m_FreeSuballocationsBySize.data();
 | |
|             for (; index < freeSuballocCount; ++index)
 | |
|             {
 | |
|                 if (CheckAllocation(
 | |
|                     allocSize,
 | |
|                     allocAlignment,
 | |
|                     allocType,
 | |
|                     m_FreeSuballocationsBySize[index],
 | |
|                     &pAllocationRequest->allocHandle))
 | |
|                 {
 | |
|                     pAllocationRequest->item = m_FreeSuballocationsBySize[index];
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else if (strategy == VMA_ALLOCATION_INTERNAL_STRATEGY_MIN_OFFSET)
 | |
|         {
 | |
|             for (VmaSuballocationList::iterator it = m_Suballocations.begin();
 | |
|                 it != m_Suballocations.end();
 | |
|                 ++it)
 | |
|             {
 | |
|                 if (it->type == VMA_SUBALLOCATION_TYPE_FREE && CheckAllocation(
 | |
|                     allocSize,
 | |
|                     allocAlignment,
 | |
|                     allocType,
 | |
|                     it,
 | |
|                     &pAllocationRequest->allocHandle))
 | |
|                 {
 | |
|                     pAllocationRequest->item = it;
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_ASSERT(strategy & (VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT | VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT ));
 | |
|             // Search staring from biggest suballocations.
 | |
|             for (size_t index = freeSuballocCount; index--; )
 | |
|             {
 | |
|                 if (CheckAllocation(
 | |
|                     allocSize,
 | |
|                     allocAlignment,
 | |
|                     allocType,
 | |
|                     m_FreeSuballocationsBySize[index],
 | |
|                     &pAllocationRequest->allocHandle))
 | |
|                 {
 | |
|                     pAllocationRequest->item = m_FreeSuballocationsBySize[index];
 | |
|                     return true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockMetadata_Generic::CheckCorruption(const void* pBlockData)
 | |
| {
 | |
|     for (auto& suballoc : m_Suballocations)
 | |
|     {
 | |
|         if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_UNKNOWN_COPY;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::Alloc(
 | |
|     const VmaAllocationRequest& request,
 | |
|     VmaSuballocationType type,
 | |
|     void* userData)
 | |
| {
 | |
|     VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
 | |
|     VMA_ASSERT(request.item != m_Suballocations.end());
 | |
|     VmaSuballocation& suballoc = *request.item;
 | |
|     // Given suballocation is a free block.
 | |
|     VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|     // Given offset is inside this suballocation.
 | |
|     VMA_ASSERT((VkDeviceSize)request.allocHandle - 1 >= suballoc.offset);
 | |
|     const VkDeviceSize paddingBegin = (VkDeviceSize)request.allocHandle - suballoc.offset - 1;
 | |
|     VMA_ASSERT(suballoc.size >= paddingBegin + request.size);
 | |
|     const VkDeviceSize paddingEnd = suballoc.size - paddingBegin - request.size;
 | |
| 
 | |
|     // Unregister this free suballocation from m_FreeSuballocationsBySize and update
 | |
|     // it to become used.
 | |
|     UnregisterFreeSuballocation(request.item);
 | |
| 
 | |
|     suballoc.offset = (VkDeviceSize)request.allocHandle - 1;
 | |
|     suballoc.size = request.size;
 | |
|     suballoc.type = type;
 | |
|     suballoc.userData = userData;
 | |
| 
 | |
|     // If there are any free bytes remaining at the end, insert new free suballocation after current one.
 | |
|     if (paddingEnd)
 | |
|     {
 | |
|         VmaSuballocation paddingSuballoc = {};
 | |
|         paddingSuballoc.offset = suballoc.offset + suballoc.size;
 | |
|         paddingSuballoc.size = paddingEnd;
 | |
|         paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|         VmaSuballocationList::iterator next = request.item;
 | |
|         ++next;
 | |
|         const VmaSuballocationList::iterator paddingEndItem =
 | |
|             m_Suballocations.insert(next, paddingSuballoc);
 | |
|         RegisterFreeSuballocation(paddingEndItem);
 | |
|     }
 | |
| 
 | |
|     // If there are any free bytes remaining at the beginning, insert new free suballocation before current one.
 | |
|     if (paddingBegin)
 | |
|     {
 | |
|         VmaSuballocation paddingSuballoc = {};
 | |
|         paddingSuballoc.offset = suballoc.offset - paddingBegin;
 | |
|         paddingSuballoc.size = paddingBegin;
 | |
|         paddingSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|         const VmaSuballocationList::iterator paddingBeginItem =
 | |
|             m_Suballocations.insert(request.item, paddingSuballoc);
 | |
|         RegisterFreeSuballocation(paddingBeginItem);
 | |
|     }
 | |
| 
 | |
|     // Update totals.
 | |
|     m_FreeCount = m_FreeCount - 1;
 | |
|     if (paddingBegin > 0)
 | |
|     {
 | |
|         ++m_FreeCount;
 | |
|     }
 | |
|     if (paddingEnd > 0)
 | |
|     {
 | |
|         ++m_FreeCount;
 | |
|     }
 | |
|     m_SumFreeSize -= request.size;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
 | |
| {
 | |
|     outInfo.offset = (VkDeviceSize)allocHandle - 1;
 | |
|     const VmaSuballocation& suballoc = *FindAtOffset(outInfo.offset);
 | |
|     outInfo.size = suballoc.size;
 | |
|     outInfo.pUserData = suballoc.userData;
 | |
| }
 | |
| 
 | |
| void* VmaBlockMetadata_Generic::GetAllocationUserData(VmaAllocHandle allocHandle) const
 | |
| {
 | |
|     return FindAtOffset((VkDeviceSize)allocHandle - 1)->userData;
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaBlockMetadata_Generic::GetAllocationListBegin() const
 | |
| {
 | |
|     if (IsEmpty())
 | |
|         return VK_NULL_HANDLE;
 | |
| 
 | |
|     for (const auto& suballoc : m_Suballocations)
 | |
|     {
 | |
|         if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|             return (VmaAllocHandle)(suballoc.offset + 1);
 | |
|     }
 | |
|     VMA_ASSERT(false && "Should contain at least 1 allocation!");
 | |
|     return VK_NULL_HANDLE;
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaBlockMetadata_Generic::GetNextAllocation(VmaAllocHandle prevAlloc) const
 | |
| {
 | |
|     VmaSuballocationList::const_iterator prev = FindAtOffset((VkDeviceSize)prevAlloc - 1);
 | |
| 
 | |
|     for (VmaSuballocationList::const_iterator it = ++prev; it != m_Suballocations.end(); ++it)
 | |
|     {
 | |
|         if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|             return (VmaAllocHandle)(it->offset + 1);
 | |
|     }
 | |
|     return VK_NULL_HANDLE;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::Clear()
 | |
| {
 | |
|     const VkDeviceSize size = GetSize();
 | |
| 
 | |
|     VMA_ASSERT(IsVirtual());
 | |
|     m_FreeCount = 1;
 | |
|     m_SumFreeSize = size;
 | |
|     m_Suballocations.clear();
 | |
|     m_FreeSuballocationsBySize.clear();
 | |
| 
 | |
|     VmaSuballocation suballoc = {};
 | |
|     suballoc.offset = 0;
 | |
|     suballoc.size = size;
 | |
|     suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|     m_Suballocations.push_back(suballoc);
 | |
| 
 | |
|     m_FreeSuballocationsBySize.push_back(m_Suballocations.begin());
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
 | |
| {
 | |
|     VmaSuballocation& suballoc = *FindAtOffset((VkDeviceSize)allocHandle - 1);
 | |
|     suballoc.userData = userData;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::DebugLogAllAllocations() const
 | |
| {
 | |
|     for (const auto& suballoc : m_Suballocations)
 | |
|     {
 | |
|         if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|             DebugLogAllocation(suballoc.offset, suballoc.size, suballoc.userData);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VmaSuballocationList::iterator VmaBlockMetadata_Generic::FindAtOffset(VkDeviceSize offset) const
 | |
| {
 | |
|     VMA_HEAVY_ASSERT(!m_Suballocations.empty());
 | |
|     const VkDeviceSize last = m_Suballocations.rbegin()->offset;
 | |
|     if (last == offset)
 | |
|         return m_Suballocations.rbegin().drop_const();
 | |
|     const VkDeviceSize first = m_Suballocations.begin()->offset;
 | |
|     if (first == offset)
 | |
|         return m_Suballocations.begin().drop_const();
 | |
| 
 | |
|     const size_t suballocCount = m_Suballocations.size();
 | |
|     const VkDeviceSize step = (last - first + m_Suballocations.begin()->size) / suballocCount;
 | |
|     auto findSuballocation = [&](auto begin, auto end) -> VmaSuballocationList::iterator
 | |
|     {
 | |
|         for (auto suballocItem = begin;
 | |
|             suballocItem != end;
 | |
|             ++suballocItem)
 | |
|         {
 | |
|             if (suballocItem->offset == offset)
 | |
|                 return suballocItem.drop_const();
 | |
|         }
 | |
|         VMA_ASSERT(false && "Not found!");
 | |
|         return m_Suballocations.end().drop_const();
 | |
|     };
 | |
|     // If requested offset is closer to the end of range, search from the end
 | |
|     if (offset - first > suballocCount * step / 2)
 | |
|     {
 | |
|         return findSuballocation(m_Suballocations.rbegin(), m_Suballocations.rend());
 | |
|     }
 | |
|     return findSuballocation(m_Suballocations.begin(), m_Suballocations.end());
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::ValidateFreeSuballocationList() const
 | |
| {
 | |
|     VkDeviceSize lastSize = 0;
 | |
|     for (size_t i = 0, count = m_FreeSuballocationsBySize.size(); i < count; ++i)
 | |
|     {
 | |
|         const VmaSuballocationList::iterator it = m_FreeSuballocationsBySize[i];
 | |
| 
 | |
|         VMA_VALIDATE(it->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|         VMA_VALIDATE(it->size >= lastSize);
 | |
|         lastSize = it->size;
 | |
|     }
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Generic::CheckAllocation(
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     VmaSuballocationType allocType,
 | |
|     VmaSuballocationList::const_iterator suballocItem,
 | |
|     VmaAllocHandle* pAllocHandle) const
 | |
| {
 | |
|     VMA_ASSERT(allocSize > 0);
 | |
|     VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(suballocItem != m_Suballocations.cend());
 | |
|     VMA_ASSERT(pAllocHandle != VMA_NULL);
 | |
| 
 | |
|     const VkDeviceSize debugMargin = GetDebugMargin();
 | |
|     const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
 | |
| 
 | |
|     const VmaSuballocation& suballoc = *suballocItem;
 | |
|     VMA_ASSERT(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|     // Size of this suballocation is too small for this request: Early return.
 | |
|     if (suballoc.size < allocSize)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Start from offset equal to beginning of this suballocation.
 | |
|     VkDeviceSize offset = suballoc.offset + (suballocItem == m_Suballocations.cbegin() ? 0 : GetDebugMargin());
 | |
| 
 | |
|     // Apply debugMargin from the end of previous alloc.
 | |
|     if (debugMargin > 0)
 | |
|     {
 | |
|         offset += debugMargin;
 | |
|     }
 | |
| 
 | |
|     // Apply alignment.
 | |
|     offset = VmaAlignUp(offset, allocAlignment);
 | |
| 
 | |
|     // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|     // Make bigger alignment if necessary.
 | |
|     if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment)
 | |
|     {
 | |
|         bool bufferImageGranularityConflict = false;
 | |
|         VmaSuballocationList::const_iterator prevSuballocItem = suballocItem;
 | |
|         while (prevSuballocItem != m_Suballocations.cbegin())
 | |
|         {
 | |
|             --prevSuballocItem;
 | |
|             const VmaSuballocation& prevSuballoc = *prevSuballocItem;
 | |
|             if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, offset, bufferImageGranularity))
 | |
|             {
 | |
|                 if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | |
|                 {
 | |
|                     bufferImageGranularityConflict = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|                 // Already on previous page.
 | |
|                 break;
 | |
|         }
 | |
|         if (bufferImageGranularityConflict)
 | |
|         {
 | |
|             offset = VmaAlignUp(offset, bufferImageGranularity);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Calculate padding at the beginning based on current offset.
 | |
|     const VkDeviceSize paddingBegin = offset - suballoc.offset;
 | |
| 
 | |
|     // Fail if requested size plus margin after is bigger than size of this suballocation.
 | |
|     if (paddingBegin + allocSize + debugMargin > suballoc.size)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Check next suballocations for BufferImageGranularity conflicts.
 | |
|     // If conflict exists, allocation cannot be made here.
 | |
|     if (allocSize % bufferImageGranularity || offset % bufferImageGranularity)
 | |
|     {
 | |
|         VmaSuballocationList::const_iterator nextSuballocItem = suballocItem;
 | |
|         ++nextSuballocItem;
 | |
|         while (nextSuballocItem != m_Suballocations.cend())
 | |
|         {
 | |
|             const VmaSuballocation& nextSuballoc = *nextSuballocItem;
 | |
|             if (VmaBlocksOnSamePage(offset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|             {
 | |
|                 if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | |
|                 {
 | |
|                     return false;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Already on next page.
 | |
|                 break;
 | |
|             }
 | |
|             ++nextSuballocItem;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *pAllocHandle = (VmaAllocHandle)(offset + 1);
 | |
|     // All tests passed: Success. pAllocHandle is already filled.
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::MergeFreeWithNext(VmaSuballocationList::iterator item)
 | |
| {
 | |
|     VMA_ASSERT(item != m_Suballocations.end());
 | |
|     VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|     VmaSuballocationList::iterator nextItem = item;
 | |
|     ++nextItem;
 | |
|     VMA_ASSERT(nextItem != m_Suballocations.end());
 | |
|     VMA_ASSERT(nextItem->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|     item->size += nextItem->size;
 | |
|     --m_FreeCount;
 | |
|     m_Suballocations.erase(nextItem);
 | |
| }
 | |
| 
 | |
| VmaSuballocationList::iterator VmaBlockMetadata_Generic::FreeSuballocation(VmaSuballocationList::iterator suballocItem)
 | |
| {
 | |
|     // Change this suballocation to be marked as free.
 | |
|     VmaSuballocation& suballoc = *suballocItem;
 | |
|     suballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|     suballoc.userData = VMA_NULL;
 | |
| 
 | |
|     // Update totals.
 | |
|     ++m_FreeCount;
 | |
|     m_SumFreeSize += suballoc.size;
 | |
| 
 | |
|     // Merge with previous and/or next suballocation if it's also free.
 | |
|     bool mergeWithNext = false;
 | |
|     bool mergeWithPrev = false;
 | |
| 
 | |
|     VmaSuballocationList::iterator nextItem = suballocItem;
 | |
|     ++nextItem;
 | |
|     if ((nextItem != m_Suballocations.end()) && (nextItem->type == VMA_SUBALLOCATION_TYPE_FREE))
 | |
|     {
 | |
|         mergeWithNext = true;
 | |
|     }
 | |
| 
 | |
|     VmaSuballocationList::iterator prevItem = suballocItem;
 | |
|     if (suballocItem != m_Suballocations.begin())
 | |
|     {
 | |
|         --prevItem;
 | |
|         if (prevItem->type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             mergeWithPrev = true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (mergeWithNext)
 | |
|     {
 | |
|         UnregisterFreeSuballocation(nextItem);
 | |
|         MergeFreeWithNext(suballocItem);
 | |
|     }
 | |
| 
 | |
|     if (mergeWithPrev)
 | |
|     {
 | |
|         UnregisterFreeSuballocation(prevItem);
 | |
|         MergeFreeWithNext(prevItem);
 | |
|         RegisterFreeSuballocation(prevItem);
 | |
|         return prevItem;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         RegisterFreeSuballocation(suballocItem);
 | |
|         return suballocItem;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::RegisterFreeSuballocation(VmaSuballocationList::iterator item)
 | |
| {
 | |
|     VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(item->size > 0);
 | |
| 
 | |
|     // You may want to enable this validation at the beginning or at the end of
 | |
|     // this function, depending on what do you want to check.
 | |
|     VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
 | |
| 
 | |
|     if (m_FreeSuballocationsBySize.empty())
 | |
|     {
 | |
|         m_FreeSuballocationsBySize.push_back(item);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VmaVectorInsertSorted<VmaSuballocationItemSizeLess>(m_FreeSuballocationsBySize, item);
 | |
|     }
 | |
| 
 | |
|     //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Generic::UnregisterFreeSuballocation(VmaSuballocationList::iterator item)
 | |
| {
 | |
|     VMA_ASSERT(item->type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(item->size > 0);
 | |
| 
 | |
|     // You may want to enable this validation at the beginning or at the end of
 | |
|     // this function, depending on what do you want to check.
 | |
|     VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
 | |
| 
 | |
|     VmaSuballocationList::iterator* const it = VmaBinaryFindFirstNotLess(
 | |
|         m_FreeSuballocationsBySize.data(),
 | |
|         m_FreeSuballocationsBySize.data() + m_FreeSuballocationsBySize.size(),
 | |
|         item,
 | |
|         VmaSuballocationItemSizeLess());
 | |
|     for (size_t index = it - m_FreeSuballocationsBySize.data();
 | |
|         index < m_FreeSuballocationsBySize.size();
 | |
|         ++index)
 | |
|     {
 | |
|         if (m_FreeSuballocationsBySize[index] == item)
 | |
|         {
 | |
|             VmaVectorRemove(m_FreeSuballocationsBySize, index);
 | |
|             return;
 | |
|         }
 | |
|         VMA_ASSERT((m_FreeSuballocationsBySize[index]->size == item->size) && "Not found.");
 | |
|     }
 | |
|     VMA_ASSERT(0 && "Not found.");
 | |
| 
 | |
|     //VMA_HEAVY_ASSERT(ValidateFreeSuballocationList());
 | |
| }
 | |
| #endif // _VMA_BLOCK_METADATA_GENERIC_FUNCTIONS
 | |
| #endif // _VMA_BLOCK_METADATA_GENERIC
 | |
| #endif // #if 0
 | |
| 
 | |
| #ifndef _VMA_BLOCK_METADATA_LINEAR
 | |
| /*
 | |
| Allocations and their references in internal data structure look like this:
 | |
| 
 | |
| if(m_2ndVectorMode == SECOND_VECTOR_EMPTY):
 | |
| 
 | |
|         0 +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount]
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  1st[1st.size() - 1]
 | |
|           +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
| GetSize() +-------+
 | |
| 
 | |
| if(m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER):
 | |
| 
 | |
|         0 +-------+
 | |
|           | Alloc |  2nd[0]
 | |
|           +-------+
 | |
|           | Alloc |  2nd[1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  2nd[2nd.size() - 1]
 | |
|           +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount]
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  1st[1st.size() - 1]
 | |
|           +-------+
 | |
|           |       |
 | |
| GetSize() +-------+
 | |
| 
 | |
| if(m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK):
 | |
| 
 | |
|         0 +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount]
 | |
|           +-------+
 | |
|           | Alloc |  1st[m_1stNullItemsBeginCount + 1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  1st[1st.size() - 1]
 | |
|           +-------+
 | |
|           |       |
 | |
|           |       |
 | |
|           |       |
 | |
|           +-------+
 | |
|           | Alloc |  2nd[2nd.size() - 1]
 | |
|           +-------+
 | |
|           |  ...  |
 | |
|           +-------+
 | |
|           | Alloc |  2nd[1]
 | |
|           +-------+
 | |
|           | Alloc |  2nd[0]
 | |
| GetSize() +-------+
 | |
| 
 | |
| */
 | |
| class VmaBlockMetadata_Linear : public VmaBlockMetadata
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_Linear)
 | |
| public:
 | |
|     VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|         VkDeviceSize bufferImageGranularity, bool isVirtual);
 | |
|     virtual ~VmaBlockMetadata_Linear() = default;
 | |
| 
 | |
|     VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize; }
 | |
|     bool IsEmpty() const override { return GetAllocationCount() == 0; }
 | |
|     VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }
 | |
| 
 | |
|     void Init(VkDeviceSize size) override;
 | |
|     bool Validate() const override;
 | |
|     size_t GetAllocationCount() const override;
 | |
|     size_t GetFreeRegionsCount() const override;
 | |
| 
 | |
|     void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
 | |
|     void AddStatistics(VmaStatistics& inoutStats) const override;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap(class VmaJsonWriter& json) const override;
 | |
| #endif
 | |
| 
 | |
|     bool CreateAllocationRequest(
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest) override;
 | |
| 
 | |
|     VkResult CheckCorruption(const void* pBlockData) override;
 | |
| 
 | |
|     void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         void* userData) override;
 | |
| 
 | |
|     void Free(VmaAllocHandle allocHandle) override;
 | |
|     void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
 | |
|     void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
 | |
|     VmaAllocHandle GetAllocationListBegin() const override;
 | |
|     VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
 | |
|     VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
 | |
|     void Clear() override;
 | |
|     void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
 | |
|     void DebugLogAllAllocations() const override;
 | |
| 
 | |
| private:
 | |
|     /*
 | |
|     There are two suballocation vectors, used in ping-pong way.
 | |
|     The one with index m_1stVectorIndex is called 1st.
 | |
|     The one with index (m_1stVectorIndex ^ 1) is called 2nd.
 | |
|     2nd can be non-empty only when 1st is not empty.
 | |
|     When 2nd is not empty, m_2ndVectorMode indicates its mode of operation.
 | |
|     */
 | |
|     typedef VmaVector<VmaSuballocation, VmaStlAllocator<VmaSuballocation>> SuballocationVectorType;
 | |
| 
 | |
|     enum SECOND_VECTOR_MODE
 | |
|     {
 | |
|         SECOND_VECTOR_EMPTY,
 | |
|         /*
 | |
|         Suballocations in 2nd vector are created later than the ones in 1st, but they
 | |
|         all have smaller offset.
 | |
|         */
 | |
|         SECOND_VECTOR_RING_BUFFER,
 | |
|         /*
 | |
|         Suballocations in 2nd vector are upper side of double stack.
 | |
|         They all have offsets higher than those in 1st vector.
 | |
|         Top of this stack means smaller offsets, but higher indices in this vector.
 | |
|         */
 | |
|         SECOND_VECTOR_DOUBLE_STACK,
 | |
|     };
 | |
| 
 | |
|     VkDeviceSize m_SumFreeSize;
 | |
|     SuballocationVectorType m_Suballocations0, m_Suballocations1;
 | |
|     uint32_t m_1stVectorIndex;
 | |
|     SECOND_VECTOR_MODE m_2ndVectorMode;
 | |
|     // Number of items in 1st vector with hAllocation = null at the beginning.
 | |
|     size_t m_1stNullItemsBeginCount;
 | |
|     // Number of other items in 1st vector with hAllocation = null somewhere in the middle.
 | |
|     size_t m_1stNullItemsMiddleCount;
 | |
|     // Number of items in 2nd vector with hAllocation = null.
 | |
|     size_t m_2ndNullItemsCount;
 | |
| 
 | |
|     SuballocationVectorType& AccessSuballocations1st() { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
 | |
|     SuballocationVectorType& AccessSuballocations2nd() { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
 | |
|     const SuballocationVectorType& AccessSuballocations1st() const { return m_1stVectorIndex ? m_Suballocations1 : m_Suballocations0; }
 | |
|     const SuballocationVectorType& AccessSuballocations2nd() const { return m_1stVectorIndex ? m_Suballocations0 : m_Suballocations1; }
 | |
| 
 | |
|     VmaSuballocation& FindSuballocation(VkDeviceSize offset) const;
 | |
|     bool ShouldCompact1st() const;
 | |
|     void CleanupAfterFree();
 | |
| 
 | |
|     bool CreateAllocationRequest_LowerAddress(
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         VmaSuballocationType allocType,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
|     bool CreateAllocationRequest_UpperAddress(
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         VmaSuballocationType allocType,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
 | |
| VmaBlockMetadata_Linear::VmaBlockMetadata_Linear(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|     VkDeviceSize bufferImageGranularity, bool isVirtual)
 | |
|     : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
 | |
|     m_SumFreeSize(0),
 | |
|     m_Suballocations0(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
 | |
|     m_Suballocations1(VmaStlAllocator<VmaSuballocation>(pAllocationCallbacks)),
 | |
|     m_1stVectorIndex(0),
 | |
|     m_2ndVectorMode(SECOND_VECTOR_EMPTY),
 | |
|     m_1stNullItemsBeginCount(0),
 | |
|     m_1stNullItemsMiddleCount(0),
 | |
|     m_2ndNullItemsCount(0) {}
 | |
| 
 | |
| void VmaBlockMetadata_Linear::Init(VkDeviceSize size)
 | |
| {
 | |
|     VmaBlockMetadata::Init(size);
 | |
|     m_SumFreeSize = size;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::Validate() const
 | |
| {
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     VMA_VALIDATE(suballocations2nd.empty() == (m_2ndVectorMode == SECOND_VECTOR_EMPTY));
 | |
|     VMA_VALIDATE(!suballocations1st.empty() ||
 | |
|         suballocations2nd.empty() ||
 | |
|         m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER);
 | |
| 
 | |
|     if (!suballocations1st.empty())
 | |
|     {
 | |
|         // Null item at the beginning should be accounted into m_1stNullItemsBeginCount.
 | |
|         VMA_VALIDATE(suballocations1st[m_1stNullItemsBeginCount].type != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|         // Null item at the end should be just pop_back().
 | |
|         VMA_VALIDATE(suballocations1st.back().type != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     }
 | |
|     if (!suballocations2nd.empty())
 | |
|     {
 | |
|         // Null item at the end should be just pop_back().
 | |
|         VMA_VALIDATE(suballocations2nd.back().type != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     }
 | |
| 
 | |
|     VMA_VALIDATE(m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount <= suballocations1st.size());
 | |
|     VMA_VALIDATE(m_2ndNullItemsCount <= suballocations2nd.size());
 | |
| 
 | |
|     VkDeviceSize sumUsedSize = 0;
 | |
|     const size_t suballoc1stCount = suballocations1st.size();
 | |
|     const VkDeviceSize debugMargin = GetDebugMargin();
 | |
|     VkDeviceSize offset = 0;
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const size_t suballoc2ndCount = suballocations2nd.size();
 | |
|         size_t nullItem2ndCount = 0;
 | |
|         for (size_t i = 0; i < suballoc2ndCount; ++i)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations2nd[i];
 | |
|             const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|             VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
 | |
|             if (!IsVirtual())
 | |
|             {
 | |
|                 VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
 | |
|             }
 | |
|             VMA_VALIDATE(suballoc.offset >= offset);
 | |
| 
 | |
|             if (!currFree)
 | |
|             {
 | |
|                 if (!IsVirtual())
 | |
|                 {
 | |
|                     VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
 | |
|                     VMA_VALIDATE(alloc->GetSize() == suballoc.size);
 | |
|                 }
 | |
|                 sumUsedSize += suballoc.size;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ++nullItem2ndCount;
 | |
|             }
 | |
| 
 | |
|             offset = suballoc.offset + suballoc.size + debugMargin;
 | |
|         }
 | |
| 
 | |
|         VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
 | |
|     }
 | |
| 
 | |
|     for (size_t i = 0; i < m_1stNullItemsBeginCount; ++i)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = suballocations1st[i];
 | |
|         VMA_VALIDATE(suballoc.type == VMA_SUBALLOCATION_TYPE_FREE &&
 | |
|             suballoc.userData == VMA_NULL);
 | |
|     }
 | |
| 
 | |
|     size_t nullItem1stCount = m_1stNullItemsBeginCount;
 | |
| 
 | |
|     for (size_t i = m_1stNullItemsBeginCount; i < suballoc1stCount; ++i)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = suballocations1st[i];
 | |
|         const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|         VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
 | |
|         if (!IsVirtual())
 | |
|         {
 | |
|             VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
 | |
|         }
 | |
|         VMA_VALIDATE(suballoc.offset >= offset);
 | |
|         VMA_VALIDATE(i >= m_1stNullItemsBeginCount || currFree);
 | |
| 
 | |
|         if (!currFree)
 | |
|         {
 | |
|             if (!IsVirtual())
 | |
|             {
 | |
|                 VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
 | |
|                 VMA_VALIDATE(alloc->GetSize() == suballoc.size);
 | |
|             }
 | |
|             sumUsedSize += suballoc.size;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             ++nullItem1stCount;
 | |
|         }
 | |
| 
 | |
|         offset = suballoc.offset + suballoc.size + debugMargin;
 | |
|     }
 | |
|     VMA_VALIDATE(nullItem1stCount == m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount);
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         const size_t suballoc2ndCount = suballocations2nd.size();
 | |
|         size_t nullItem2ndCount = 0;
 | |
|         for (size_t i = suballoc2ndCount; i--; )
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations2nd[i];
 | |
|             const bool currFree = (suballoc.type == VMA_SUBALLOCATION_TYPE_FREE);
 | |
| 
 | |
|             VmaAllocation const alloc = (VmaAllocation)suballoc.userData;
 | |
|             if (!IsVirtual())
 | |
|             {
 | |
|                 VMA_VALIDATE(currFree == (alloc == VK_NULL_HANDLE));
 | |
|             }
 | |
|             VMA_VALIDATE(suballoc.offset >= offset);
 | |
| 
 | |
|             if (!currFree)
 | |
|             {
 | |
|                 if (!IsVirtual())
 | |
|                 {
 | |
|                     VMA_VALIDATE((VkDeviceSize)alloc->GetAllocHandle() == suballoc.offset + 1);
 | |
|                     VMA_VALIDATE(alloc->GetSize() == suballoc.size);
 | |
|                 }
 | |
|                 sumUsedSize += suballoc.size;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ++nullItem2ndCount;
 | |
|             }
 | |
| 
 | |
|             offset = suballoc.offset + suballoc.size + debugMargin;
 | |
|         }
 | |
| 
 | |
|         VMA_VALIDATE(nullItem2ndCount == m_2ndNullItemsCount);
 | |
|     }
 | |
| 
 | |
|     VMA_VALIDATE(offset <= GetSize());
 | |
|     VMA_VALIDATE(m_SumFreeSize == GetSize() - sumUsedSize);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| size_t VmaBlockMetadata_Linear::GetAllocationCount() const
 | |
| {
 | |
|     return AccessSuballocations1st().size() - m_1stNullItemsBeginCount - m_1stNullItemsMiddleCount +
 | |
|         AccessSuballocations2nd().size() - m_2ndNullItemsCount;
 | |
| }
 | |
| 
 | |
| size_t VmaBlockMetadata_Linear::GetFreeRegionsCount() const
 | |
| {
 | |
|     // Function only used for defragmentation, which is disabled for this algorithm
 | |
|     VMA_ASSERT(0);
 | |
|     return SIZE_MAX;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
 | |
| {
 | |
|     const VkDeviceSize size = GetSize();
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     const size_t suballoc1stCount = suballocations1st.size();
 | |
|     const size_t suballoc2ndCount = suballocations2nd.size();
 | |
| 
 | |
|     inoutStats.statistics.blockCount++;
 | |
|     inoutStats.statistics.blockBytes += size;
 | |
| 
 | |
|     VkDeviceSize lastOffset = 0;
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | |
|         size_t nextAlloc2ndIndex = 0;
 | |
|         while (lastOffset < freeSpace2ndTo1stEnd)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|             while (nextAlloc2ndIndex < suballoc2ndCount &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | |
|             {
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if (nextAlloc2ndIndex < suballoc2ndCount)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
| 
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if (lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
 | |
| 
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | |
|                 if (lastOffset < freeSpace2ndTo1stEnd)
 | |
|                 {
 | |
|                     const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
 | |
|                     VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = freeSpace2ndTo1stEnd;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | |
|     const VkDeviceSize freeSpace1stTo2ndEnd =
 | |
|         m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | |
|     while (lastOffset < freeSpace1stTo2ndEnd)
 | |
|     {
 | |
|         // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|         while (nextAlloc1stIndex < suballoc1stCount &&
 | |
|             suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
 | |
|         {
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
| 
 | |
|         // Found non-null allocation.
 | |
|         if (nextAlloc1stIndex < suballoc1stCount)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | |
| 
 | |
|             // 1. Process free space before this allocation.
 | |
|             if (lastOffset < suballoc.offset)
 | |
|             {
 | |
|                 // There is free space from lastOffset to suballoc.offset.
 | |
|                 const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                 VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | |
|             }
 | |
| 
 | |
|             // 2. Process this allocation.
 | |
|             // There is allocation with suballoc.offset, suballoc.size.
 | |
|             VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
 | |
| 
 | |
|             // 3. Prepare for next iteration.
 | |
|             lastOffset = suballoc.offset + suballoc.size;
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
|         // We are at the end.
 | |
|         else
 | |
|         {
 | |
|             // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | |
|             if (lastOffset < freeSpace1stTo2ndEnd)
 | |
|             {
 | |
|                 const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
 | |
|                 VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | |
|             }
 | |
| 
 | |
|             // End of loop.
 | |
|             lastOffset = freeSpace1stTo2ndEnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | |
|         while (lastOffset < size)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|             while (nextAlloc2ndIndex != SIZE_MAX &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | |
|             {
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if (nextAlloc2ndIndex != SIZE_MAX)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
| 
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if (lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 VmaAddDetailedStatisticsAllocation(inoutStats, suballoc.size);
 | |
| 
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 // There is free space from lastOffset to size.
 | |
|                 if (lastOffset < size)
 | |
|                 {
 | |
|                     const VkDeviceSize unusedRangeSize = size - lastOffset;
 | |
|                     VmaAddDetailedStatisticsUnusedRange(inoutStats, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::AddStatistics(VmaStatistics& inoutStats) const
 | |
| {
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     const VkDeviceSize size = GetSize();
 | |
|     const size_t suballoc1stCount = suballocations1st.size();
 | |
|     const size_t suballoc2ndCount = suballocations2nd.size();
 | |
| 
 | |
|     inoutStats.blockCount++;
 | |
|     inoutStats.blockBytes += size;
 | |
|     inoutStats.allocationBytes += size - m_SumFreeSize;
 | |
| 
 | |
|     VkDeviceSize lastOffset = 0;
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | |
|         size_t nextAlloc2ndIndex = m_1stNullItemsBeginCount;
 | |
|         while (lastOffset < freeSpace2ndTo1stEnd)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while (nextAlloc2ndIndex < suballoc2ndCount &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | |
|             {
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if (nextAlloc2ndIndex < suballoc2ndCount)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
| 
 | |
|                 // Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 ++inoutStats.allocationCount;
 | |
| 
 | |
|                 // Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 // End of loop.
 | |
|                 lastOffset = freeSpace2ndTo1stEnd;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | |
|     const VkDeviceSize freeSpace1stTo2ndEnd =
 | |
|         m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | |
|     while (lastOffset < freeSpace1stTo2ndEnd)
 | |
|     {
 | |
|         // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|         while (nextAlloc1stIndex < suballoc1stCount &&
 | |
|             suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
 | |
|         {
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
| 
 | |
|         // Found non-null allocation.
 | |
|         if (nextAlloc1stIndex < suballoc1stCount)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | |
| 
 | |
|             // Process this allocation.
 | |
|             // There is allocation with suballoc.offset, suballoc.size.
 | |
|             ++inoutStats.allocationCount;
 | |
| 
 | |
|             // Prepare for next iteration.
 | |
|             lastOffset = suballoc.offset + suballoc.size;
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
|         // We are at the end.
 | |
|         else
 | |
|         {
 | |
|             // End of loop.
 | |
|             lastOffset = freeSpace1stTo2ndEnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | |
|         while (lastOffset < size)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while (nextAlloc2ndIndex != SIZE_MAX &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | |
|             {
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if (nextAlloc2ndIndex != SIZE_MAX)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
| 
 | |
|                 // Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 ++inoutStats.allocationCount;
 | |
| 
 | |
|                 // Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 // End of loop.
 | |
|                 lastOffset = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockMetadata_Linear::PrintDetailedMap(class VmaJsonWriter& json) const
 | |
| {
 | |
|     const VkDeviceSize size = GetSize();
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     const size_t suballoc1stCount = suballocations1st.size();
 | |
|     const size_t suballoc2ndCount = suballocations2nd.size();
 | |
| 
 | |
|     // FIRST PASS
 | |
| 
 | |
|     size_t unusedRangeCount = 0;
 | |
|     VkDeviceSize usedBytes = 0;
 | |
| 
 | |
|     VkDeviceSize lastOffset = 0;
 | |
| 
 | |
|     size_t alloc2ndCount = 0;
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | |
|         size_t nextAlloc2ndIndex = 0;
 | |
|         while (lastOffset < freeSpace2ndTo1stEnd)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while (nextAlloc2ndIndex < suballoc2ndCount &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | |
|             {
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if (nextAlloc2ndIndex < suballoc2ndCount)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
| 
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if (lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     ++unusedRangeCount;
 | |
|                 }
 | |
| 
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 ++alloc2ndCount;
 | |
|                 usedBytes += suballoc.size;
 | |
| 
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if (lastOffset < freeSpace2ndTo1stEnd)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | |
|                     ++unusedRangeCount;
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = freeSpace2ndTo1stEnd;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     size_t nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | |
|     size_t alloc1stCount = 0;
 | |
|     const VkDeviceSize freeSpace1stTo2ndEnd =
 | |
|         m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ? suballocations2nd.back().offset : size;
 | |
|     while (lastOffset < freeSpace1stTo2ndEnd)
 | |
|     {
 | |
|         // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|         while (nextAlloc1stIndex < suballoc1stCount &&
 | |
|             suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
 | |
|         {
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
| 
 | |
|         // Found non-null allocation.
 | |
|         if (nextAlloc1stIndex < suballoc1stCount)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | |
| 
 | |
|             // 1. Process free space before this allocation.
 | |
|             if (lastOffset < suballoc.offset)
 | |
|             {
 | |
|                 // There is free space from lastOffset to suballoc.offset.
 | |
|                 ++unusedRangeCount;
 | |
|             }
 | |
| 
 | |
|             // 2. Process this allocation.
 | |
|             // There is allocation with suballoc.offset, suballoc.size.
 | |
|             ++alloc1stCount;
 | |
|             usedBytes += suballoc.size;
 | |
| 
 | |
|             // 3. Prepare for next iteration.
 | |
|             lastOffset = suballoc.offset + suballoc.size;
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
|         // We are at the end.
 | |
|         else
 | |
|         {
 | |
|             if (lastOffset < size)
 | |
|             {
 | |
|                 // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | |
|                 ++unusedRangeCount;
 | |
|             }
 | |
| 
 | |
|             // End of loop.
 | |
|             lastOffset = freeSpace1stTo2ndEnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | |
|         while (lastOffset < size)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while (nextAlloc2ndIndex != SIZE_MAX &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | |
|             {
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if (nextAlloc2ndIndex != SIZE_MAX)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
| 
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if (lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     ++unusedRangeCount;
 | |
|                 }
 | |
| 
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 ++alloc2ndCount;
 | |
|                 usedBytes += suballoc.size;
 | |
| 
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if (lastOffset < size)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to size.
 | |
|                     ++unusedRangeCount;
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     const VkDeviceSize unusedBytes = size - usedBytes;
 | |
|     PrintDetailedMap_Begin(json, unusedBytes, alloc1stCount + alloc2ndCount, unusedRangeCount);
 | |
| 
 | |
|     // SECOND PASS
 | |
|     lastOffset = 0;
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         const VkDeviceSize freeSpace2ndTo1stEnd = suballocations1st[m_1stNullItemsBeginCount].offset;
 | |
|         size_t nextAlloc2ndIndex = 0;
 | |
|         while (lastOffset < freeSpace2ndTo1stEnd)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while (nextAlloc2ndIndex < suballoc2ndCount &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | |
|             {
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if (nextAlloc2ndIndex < suballoc2ndCount)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
| 
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if (lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
 | |
| 
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 ++nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if (lastOffset < freeSpace2ndTo1stEnd)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to freeSpace2ndTo1stEnd.
 | |
|                     const VkDeviceSize unusedRangeSize = freeSpace2ndTo1stEnd - lastOffset;
 | |
|                     PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = freeSpace2ndTo1stEnd;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     nextAlloc1stIndex = m_1stNullItemsBeginCount;
 | |
|     while (lastOffset < freeSpace1stTo2ndEnd)
 | |
|     {
 | |
|         // Find next non-null allocation or move nextAllocIndex to the end.
 | |
|         while (nextAlloc1stIndex < suballoc1stCount &&
 | |
|             suballocations1st[nextAlloc1stIndex].userData == VMA_NULL)
 | |
|         {
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
| 
 | |
|         // Found non-null allocation.
 | |
|         if (nextAlloc1stIndex < suballoc1stCount)
 | |
|         {
 | |
|             const VmaSuballocation& suballoc = suballocations1st[nextAlloc1stIndex];
 | |
| 
 | |
|             // 1. Process free space before this allocation.
 | |
|             if (lastOffset < suballoc.offset)
 | |
|             {
 | |
|                 // There is free space from lastOffset to suballoc.offset.
 | |
|                 const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                 PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|             }
 | |
| 
 | |
|             // 2. Process this allocation.
 | |
|             // There is allocation with suballoc.offset, suballoc.size.
 | |
|             PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
 | |
| 
 | |
|             // 3. Prepare for next iteration.
 | |
|             lastOffset = suballoc.offset + suballoc.size;
 | |
|             ++nextAlloc1stIndex;
 | |
|         }
 | |
|         // We are at the end.
 | |
|         else
 | |
|         {
 | |
|             if (lastOffset < freeSpace1stTo2ndEnd)
 | |
|             {
 | |
|                 // There is free space from lastOffset to freeSpace1stTo2ndEnd.
 | |
|                 const VkDeviceSize unusedRangeSize = freeSpace1stTo2ndEnd - lastOffset;
 | |
|                 PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|             }
 | |
| 
 | |
|             // End of loop.
 | |
|             lastOffset = freeSpace1stTo2ndEnd;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         size_t nextAlloc2ndIndex = suballocations2nd.size() - 1;
 | |
|         while (lastOffset < size)
 | |
|         {
 | |
|             // Find next non-null allocation or move nextAlloc2ndIndex to the end.
 | |
|             while (nextAlloc2ndIndex != SIZE_MAX &&
 | |
|                 suballocations2nd[nextAlloc2ndIndex].userData == VMA_NULL)
 | |
|             {
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
| 
 | |
|             // Found non-null allocation.
 | |
|             if (nextAlloc2ndIndex != SIZE_MAX)
 | |
|             {
 | |
|                 const VmaSuballocation& suballoc = suballocations2nd[nextAlloc2ndIndex];
 | |
| 
 | |
|                 // 1. Process free space before this allocation.
 | |
|                 if (lastOffset < suballoc.offset)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to suballoc.offset.
 | |
|                     const VkDeviceSize unusedRangeSize = suballoc.offset - lastOffset;
 | |
|                     PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // 2. Process this allocation.
 | |
|                 // There is allocation with suballoc.offset, suballoc.size.
 | |
|                 PrintDetailedMap_Allocation(json, suballoc.offset, suballoc.size, suballoc.userData);
 | |
| 
 | |
|                 // 3. Prepare for next iteration.
 | |
|                 lastOffset = suballoc.offset + suballoc.size;
 | |
|                 --nextAlloc2ndIndex;
 | |
|             }
 | |
|             // We are at the end.
 | |
|             else
 | |
|             {
 | |
|                 if (lastOffset < size)
 | |
|                 {
 | |
|                     // There is free space from lastOffset to size.
 | |
|                     const VkDeviceSize unusedRangeSize = size - lastOffset;
 | |
|                     PrintDetailedMap_UnusedRange(json, lastOffset, unusedRangeSize);
 | |
|                 }
 | |
| 
 | |
|                 // End of loop.
 | |
|                 lastOffset = size;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     PrintDetailedMap_End(json);
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::CreateAllocationRequest(
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     bool upperAddress,
 | |
|     VmaSuballocationType allocType,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(allocSize > 0);
 | |
|     VMA_ASSERT(allocType != VMA_SUBALLOCATION_TYPE_FREE);
 | |
|     VMA_ASSERT(pAllocationRequest != VMA_NULL);
 | |
|     VMA_HEAVY_ASSERT(Validate());
 | |
|     pAllocationRequest->size = allocSize;
 | |
|     return upperAddress ?
 | |
|         CreateAllocationRequest_UpperAddress(
 | |
|             allocSize, allocAlignment, allocType, strategy, pAllocationRequest) :
 | |
|         CreateAllocationRequest_LowerAddress(
 | |
|             allocSize, allocAlignment, allocType, strategy, pAllocationRequest);
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockMetadata_Linear::CheckCorruption(const void* pBlockData)
 | |
| {
 | |
|     VMA_ASSERT(!IsVirtual());
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     for (size_t i = m_1stNullItemsBeginCount, count = suballocations1st.size(); i < count; ++i)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = suballocations1st[i];
 | |
|         if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_UNKNOWN_COPY;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     for (size_t i = 0, count = suballocations2nd.size(); i < count; ++i)
 | |
|     {
 | |
|         const VmaSuballocation& suballoc = suballocations2nd[i];
 | |
|         if (suballoc.type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             if (!VmaValidateMagicValue(pBlockData, suballoc.offset + suballoc.size))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_UNKNOWN_COPY;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::Alloc(
 | |
|     const VmaAllocationRequest& request,
 | |
|     VmaSuballocationType type,
 | |
|     void* userData)
 | |
| {
 | |
|     const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1;
 | |
|     const VmaSuballocation newSuballoc = { offset, request.size, userData, type };
 | |
| 
 | |
|     switch (request.type)
 | |
|     {
 | |
|     case VmaAllocationRequestType::UpperAddress:
 | |
|     {
 | |
|         VMA_ASSERT(m_2ndVectorMode != SECOND_VECTOR_RING_BUFFER &&
 | |
|             "CRITICAL ERROR: Trying to use linear allocator as double stack while it was already used as ring buffer.");
 | |
|         SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|         suballocations2nd.push_back(newSuballoc);
 | |
|         m_2ndVectorMode = SECOND_VECTOR_DOUBLE_STACK;
 | |
|     }
 | |
|     break;
 | |
|     case VmaAllocationRequestType::EndOf1st:
 | |
|     {
 | |
|         SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
| 
 | |
|         VMA_ASSERT(suballocations1st.empty() ||
 | |
|             offset >= suballocations1st.back().offset + suballocations1st.back().size);
 | |
|         // Check if it fits before the end of the block.
 | |
|         VMA_ASSERT(offset + request.size <= GetSize());
 | |
| 
 | |
|         suballocations1st.push_back(newSuballoc);
 | |
|     }
 | |
|     break;
 | |
|     case VmaAllocationRequestType::EndOf2nd:
 | |
|     {
 | |
|         SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|         // New allocation at the end of 2-part ring buffer, so before first allocation from 1st vector.
 | |
|         VMA_ASSERT(!suballocations1st.empty() &&
 | |
|             offset + request.size <= suballocations1st[m_1stNullItemsBeginCount].offset);
 | |
|         SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|         switch (m_2ndVectorMode)
 | |
|         {
 | |
|         case SECOND_VECTOR_EMPTY:
 | |
|             // First allocation from second part ring buffer.
 | |
|             VMA_ASSERT(suballocations2nd.empty());
 | |
|             m_2ndVectorMode = SECOND_VECTOR_RING_BUFFER;
 | |
|             break;
 | |
|         case SECOND_VECTOR_RING_BUFFER:
 | |
|             // 2-part ring buffer is already started.
 | |
|             VMA_ASSERT(!suballocations2nd.empty());
 | |
|             break;
 | |
|         case SECOND_VECTOR_DOUBLE_STACK:
 | |
|             VMA_ASSERT(0 && "CRITICAL ERROR: Trying to use linear allocator as ring buffer while it was already used as double stack.");
 | |
|             break;
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
| 
 | |
|         suballocations2nd.push_back(newSuballoc);
 | |
|     }
 | |
|     break;
 | |
|     default:
 | |
|         VMA_ASSERT(0 && "CRITICAL INTERNAL ERROR.");
 | |
|     }
 | |
| 
 | |
|     m_SumFreeSize -= newSuballoc.size;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::Free(VmaAllocHandle allocHandle)
 | |
| {
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     VkDeviceSize offset = (VkDeviceSize)allocHandle - 1;
 | |
| 
 | |
|     if (!suballocations1st.empty())
 | |
|     {
 | |
|         // First allocation: Mark it as next empty at the beginning.
 | |
|         VmaSuballocation& firstSuballoc = suballocations1st[m_1stNullItemsBeginCount];
 | |
|         if (firstSuballoc.offset == offset)
 | |
|         {
 | |
|             firstSuballoc.type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|             firstSuballoc.userData = VMA_NULL;
 | |
|             m_SumFreeSize += firstSuballoc.size;
 | |
|             ++m_1stNullItemsBeginCount;
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Last allocation in 2-part ring buffer or top of upper stack (same logic).
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ||
 | |
|         m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | |
|         if (lastSuballoc.offset == offset)
 | |
|         {
 | |
|             m_SumFreeSize += lastSuballoc.size;
 | |
|             suballocations2nd.pop_back();
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     // Last allocation in 1st vector.
 | |
|     else if (m_2ndVectorMode == SECOND_VECTOR_EMPTY)
 | |
|     {
 | |
|         VmaSuballocation& lastSuballoc = suballocations1st.back();
 | |
|         if (lastSuballoc.offset == offset)
 | |
|         {
 | |
|             m_SumFreeSize += lastSuballoc.size;
 | |
|             suballocations1st.pop_back();
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VmaSuballocation refSuballoc;
 | |
|     refSuballoc.offset = offset;
 | |
|     // Rest of members stays uninitialized intentionally for better performance.
 | |
| 
 | |
|     // Item from the middle of 1st vector.
 | |
|     {
 | |
|         const SuballocationVectorType::iterator it = VmaBinaryFindSorted(
 | |
|             suballocations1st.begin() + m_1stNullItemsBeginCount,
 | |
|             suballocations1st.end(),
 | |
|             refSuballoc,
 | |
|             VmaSuballocationOffsetLess());
 | |
|         if (it != suballocations1st.end())
 | |
|         {
 | |
|             it->type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|             it->userData = VMA_NULL;
 | |
|             ++m_1stNullItemsMiddleCount;
 | |
|             m_SumFreeSize += it->size;
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
 | |
|     {
 | |
|         // Item from the middle of 2nd vector.
 | |
|         const SuballocationVectorType::iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
 | |
|             VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
 | |
|             VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
 | |
|         if (it != suballocations2nd.end())
 | |
|         {
 | |
|             it->type = VMA_SUBALLOCATION_TYPE_FREE;
 | |
|             it->userData = VMA_NULL;
 | |
|             ++m_2ndNullItemsCount;
 | |
|             m_SumFreeSize += it->size;
 | |
|             CleanupAfterFree();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(0 && "Allocation to free not found in linear allocator!");
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
 | |
| {
 | |
|     outInfo.offset = (VkDeviceSize)allocHandle - 1;
 | |
|     VmaSuballocation& suballoc = FindSuballocation(outInfo.offset);
 | |
|     outInfo.size = suballoc.size;
 | |
|     outInfo.pUserData = suballoc.userData;
 | |
| }
 | |
| 
 | |
| void* VmaBlockMetadata_Linear::GetAllocationUserData(VmaAllocHandle allocHandle) const
 | |
| {
 | |
|     return FindSuballocation((VkDeviceSize)allocHandle - 1).userData;
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaBlockMetadata_Linear::GetAllocationListBegin() const
 | |
| {
 | |
|     // Function only used for defragmentation, which is disabled for this algorithm
 | |
|     VMA_ASSERT(0);
 | |
|     return VK_NULL_HANDLE;
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaBlockMetadata_Linear::GetNextAllocation(VmaAllocHandle prevAlloc) const
 | |
| {
 | |
|     // Function only used for defragmentation, which is disabled for this algorithm
 | |
|     VMA_ASSERT(0);
 | |
|     return VK_NULL_HANDLE;
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaBlockMetadata_Linear::GetNextFreeRegionSize(VmaAllocHandle alloc) const
 | |
| {
 | |
|     // Function only used for defragmentation, which is disabled for this algorithm
 | |
|     VMA_ASSERT(0);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::Clear()
 | |
| {
 | |
|     m_SumFreeSize = GetSize();
 | |
|     m_Suballocations0.clear();
 | |
|     m_Suballocations1.clear();
 | |
|     // Leaving m_1stVectorIndex unchanged - it doesn't matter.
 | |
|     m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | |
|     m_1stNullItemsBeginCount = 0;
 | |
|     m_1stNullItemsMiddleCount = 0;
 | |
|     m_2ndNullItemsCount = 0;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
 | |
| {
 | |
|     VmaSuballocation& suballoc = FindSuballocation((VkDeviceSize)allocHandle - 1);
 | |
|     suballoc.userData = userData;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::DebugLogAllAllocations() const
 | |
| {
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     for (auto it = suballocations1st.begin() + m_1stNullItemsBeginCount; it != suballocations1st.end(); ++it)
 | |
|         if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|             DebugLogAllocation(it->offset, it->size, it->userData);
 | |
| 
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
|     for (auto it = suballocations2nd.begin(); it != suballocations2nd.end(); ++it)
 | |
|         if (it->type != VMA_SUBALLOCATION_TYPE_FREE)
 | |
|             DebugLogAllocation(it->offset, it->size, it->userData);
 | |
| }
 | |
| 
 | |
| VmaSuballocation& VmaBlockMetadata_Linear::FindSuballocation(VkDeviceSize offset) const
 | |
| {
 | |
|     const SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     const SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     VmaSuballocation refSuballoc;
 | |
|     refSuballoc.offset = offset;
 | |
|     // Rest of members stays uninitialized intentionally for better performance.
 | |
| 
 | |
|     // Item from the 1st vector.
 | |
|     {
 | |
|         SuballocationVectorType::const_iterator it = VmaBinaryFindSorted(
 | |
|             suballocations1st.begin() + m_1stNullItemsBeginCount,
 | |
|             suballocations1st.end(),
 | |
|             refSuballoc,
 | |
|             VmaSuballocationOffsetLess());
 | |
|         if (it != suballocations1st.end())
 | |
|         {
 | |
|             return const_cast<VmaSuballocation&>(*it);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_2ndVectorMode != SECOND_VECTOR_EMPTY)
 | |
|     {
 | |
|         // Rest of members stays uninitialized intentionally for better performance.
 | |
|         SuballocationVectorType::const_iterator it = m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER ?
 | |
|             VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetLess()) :
 | |
|             VmaBinaryFindSorted(suballocations2nd.begin(), suballocations2nd.end(), refSuballoc, VmaSuballocationOffsetGreater());
 | |
|         if (it != suballocations2nd.end())
 | |
|         {
 | |
|             return const_cast<VmaSuballocation&>(*it);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(0 && "Allocation not found in linear allocator!");
 | |
|     return const_cast<VmaSuballocation&>(suballocations1st.back()); // Should never occur.
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::ShouldCompact1st() const
 | |
| {
 | |
|     const size_t nullItemCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
 | |
|     const size_t suballocCount = AccessSuballocations1st().size();
 | |
|     return suballocCount > 32 && nullItemCount * 2 >= (suballocCount - nullItemCount) * 3;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Linear::CleanupAfterFree()
 | |
| {
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     if (IsEmpty())
 | |
|     {
 | |
|         suballocations1st.clear();
 | |
|         suballocations2nd.clear();
 | |
|         m_1stNullItemsBeginCount = 0;
 | |
|         m_1stNullItemsMiddleCount = 0;
 | |
|         m_2ndNullItemsCount = 0;
 | |
|         m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         const size_t suballoc1stCount = suballocations1st.size();
 | |
|         const size_t nullItem1stCount = m_1stNullItemsBeginCount + m_1stNullItemsMiddleCount;
 | |
|         VMA_ASSERT(nullItem1stCount <= suballoc1stCount);
 | |
| 
 | |
|         // Find more null items at the beginning of 1st vector.
 | |
|         while (m_1stNullItemsBeginCount < suballoc1stCount &&
 | |
|             suballocations1st[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             ++m_1stNullItemsBeginCount;
 | |
|             --m_1stNullItemsMiddleCount;
 | |
|         }
 | |
| 
 | |
|         // Find more null items at the end of 1st vector.
 | |
|         while (m_1stNullItemsMiddleCount > 0 &&
 | |
|             suballocations1st.back().type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             --m_1stNullItemsMiddleCount;
 | |
|             suballocations1st.pop_back();
 | |
|         }
 | |
| 
 | |
|         // Find more null items at the end of 2nd vector.
 | |
|         while (m_2ndNullItemsCount > 0 &&
 | |
|             suballocations2nd.back().type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             --m_2ndNullItemsCount;
 | |
|             suballocations2nd.pop_back();
 | |
|         }
 | |
| 
 | |
|         // Find more null items at the beginning of 2nd vector.
 | |
|         while (m_2ndNullItemsCount > 0 &&
 | |
|             suballocations2nd[0].type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|         {
 | |
|             --m_2ndNullItemsCount;
 | |
|             VmaVectorRemove(suballocations2nd, 0);
 | |
|         }
 | |
| 
 | |
|         if (ShouldCompact1st())
 | |
|         {
 | |
|             const size_t nonNullItemCount = suballoc1stCount - nullItem1stCount;
 | |
|             size_t srcIndex = m_1stNullItemsBeginCount;
 | |
|             for (size_t dstIndex = 0; dstIndex < nonNullItemCount; ++dstIndex)
 | |
|             {
 | |
|                 while (suballocations1st[srcIndex].type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|                 {
 | |
|                     ++srcIndex;
 | |
|                 }
 | |
|                 if (dstIndex != srcIndex)
 | |
|                 {
 | |
|                     suballocations1st[dstIndex] = suballocations1st[srcIndex];
 | |
|                 }
 | |
|                 ++srcIndex;
 | |
|             }
 | |
|             suballocations1st.resize(nonNullItemCount);
 | |
|             m_1stNullItemsBeginCount = 0;
 | |
|             m_1stNullItemsMiddleCount = 0;
 | |
|         }
 | |
| 
 | |
|         // 2nd vector became empty.
 | |
|         if (suballocations2nd.empty())
 | |
|         {
 | |
|             m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | |
|         }
 | |
| 
 | |
|         // 1st vector became empty.
 | |
|         if (suballocations1st.size() - m_1stNullItemsBeginCount == 0)
 | |
|         {
 | |
|             suballocations1st.clear();
 | |
|             m_1stNullItemsBeginCount = 0;
 | |
| 
 | |
|             if (!suballocations2nd.empty() && m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|             {
 | |
|                 // Swap 1st with 2nd. Now 2nd is empty.
 | |
|                 m_2ndVectorMode = SECOND_VECTOR_EMPTY;
 | |
|                 m_1stNullItemsMiddleCount = m_2ndNullItemsCount;
 | |
|                 while (m_1stNullItemsBeginCount < suballocations2nd.size() &&
 | |
|                     suballocations2nd[m_1stNullItemsBeginCount].type == VMA_SUBALLOCATION_TYPE_FREE)
 | |
|                 {
 | |
|                     ++m_1stNullItemsBeginCount;
 | |
|                     --m_1stNullItemsMiddleCount;
 | |
|                 }
 | |
|                 m_2ndNullItemsCount = 0;
 | |
|                 m_1stVectorIndex ^= 1;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VMA_HEAVY_ASSERT(Validate());
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::CreateAllocationRequest_LowerAddress(
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     VmaSuballocationType allocType,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     const VkDeviceSize blockSize = GetSize();
 | |
|     const VkDeviceSize debugMargin = GetDebugMargin();
 | |
|     const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|     {
 | |
|         // Try to allocate at the end of 1st vector.
 | |
| 
 | |
|         VkDeviceSize resultBaseOffset = 0;
 | |
|         if (!suballocations1st.empty())
 | |
|         {
 | |
|             const VmaSuballocation& lastSuballoc = suballocations1st.back();
 | |
|             resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
 | |
|         }
 | |
| 
 | |
|         // Start from offset equal to beginning of free space.
 | |
|         VkDeviceSize resultOffset = resultBaseOffset;
 | |
| 
 | |
|         // Apply alignment.
 | |
|         resultOffset = VmaAlignUp(resultOffset, allocAlignment);
 | |
| 
 | |
|         // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|         // Make bigger alignment if necessary.
 | |
|         if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations1st.empty())
 | |
|         {
 | |
|             bool bufferImageGranularityConflict = false;
 | |
|             for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
 | |
|             {
 | |
|                 const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
 | |
|                 if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | |
|                     {
 | |
|                         bufferImageGranularityConflict = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                     // Already on previous page.
 | |
|                     break;
 | |
|             }
 | |
|             if (bufferImageGranularityConflict)
 | |
|             {
 | |
|                 resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         const VkDeviceSize freeSpaceEnd = m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK ?
 | |
|             suballocations2nd.back().offset : blockSize;
 | |
| 
 | |
|         // There is enough free space at the end after alignment.
 | |
|         if (resultOffset + allocSize + debugMargin <= freeSpaceEnd)
 | |
|         {
 | |
|             // Check next suballocations for BufferImageGranularity conflicts.
 | |
|             // If conflict exists, allocation cannot be made here.
 | |
|             if ((allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity) && m_2ndVectorMode == SECOND_VECTOR_DOUBLE_STACK)
 | |
|             {
 | |
|                 for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
 | |
|                 {
 | |
|                     const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
 | |
|                     if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|                     {
 | |
|                         if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | |
|                         {
 | |
|                             return false;
 | |
|                         }
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // Already on previous page.
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // All tests passed: Success.
 | |
|             pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
 | |
|             // pAllocationRequest->item, customData unused.
 | |
|             pAllocationRequest->type = VmaAllocationRequestType::EndOf1st;
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Wrap-around to end of 2nd vector. Try to allocate there, watching for the
 | |
|     // beginning of 1st vector as the end of free space.
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_EMPTY || m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         VMA_ASSERT(!suballocations1st.empty());
 | |
| 
 | |
|         VkDeviceSize resultBaseOffset = 0;
 | |
|         if (!suballocations2nd.empty())
 | |
|         {
 | |
|             const VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | |
|             resultBaseOffset = lastSuballoc.offset + lastSuballoc.size + debugMargin;
 | |
|         }
 | |
| 
 | |
|         // Start from offset equal to beginning of free space.
 | |
|         VkDeviceSize resultOffset = resultBaseOffset;
 | |
| 
 | |
|         // Apply alignment.
 | |
|         resultOffset = VmaAlignUp(resultOffset, allocAlignment);
 | |
| 
 | |
|         // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|         // Make bigger alignment if necessary.
 | |
|         if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
 | |
|         {
 | |
|             bool bufferImageGranularityConflict = false;
 | |
|             for (size_t prevSuballocIndex = suballocations2nd.size(); prevSuballocIndex--; )
 | |
|             {
 | |
|                 const VmaSuballocation& prevSuballoc = suballocations2nd[prevSuballocIndex];
 | |
|                 if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if (VmaIsBufferImageGranularityConflict(prevSuballoc.type, allocType))
 | |
|                     {
 | |
|                         bufferImageGranularityConflict = true;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                     // Already on previous page.
 | |
|                     break;
 | |
|             }
 | |
|             if (bufferImageGranularityConflict)
 | |
|             {
 | |
|                 resultOffset = VmaAlignUp(resultOffset, bufferImageGranularity);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         size_t index1st = m_1stNullItemsBeginCount;
 | |
| 
 | |
|         // There is enough free space at the end after alignment.
 | |
|         if ((index1st == suballocations1st.size() && resultOffset + allocSize + debugMargin <= blockSize) ||
 | |
|             (index1st < suballocations1st.size() && resultOffset + allocSize + debugMargin <= suballocations1st[index1st].offset))
 | |
|         {
 | |
|             // Check next suballocations for BufferImageGranularity conflicts.
 | |
|             // If conflict exists, allocation cannot be made here.
 | |
|             if (allocSize % bufferImageGranularity || resultOffset % bufferImageGranularity)
 | |
|             {
 | |
|                 for (size_t nextSuballocIndex = index1st;
 | |
|                     nextSuballocIndex < suballocations1st.size();
 | |
|                     nextSuballocIndex++)
 | |
|                 {
 | |
|                     const VmaSuballocation& nextSuballoc = suballocations1st[nextSuballocIndex];
 | |
|                     if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|                     {
 | |
|                         if (VmaIsBufferImageGranularityConflict(allocType, nextSuballoc.type))
 | |
|                         {
 | |
|                             return false;
 | |
|                         }
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // Already on next page.
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // All tests passed: Success.
 | |
|             pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
 | |
|             pAllocationRequest->type = VmaAllocationRequestType::EndOf2nd;
 | |
|             // pAllocationRequest->item, customData unused.
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Linear::CreateAllocationRequest_UpperAddress(
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     VmaSuballocationType allocType,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     const VkDeviceSize blockSize = GetSize();
 | |
|     const VkDeviceSize bufferImageGranularity = GetBufferImageGranularity();
 | |
|     SuballocationVectorType& suballocations1st = AccessSuballocations1st();
 | |
|     SuballocationVectorType& suballocations2nd = AccessSuballocations2nd();
 | |
| 
 | |
|     if (m_2ndVectorMode == SECOND_VECTOR_RING_BUFFER)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Trying to use pool with linear algorithm as double stack, while it is already being used as ring buffer.");
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     // Try to allocate before 2nd.back(), or end of block if 2nd.empty().
 | |
|     if (allocSize > blockSize)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
|     VkDeviceSize resultBaseOffset = blockSize - allocSize;
 | |
|     if (!suballocations2nd.empty())
 | |
|     {
 | |
|         const VmaSuballocation& lastSuballoc = suballocations2nd.back();
 | |
|         resultBaseOffset = lastSuballoc.offset - allocSize;
 | |
|         if (allocSize > lastSuballoc.offset)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Start from offset equal to end of free space.
 | |
|     VkDeviceSize resultOffset = resultBaseOffset;
 | |
| 
 | |
|     const VkDeviceSize debugMargin = GetDebugMargin();
 | |
| 
 | |
|     // Apply debugMargin at the end.
 | |
|     if (debugMargin > 0)
 | |
|     {
 | |
|         if (resultOffset < debugMargin)
 | |
|         {
 | |
|             return false;
 | |
|         }
 | |
|         resultOffset -= debugMargin;
 | |
|     }
 | |
| 
 | |
|     // Apply alignment.
 | |
|     resultOffset = VmaAlignDown(resultOffset, allocAlignment);
 | |
| 
 | |
|     // Check next suballocations from 2nd for BufferImageGranularity conflicts.
 | |
|     // Make bigger alignment if necessary.
 | |
|     if (bufferImageGranularity > 1 && bufferImageGranularity != allocAlignment && !suballocations2nd.empty())
 | |
|     {
 | |
|         bool bufferImageGranularityConflict = false;
 | |
|         for (size_t nextSuballocIndex = suballocations2nd.size(); nextSuballocIndex--; )
 | |
|         {
 | |
|             const VmaSuballocation& nextSuballoc = suballocations2nd[nextSuballocIndex];
 | |
|             if (VmaBlocksOnSamePage(resultOffset, allocSize, nextSuballoc.offset, bufferImageGranularity))
 | |
|             {
 | |
|                 if (VmaIsBufferImageGranularityConflict(nextSuballoc.type, allocType))
 | |
|                 {
 | |
|                     bufferImageGranularityConflict = true;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|                 // Already on previous page.
 | |
|                 break;
 | |
|         }
 | |
|         if (bufferImageGranularityConflict)
 | |
|         {
 | |
|             resultOffset = VmaAlignDown(resultOffset, bufferImageGranularity);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // There is enough free space.
 | |
|     const VkDeviceSize endOf1st = !suballocations1st.empty() ?
 | |
|         suballocations1st.back().offset + suballocations1st.back().size :
 | |
|         0;
 | |
|     if (endOf1st + debugMargin <= resultOffset)
 | |
|     {
 | |
|         // Check previous suballocations for BufferImageGranularity conflicts.
 | |
|         // If conflict exists, allocation cannot be made here.
 | |
|         if (bufferImageGranularity > 1)
 | |
|         {
 | |
|             for (size_t prevSuballocIndex = suballocations1st.size(); prevSuballocIndex--; )
 | |
|             {
 | |
|                 const VmaSuballocation& prevSuballoc = suballocations1st[prevSuballocIndex];
 | |
|                 if (VmaBlocksOnSamePage(prevSuballoc.offset, prevSuballoc.size, resultOffset, bufferImageGranularity))
 | |
|                 {
 | |
|                     if (VmaIsBufferImageGranularityConflict(allocType, prevSuballoc.type))
 | |
|                     {
 | |
|                         return false;
 | |
|                     }
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     // Already on next page.
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // All tests passed: Success.
 | |
|         pAllocationRequest->allocHandle = (VmaAllocHandle)(resultOffset + 1);
 | |
|         // pAllocationRequest->item unused.
 | |
|         pAllocationRequest->type = VmaAllocationRequestType::UpperAddress;
 | |
|         return true;
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| #endif // _VMA_BLOCK_METADATA_LINEAR_FUNCTIONS
 | |
| #endif // _VMA_BLOCK_METADATA_LINEAR
 | |
| 
 | |
| #if 0
 | |
| #ifndef _VMA_BLOCK_METADATA_BUDDY
 | |
| /*
 | |
| - GetSize() is the original size of allocated memory block.
 | |
| - m_UsableSize is this size aligned down to a power of two.
 | |
|   All allocations and calculations happen relative to m_UsableSize.
 | |
| - GetUnusableSize() is the difference between them.
 | |
|   It is reported as separate, unused range, not available for allocations.
 | |
| 
 | |
| Node at level 0 has size = m_UsableSize.
 | |
| Each next level contains nodes with size 2 times smaller than current level.
 | |
| m_LevelCount is the maximum number of levels to use in the current object.
 | |
| */
 | |
| class VmaBlockMetadata_Buddy : public VmaBlockMetadata
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_Buddy)
 | |
| public:
 | |
|     VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|         VkDeviceSize bufferImageGranularity, bool isVirtual);
 | |
|     virtual ~VmaBlockMetadata_Buddy();
 | |
| 
 | |
|     size_t GetAllocationCount() const override { return m_AllocationCount; }
 | |
|     VkDeviceSize GetSumFreeSize() const override { return m_SumFreeSize + GetUnusableSize(); }
 | |
|     bool IsEmpty() const override { return m_Root->type == Node::TYPE_FREE; }
 | |
|     VkResult CheckCorruption(const void* pBlockData) override { return VK_ERROR_FEATURE_NOT_PRESENT; }
 | |
|     VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return (VkDeviceSize)allocHandle - 1; }
 | |
|     void DebugLogAllAllocations() const override { DebugLogAllAllocationNode(m_Root, 0); }
 | |
| 
 | |
|     void Init(VkDeviceSize size) override;
 | |
|     bool Validate() const override;
 | |
| 
 | |
|     void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
 | |
|     void AddStatistics(VmaStatistics& inoutStats) const override;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const override;
 | |
| #endif
 | |
| 
 | |
|     bool CreateAllocationRequest(
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest) override;
 | |
| 
 | |
|     void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         void* userData) override;
 | |
| 
 | |
|     void Free(VmaAllocHandle allocHandle) override;
 | |
|     void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
 | |
|     void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
 | |
|     VmaAllocHandle GetAllocationListBegin() const override;
 | |
|     VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
 | |
|     void Clear() override;
 | |
|     void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
 | |
| 
 | |
| private:
 | |
|     static const size_t MAX_LEVELS = 48;
 | |
| 
 | |
|     struct ValidationContext
 | |
|     {
 | |
|         size_t calculatedAllocationCount = 0;
 | |
|         size_t calculatedFreeCount = 0;
 | |
|         VkDeviceSize calculatedSumFreeSize = 0;
 | |
|     };
 | |
|     struct Node
 | |
|     {
 | |
|         VkDeviceSize offset;
 | |
|         enum TYPE
 | |
|         {
 | |
|             TYPE_FREE,
 | |
|             TYPE_ALLOCATION,
 | |
|             TYPE_SPLIT,
 | |
|             TYPE_COUNT
 | |
|         } type;
 | |
|         Node* parent;
 | |
|         Node* buddy;
 | |
| 
 | |
|         union
 | |
|         {
 | |
|             struct
 | |
|             {
 | |
|                 Node* prev;
 | |
|                 Node* next;
 | |
|             } free;
 | |
|             struct
 | |
|             {
 | |
|                 void* userData;
 | |
|             } allocation;
 | |
|             struct
 | |
|             {
 | |
|                 Node* leftChild;
 | |
|             } split;
 | |
|         };
 | |
|     };
 | |
| 
 | |
|     // Size of the memory block aligned down to a power of two.
 | |
|     VkDeviceSize m_UsableSize;
 | |
|     uint32_t m_LevelCount;
 | |
|     VmaPoolAllocator<Node> m_NodeAllocator;
 | |
|     Node* m_Root;
 | |
|     struct
 | |
|     {
 | |
|         Node* front;
 | |
|         Node* back;
 | |
|     } m_FreeList[MAX_LEVELS];
 | |
| 
 | |
|     // Number of nodes in the tree with type == TYPE_ALLOCATION.
 | |
|     size_t m_AllocationCount;
 | |
|     // Number of nodes in the tree with type == TYPE_FREE.
 | |
|     size_t m_FreeCount;
 | |
|     // Doesn't include space wasted due to internal fragmentation - allocation sizes are just aligned up to node sizes.
 | |
|     // Doesn't include unusable size.
 | |
|     VkDeviceSize m_SumFreeSize;
 | |
| 
 | |
|     VkDeviceSize GetUnusableSize() const { return GetSize() - m_UsableSize; }
 | |
|     VkDeviceSize LevelToNodeSize(uint32_t level) const { return m_UsableSize >> level; }
 | |
| 
 | |
|     VkDeviceSize AlignAllocationSize(VkDeviceSize size) const
 | |
|     {
 | |
|         if (!IsVirtual())
 | |
|         {
 | |
|             size = VmaAlignUp(size, (VkDeviceSize)16);
 | |
|         }
 | |
|         return VmaNextPow2(size);
 | |
|     }
 | |
|     Node* FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel) const;
 | |
|     void DeleteNodeChildren(Node* node);
 | |
|     bool ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const;
 | |
|     uint32_t AllocSizeToLevel(VkDeviceSize allocSize) const;
 | |
|     void AddNodeToDetailedStatistics(VmaDetailedStatistics& inoutStats, const Node* node, VkDeviceSize levelNodeSize) const;
 | |
|     // Adds node to the front of FreeList at given level.
 | |
|     // node->type must be FREE.
 | |
|     // node->free.prev, next can be undefined.
 | |
|     void AddToFreeListFront(uint32_t level, Node* node);
 | |
|     // Removes node from FreeList at given level.
 | |
|     // node->type must be FREE.
 | |
|     // node->free.prev, next stay untouched.
 | |
|     void RemoveFromFreeList(uint32_t level, Node* node);
 | |
|     void DebugLogAllAllocationNode(Node* node, uint32_t level) const;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const;
 | |
| #endif
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS
 | |
| VmaBlockMetadata_Buddy::VmaBlockMetadata_Buddy(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|     VkDeviceSize bufferImageGranularity, bool isVirtual)
 | |
|     : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
 | |
|     m_NodeAllocator(pAllocationCallbacks, 32), // firstBlockCapacity
 | |
|     m_Root(VMA_NULL),
 | |
|     m_AllocationCount(0),
 | |
|     m_FreeCount(1),
 | |
|     m_SumFreeSize(0)
 | |
| {
 | |
|     memset(m_FreeList, 0, sizeof(m_FreeList));
 | |
| }
 | |
| 
 | |
| VmaBlockMetadata_Buddy::~VmaBlockMetadata_Buddy()
 | |
| {
 | |
|     DeleteNodeChildren(m_Root);
 | |
|     m_NodeAllocator.Free(m_Root);
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::Init(VkDeviceSize size)
 | |
| {
 | |
|     VmaBlockMetadata::Init(size);
 | |
| 
 | |
|     m_UsableSize = VmaPrevPow2(size);
 | |
|     m_SumFreeSize = m_UsableSize;
 | |
| 
 | |
|     // Calculate m_LevelCount.
 | |
|     const VkDeviceSize minNodeSize = IsVirtual() ? 1 : 16;
 | |
|     m_LevelCount = 1;
 | |
|     while (m_LevelCount < MAX_LEVELS &&
 | |
|         LevelToNodeSize(m_LevelCount) >= minNodeSize)
 | |
|     {
 | |
|         ++m_LevelCount;
 | |
|     }
 | |
| 
 | |
|     Node* rootNode = m_NodeAllocator.Alloc();
 | |
|     rootNode->offset = 0;
 | |
|     rootNode->type = Node::TYPE_FREE;
 | |
|     rootNode->parent = VMA_NULL;
 | |
|     rootNode->buddy = VMA_NULL;
 | |
| 
 | |
|     m_Root = rootNode;
 | |
|     AddToFreeListFront(0, rootNode);
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Buddy::Validate() const
 | |
| {
 | |
|     // Validate tree.
 | |
|     ValidationContext ctx;
 | |
|     if (!ValidateNode(ctx, VMA_NULL, m_Root, 0, LevelToNodeSize(0)))
 | |
|     {
 | |
|         VMA_VALIDATE(false && "ValidateNode failed.");
 | |
|     }
 | |
|     VMA_VALIDATE(m_AllocationCount == ctx.calculatedAllocationCount);
 | |
|     VMA_VALIDATE(m_SumFreeSize == ctx.calculatedSumFreeSize);
 | |
| 
 | |
|     // Validate free node lists.
 | |
|     for (uint32_t level = 0; level < m_LevelCount; ++level)
 | |
|     {
 | |
|         VMA_VALIDATE(m_FreeList[level].front == VMA_NULL ||
 | |
|             m_FreeList[level].front->free.prev == VMA_NULL);
 | |
| 
 | |
|         for (Node* node = m_FreeList[level].front;
 | |
|             node != VMA_NULL;
 | |
|             node = node->free.next)
 | |
|         {
 | |
|             VMA_VALIDATE(node->type == Node::TYPE_FREE);
 | |
| 
 | |
|             if (node->free.next == VMA_NULL)
 | |
|             {
 | |
|                 VMA_VALIDATE(m_FreeList[level].back == node);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 VMA_VALIDATE(node->free.next->free.prev == node);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Validate that free lists ar higher levels are empty.
 | |
|     for (uint32_t level = m_LevelCount; level < MAX_LEVELS; ++level)
 | |
|     {
 | |
|         VMA_VALIDATE(m_FreeList[level].front == VMA_NULL && m_FreeList[level].back == VMA_NULL);
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
 | |
| {
 | |
|     inoutStats.statistics.blockCount++;
 | |
|     inoutStats.statistics.blockBytes += GetSize();
 | |
| 
 | |
|     AddNodeToDetailedStatistics(inoutStats, m_Root, LevelToNodeSize(0));
 | |
| 
 | |
|     const VkDeviceSize unusableSize = GetUnusableSize();
 | |
|     if (unusableSize > 0)
 | |
|         VmaAddDetailedStatisticsUnusedRange(inoutStats, unusableSize);
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::AddStatistics(VmaStatistics& inoutStats) const
 | |
| {
 | |
|     inoutStats.blockCount++;
 | |
|     inoutStats.allocationCount += (uint32_t)m_AllocationCount;
 | |
|     inoutStats.blockBytes += GetSize();
 | |
|     inoutStats.allocationBytes += GetSize() - m_SumFreeSize;
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockMetadata_Buddy::PrintDetailedMap(class VmaJsonWriter& json, uint32_t mapRefCount) const
 | |
| {
 | |
|     VmaDetailedStatistics stats;
 | |
|     VmaClearDetailedStatistics(stats);
 | |
|     AddDetailedStatistics(stats);
 | |
| 
 | |
|     PrintDetailedMap_Begin(
 | |
|         json,
 | |
|         stats.statistics.blockBytes - stats.statistics.allocationBytes,
 | |
|         stats.statistics.allocationCount,
 | |
|         stats.unusedRangeCount,
 | |
|         mapRefCount);
 | |
| 
 | |
|     PrintDetailedMapNode(json, m_Root, LevelToNodeSize(0));
 | |
| 
 | |
|     const VkDeviceSize unusableSize = GetUnusableSize();
 | |
|     if (unusableSize > 0)
 | |
|     {
 | |
|         PrintDetailedMap_UnusedRange(json,
 | |
|             m_UsableSize, // offset
 | |
|             unusableSize); // size
 | |
|     }
 | |
| 
 | |
|     PrintDetailedMap_End(json);
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| bool VmaBlockMetadata_Buddy::CreateAllocationRequest(
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     bool upperAddress,
 | |
|     VmaSuballocationType allocType,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
 | |
| 
 | |
|     allocSize = AlignAllocationSize(allocSize);
 | |
| 
 | |
|     // Simple way to respect bufferImageGranularity. May be optimized some day.
 | |
|     // Whenever it might be an OPTIMAL image...
 | |
|     if (allocType == VMA_SUBALLOCATION_TYPE_UNKNOWN ||
 | |
|         allocType == VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN ||
 | |
|         allocType == VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL)
 | |
|     {
 | |
|         allocAlignment = VMA_MAX(allocAlignment, GetBufferImageGranularity());
 | |
|         allocSize = VmaAlignUp(allocSize, GetBufferImageGranularity());
 | |
|     }
 | |
| 
 | |
|     if (allocSize > m_UsableSize)
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     const uint32_t targetLevel = AllocSizeToLevel(allocSize);
 | |
|     for (uint32_t level = targetLevel; level--; )
 | |
|     {
 | |
|         for (Node* freeNode = m_FreeList[level].front;
 | |
|             freeNode != VMA_NULL;
 | |
|             freeNode = freeNode->free.next)
 | |
|         {
 | |
|             if (freeNode->offset % allocAlignment == 0)
 | |
|             {
 | |
|                 pAllocationRequest->type = VmaAllocationRequestType::Normal;
 | |
|                 pAllocationRequest->allocHandle = (VmaAllocHandle)(freeNode->offset + 1);
 | |
|                 pAllocationRequest->size = allocSize;
 | |
|                 pAllocationRequest->customData = (void*)(uintptr_t)level;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::Alloc(
 | |
|     const VmaAllocationRequest& request,
 | |
|     VmaSuballocationType type,
 | |
|     void* userData)
 | |
| {
 | |
|     VMA_ASSERT(request.type == VmaAllocationRequestType::Normal);
 | |
| 
 | |
|     const uint32_t targetLevel = AllocSizeToLevel(request.size);
 | |
|     uint32_t currLevel = (uint32_t)(uintptr_t)request.customData;
 | |
| 
 | |
|     Node* currNode = m_FreeList[currLevel].front;
 | |
|     VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
 | |
|     const VkDeviceSize offset = (VkDeviceSize)request.allocHandle - 1;
 | |
|     while (currNode->offset != offset)
 | |
|     {
 | |
|         currNode = currNode->free.next;
 | |
|         VMA_ASSERT(currNode != VMA_NULL && currNode->type == Node::TYPE_FREE);
 | |
|     }
 | |
| 
 | |
|     // Go down, splitting free nodes.
 | |
|     while (currLevel < targetLevel)
 | |
|     {
 | |
|         // currNode is already first free node at currLevel.
 | |
|         // Remove it from list of free nodes at this currLevel.
 | |
|         RemoveFromFreeList(currLevel, currNode);
 | |
| 
 | |
|         const uint32_t childrenLevel = currLevel + 1;
 | |
| 
 | |
|         // Create two free sub-nodes.
 | |
|         Node* leftChild = m_NodeAllocator.Alloc();
 | |
|         Node* rightChild = m_NodeAllocator.Alloc();
 | |
| 
 | |
|         leftChild->offset = currNode->offset;
 | |
|         leftChild->type = Node::TYPE_FREE;
 | |
|         leftChild->parent = currNode;
 | |
|         leftChild->buddy = rightChild;
 | |
| 
 | |
|         rightChild->offset = currNode->offset + LevelToNodeSize(childrenLevel);
 | |
|         rightChild->type = Node::TYPE_FREE;
 | |
|         rightChild->parent = currNode;
 | |
|         rightChild->buddy = leftChild;
 | |
| 
 | |
|         // Convert current currNode to split type.
 | |
|         currNode->type = Node::TYPE_SPLIT;
 | |
|         currNode->split.leftChild = leftChild;
 | |
| 
 | |
|         // Add child nodes to free list. Order is important!
 | |
|         AddToFreeListFront(childrenLevel, rightChild);
 | |
|         AddToFreeListFront(childrenLevel, leftChild);
 | |
| 
 | |
|         ++m_FreeCount;
 | |
|         ++currLevel;
 | |
|         currNode = m_FreeList[currLevel].front;
 | |
| 
 | |
|         /*
 | |
|         We can be sure that currNode, as left child of node previously split,
 | |
|         also fulfills the alignment requirement.
 | |
|         */
 | |
|     }
 | |
| 
 | |
|     // Remove from free list.
 | |
|     VMA_ASSERT(currLevel == targetLevel &&
 | |
|         currNode != VMA_NULL &&
 | |
|         currNode->type == Node::TYPE_FREE);
 | |
|     RemoveFromFreeList(currLevel, currNode);
 | |
| 
 | |
|     // Convert to allocation node.
 | |
|     currNode->type = Node::TYPE_ALLOCATION;
 | |
|     currNode->allocation.userData = userData;
 | |
| 
 | |
|     ++m_AllocationCount;
 | |
|     --m_FreeCount;
 | |
|     m_SumFreeSize -= request.size;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
 | |
| {
 | |
|     uint32_t level = 0;
 | |
|     outInfo.offset = (VkDeviceSize)allocHandle - 1;
 | |
|     const Node* const node = FindAllocationNode(outInfo.offset, level);
 | |
|     outInfo.size = LevelToNodeSize(level);
 | |
|     outInfo.pUserData = node->allocation.userData;
 | |
| }
 | |
| 
 | |
| void* VmaBlockMetadata_Buddy::GetAllocationUserData(VmaAllocHandle allocHandle) const
 | |
| {
 | |
|     uint32_t level = 0;
 | |
|     const Node* const node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level);
 | |
|     return node->allocation.userData;
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaBlockMetadata_Buddy::GetAllocationListBegin() const
 | |
| {
 | |
|     // Function only used for defragmentation, which is disabled for this algorithm
 | |
|     return VK_NULL_HANDLE;
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaBlockMetadata_Buddy::GetNextAllocation(VmaAllocHandle prevAlloc) const
 | |
| {
 | |
|     // Function only used for defragmentation, which is disabled for this algorithm
 | |
|     return VK_NULL_HANDLE;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::DeleteNodeChildren(Node* node)
 | |
| {
 | |
|     if (node->type == Node::TYPE_SPLIT)
 | |
|     {
 | |
|         DeleteNodeChildren(node->split.leftChild->buddy);
 | |
|         DeleteNodeChildren(node->split.leftChild);
 | |
|         const VkAllocationCallbacks* allocationCallbacks = GetAllocationCallbacks();
 | |
|         m_NodeAllocator.Free(node->split.leftChild->buddy);
 | |
|         m_NodeAllocator.Free(node->split.leftChild);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::Clear()
 | |
| {
 | |
|     DeleteNodeChildren(m_Root);
 | |
|     m_Root->type = Node::TYPE_FREE;
 | |
|     m_AllocationCount = 0;
 | |
|     m_FreeCount = 1;
 | |
|     m_SumFreeSize = m_UsableSize;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
 | |
| {
 | |
|     uint32_t level = 0;
 | |
|     Node* const node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level);
 | |
|     node->allocation.userData = userData;
 | |
| }
 | |
| 
 | |
| VmaBlockMetadata_Buddy::Node* VmaBlockMetadata_Buddy::FindAllocationNode(VkDeviceSize offset, uint32_t& outLevel) const
 | |
| {
 | |
|     Node* node = m_Root;
 | |
|     VkDeviceSize nodeOffset = 0;
 | |
|     outLevel = 0;
 | |
|     VkDeviceSize levelNodeSize = LevelToNodeSize(0);
 | |
|     while (node->type == Node::TYPE_SPLIT)
 | |
|     {
 | |
|         const VkDeviceSize nextLevelNodeSize = levelNodeSize >> 1;
 | |
|         if (offset < nodeOffset + nextLevelNodeSize)
 | |
|         {
 | |
|             node = node->split.leftChild;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             node = node->split.leftChild->buddy;
 | |
|             nodeOffset += nextLevelNodeSize;
 | |
|         }
 | |
|         ++outLevel;
 | |
|         levelNodeSize = nextLevelNodeSize;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(node != VMA_NULL && node->type == Node::TYPE_ALLOCATION);
 | |
|     return node;
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_Buddy::ValidateNode(ValidationContext& ctx, const Node* parent, const Node* curr, uint32_t level, VkDeviceSize levelNodeSize) const
 | |
| {
 | |
|     VMA_VALIDATE(level < m_LevelCount);
 | |
|     VMA_VALIDATE(curr->parent == parent);
 | |
|     VMA_VALIDATE((curr->buddy == VMA_NULL) == (parent == VMA_NULL));
 | |
|     VMA_VALIDATE(curr->buddy == VMA_NULL || curr->buddy->buddy == curr);
 | |
|     switch (curr->type)
 | |
|     {
 | |
|     case Node::TYPE_FREE:
 | |
|         // curr->free.prev, next are validated separately.
 | |
|         ctx.calculatedSumFreeSize += levelNodeSize;
 | |
|         ++ctx.calculatedFreeCount;
 | |
|         break;
 | |
|     case Node::TYPE_ALLOCATION:
 | |
|         ++ctx.calculatedAllocationCount;
 | |
|         if (!IsVirtual())
 | |
|         {
 | |
|             VMA_VALIDATE(curr->allocation.userData != VMA_NULL);
 | |
|         }
 | |
|         break;
 | |
|     case Node::TYPE_SPLIT:
 | |
|     {
 | |
|         const uint32_t childrenLevel = level + 1;
 | |
|         const VkDeviceSize childrenLevelNodeSize = levelNodeSize >> 1;
 | |
|         const Node* const leftChild = curr->split.leftChild;
 | |
|         VMA_VALIDATE(leftChild != VMA_NULL);
 | |
|         VMA_VALIDATE(leftChild->offset == curr->offset);
 | |
|         if (!ValidateNode(ctx, curr, leftChild, childrenLevel, childrenLevelNodeSize))
 | |
|         {
 | |
|             VMA_VALIDATE(false && "ValidateNode for left child failed.");
 | |
|         }
 | |
|         const Node* const rightChild = leftChild->buddy;
 | |
|         VMA_VALIDATE(rightChild->offset == curr->offset + childrenLevelNodeSize);
 | |
|         if (!ValidateNode(ctx, curr, rightChild, childrenLevel, childrenLevelNodeSize))
 | |
|         {
 | |
|             VMA_VALIDATE(false && "ValidateNode for right child failed.");
 | |
|         }
 | |
|     }
 | |
|     break;
 | |
|     default:
 | |
|         return false;
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| uint32_t VmaBlockMetadata_Buddy::AllocSizeToLevel(VkDeviceSize allocSize) const
 | |
| {
 | |
|     // I know this could be optimized somehow e.g. by using std::log2p1 from C++20.
 | |
|     uint32_t level = 0;
 | |
|     VkDeviceSize currLevelNodeSize = m_UsableSize;
 | |
|     VkDeviceSize nextLevelNodeSize = currLevelNodeSize >> 1;
 | |
|     while (allocSize <= nextLevelNodeSize && level + 1 < m_LevelCount)
 | |
|     {
 | |
|         ++level;
 | |
|         currLevelNodeSize >>= 1;
 | |
|         nextLevelNodeSize >>= 1;
 | |
|     }
 | |
|     return level;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::Free(VmaAllocHandle allocHandle)
 | |
| {
 | |
|     uint32_t level = 0;
 | |
|     Node* node = FindAllocationNode((VkDeviceSize)allocHandle - 1, level);
 | |
| 
 | |
|     ++m_FreeCount;
 | |
|     --m_AllocationCount;
 | |
|     m_SumFreeSize += LevelToNodeSize(level);
 | |
| 
 | |
|     node->type = Node::TYPE_FREE;
 | |
| 
 | |
|     // Join free nodes if possible.
 | |
|     while (level > 0 && node->buddy->type == Node::TYPE_FREE)
 | |
|     {
 | |
|         RemoveFromFreeList(level, node->buddy);
 | |
|         Node* const parent = node->parent;
 | |
| 
 | |
|         m_NodeAllocator.Free(node->buddy);
 | |
|         m_NodeAllocator.Free(node);
 | |
|         parent->type = Node::TYPE_FREE;
 | |
| 
 | |
|         node = parent;
 | |
|         --level;
 | |
|         --m_FreeCount;
 | |
|     }
 | |
| 
 | |
|     AddToFreeListFront(level, node);
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::AddNodeToDetailedStatistics(VmaDetailedStatistics& inoutStats, const Node* node, VkDeviceSize levelNodeSize) const
 | |
| {
 | |
|     switch (node->type)
 | |
|     {
 | |
|     case Node::TYPE_FREE:
 | |
|         VmaAddDetailedStatisticsUnusedRange(inoutStats, levelNodeSize);
 | |
|         break;
 | |
|     case Node::TYPE_ALLOCATION:
 | |
|         VmaAddDetailedStatisticsAllocation(inoutStats, levelNodeSize);
 | |
|         break;
 | |
|     case Node::TYPE_SPLIT:
 | |
|     {
 | |
|         const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
 | |
|         const Node* const leftChild = node->split.leftChild;
 | |
|         AddNodeToDetailedStatistics(inoutStats, leftChild, childrenNodeSize);
 | |
|         const Node* const rightChild = leftChild->buddy;
 | |
|         AddNodeToDetailedStatistics(inoutStats, rightChild, childrenNodeSize);
 | |
|     }
 | |
|     break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::AddToFreeListFront(uint32_t level, Node* node)
 | |
| {
 | |
|     VMA_ASSERT(node->type == Node::TYPE_FREE);
 | |
| 
 | |
|     // List is empty.
 | |
|     Node* const frontNode = m_FreeList[level].front;
 | |
|     if (frontNode == VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(m_FreeList[level].back == VMA_NULL);
 | |
|         node->free.prev = node->free.next = VMA_NULL;
 | |
|         m_FreeList[level].front = m_FreeList[level].back = node;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(frontNode->free.prev == VMA_NULL);
 | |
|         node->free.prev = VMA_NULL;
 | |
|         node->free.next = frontNode;
 | |
|         frontNode->free.prev = node;
 | |
|         m_FreeList[level].front = node;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::RemoveFromFreeList(uint32_t level, Node* node)
 | |
| {
 | |
|     VMA_ASSERT(m_FreeList[level].front != VMA_NULL);
 | |
| 
 | |
|     // It is at the front.
 | |
|     if (node->free.prev == VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(m_FreeList[level].front == node);
 | |
|         m_FreeList[level].front = node->free.next;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Node* const prevFreeNode = node->free.prev;
 | |
|         VMA_ASSERT(prevFreeNode->free.next == node);
 | |
|         prevFreeNode->free.next = node->free.next;
 | |
|     }
 | |
| 
 | |
|     // It is at the back.
 | |
|     if (node->free.next == VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(m_FreeList[level].back == node);
 | |
|         m_FreeList[level].back = node->free.prev;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Node* const nextFreeNode = node->free.next;
 | |
|         VMA_ASSERT(nextFreeNode->free.prev == node);
 | |
|         nextFreeNode->free.prev = node->free.prev;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_Buddy::DebugLogAllAllocationNode(Node* node, uint32_t level) const
 | |
| {
 | |
|     switch (node->type)
 | |
|     {
 | |
|     case Node::TYPE_FREE:
 | |
|         break;
 | |
|     case Node::TYPE_ALLOCATION:
 | |
|         DebugLogAllocation(node->offset, LevelToNodeSize(level), node->allocation.userData);
 | |
|         break;
 | |
|     case Node::TYPE_SPLIT:
 | |
|     {
 | |
|         ++level;
 | |
|         DebugLogAllAllocationNode(node->split.leftChild, level);
 | |
|         DebugLogAllAllocationNode(node->split.leftChild->buddy, level);
 | |
|     }
 | |
|     break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockMetadata_Buddy::PrintDetailedMapNode(class VmaJsonWriter& json, const Node* node, VkDeviceSize levelNodeSize) const
 | |
| {
 | |
|     switch (node->type)
 | |
|     {
 | |
|     case Node::TYPE_FREE:
 | |
|         PrintDetailedMap_UnusedRange(json, node->offset, levelNodeSize);
 | |
|         break;
 | |
|     case Node::TYPE_ALLOCATION:
 | |
|         PrintDetailedMap_Allocation(json, node->offset, levelNodeSize, node->allocation.userData);
 | |
|         break;
 | |
|     case Node::TYPE_SPLIT:
 | |
|     {
 | |
|         const VkDeviceSize childrenNodeSize = levelNodeSize / 2;
 | |
|         const Node* const leftChild = node->split.leftChild;
 | |
|         PrintDetailedMapNode(json, leftChild, childrenNodeSize);
 | |
|         const Node* const rightChild = leftChild->buddy;
 | |
|         PrintDetailedMapNode(json, rightChild, childrenNodeSize);
 | |
|     }
 | |
|     break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| #endif // _VMA_BLOCK_METADATA_BUDDY_FUNCTIONS
 | |
| #endif // _VMA_BLOCK_METADATA_BUDDY
 | |
| #endif // #if 0
 | |
| 
 | |
| #ifndef _VMA_BLOCK_METADATA_TLSF
 | |
| // To not search current larger region if first allocation won't succeed and skip to smaller range
 | |
| // use with VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT as strategy in CreateAllocationRequest().
 | |
| // When fragmentation and reusal of previous blocks doesn't matter then use with
 | |
| // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT for fastest alloc time possible.
 | |
| class VmaBlockMetadata_TLSF : public VmaBlockMetadata
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockMetadata_TLSF)
 | |
| public:
 | |
|     VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|         VkDeviceSize bufferImageGranularity, bool isVirtual);
 | |
|     virtual ~VmaBlockMetadata_TLSF();
 | |
| 
 | |
|     size_t GetAllocationCount() const override { return m_AllocCount; }
 | |
|     size_t GetFreeRegionsCount() const override { return m_BlocksFreeCount + 1; }
 | |
|     VkDeviceSize GetSumFreeSize() const override { return m_BlocksFreeSize + m_NullBlock->size; }
 | |
|     bool IsEmpty() const override { return m_NullBlock->offset == 0; }
 | |
|     VkDeviceSize GetAllocationOffset(VmaAllocHandle allocHandle) const override { return ((Block*)allocHandle)->offset; }
 | |
| 
 | |
|     void Init(VkDeviceSize size) override;
 | |
|     bool Validate() const override;
 | |
| 
 | |
|     void AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const override;
 | |
|     void AddStatistics(VmaStatistics& inoutStats) const override;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap(class VmaJsonWriter& json) const override;
 | |
| #endif
 | |
| 
 | |
|     bool CreateAllocationRequest(
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         bool upperAddress,
 | |
|         VmaSuballocationType allocType,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocationRequest* pAllocationRequest) override;
 | |
| 
 | |
|     VkResult CheckCorruption(const void* pBlockData) override;
 | |
|     void Alloc(
 | |
|         const VmaAllocationRequest& request,
 | |
|         VmaSuballocationType type,
 | |
|         void* userData) override;
 | |
| 
 | |
|     void Free(VmaAllocHandle allocHandle) override;
 | |
|     void GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo) override;
 | |
|     void* GetAllocationUserData(VmaAllocHandle allocHandle) const override;
 | |
|     VmaAllocHandle GetAllocationListBegin() const override;
 | |
|     VmaAllocHandle GetNextAllocation(VmaAllocHandle prevAlloc) const override;
 | |
|     VkDeviceSize GetNextFreeRegionSize(VmaAllocHandle alloc) const override;
 | |
|     void Clear() override;
 | |
|     void SetAllocationUserData(VmaAllocHandle allocHandle, void* userData) override;
 | |
|     void DebugLogAllAllocations() const override;
 | |
| 
 | |
| private:
 | |
|     // According to original paper it should be preferable 4 or 5:
 | |
|     // M. Masmano, I. Ripoll, A. Crespo, and J. Real "TLSF: a New Dynamic Memory Allocator for Real-Time Systems"
 | |
|     // http://www.gii.upv.es/tlsf/files/ecrts04_tlsf.pdf
 | |
|     static const uint8_t SECOND_LEVEL_INDEX = 5;
 | |
|     static const uint16_t SMALL_BUFFER_SIZE = 256;
 | |
|     static const uint32_t INITIAL_BLOCK_ALLOC_COUNT = 16;
 | |
|     static const uint8_t MEMORY_CLASS_SHIFT = 7;
 | |
|     static const uint8_t MAX_MEMORY_CLASSES = 65 - MEMORY_CLASS_SHIFT;
 | |
| 
 | |
|     class Block
 | |
|     {
 | |
|     public:
 | |
|         VkDeviceSize offset;
 | |
|         VkDeviceSize size;
 | |
|         Block* prevPhysical;
 | |
|         Block* nextPhysical;
 | |
| 
 | |
|         void MarkFree() { prevFree = VMA_NULL; }
 | |
|         void MarkTaken() { prevFree = this; }
 | |
|         bool IsFree() const { return prevFree != this; }
 | |
|         void*& UserData() { VMA_HEAVY_ASSERT(!IsFree()); return userData; }
 | |
|         Block*& PrevFree() { return prevFree; }
 | |
|         Block*& NextFree() { VMA_HEAVY_ASSERT(IsFree()); return nextFree; }
 | |
| 
 | |
|     private:
 | |
|         Block* prevFree; // Address of the same block here indicates that block is taken
 | |
|         union
 | |
|         {
 | |
|             Block* nextFree;
 | |
|             void* userData;
 | |
|         };
 | |
|     };
 | |
| 
 | |
|     size_t m_AllocCount;
 | |
|     // Total number of free blocks besides null block
 | |
|     size_t m_BlocksFreeCount;
 | |
|     // Total size of free blocks excluding null block
 | |
|     VkDeviceSize m_BlocksFreeSize;
 | |
|     uint32_t m_IsFreeBitmap;
 | |
|     uint8_t m_MemoryClasses;
 | |
|     uint32_t m_InnerIsFreeBitmap[MAX_MEMORY_CLASSES];
 | |
|     uint32_t m_ListsCount;
 | |
|     /*
 | |
|     * 0: 0-3 lists for small buffers
 | |
|     * 1+: 0-(2^SLI-1) lists for normal buffers
 | |
|     */
 | |
|     Block** m_FreeList;
 | |
|     VmaPoolAllocator<Block> m_BlockAllocator;
 | |
|     Block* m_NullBlock;
 | |
|     VmaBlockBufferImageGranularity m_GranularityHandler;
 | |
| 
 | |
|     uint8_t SizeToMemoryClass(VkDeviceSize size) const;
 | |
|     uint16_t SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const;
 | |
|     uint32_t GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const;
 | |
|     uint32_t GetListIndex(VkDeviceSize size) const;
 | |
| 
 | |
|     void RemoveFreeBlock(Block* block);
 | |
|     void InsertFreeBlock(Block* block);
 | |
|     void MergeBlock(Block* block, Block* prev);
 | |
| 
 | |
|     Block* FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const;
 | |
|     bool CheckBlock(
 | |
|         Block& block,
 | |
|         uint32_t listIndex,
 | |
|         VkDeviceSize allocSize,
 | |
|         VkDeviceSize allocAlignment,
 | |
|         VmaSuballocationType allocType,
 | |
|         VmaAllocationRequest* pAllocationRequest);
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
 | |
| VmaBlockMetadata_TLSF::VmaBlockMetadata_TLSF(const VkAllocationCallbacks* pAllocationCallbacks,
 | |
|     VkDeviceSize bufferImageGranularity, bool isVirtual)
 | |
|     : VmaBlockMetadata(pAllocationCallbacks, bufferImageGranularity, isVirtual),
 | |
|     m_AllocCount(0),
 | |
|     m_BlocksFreeCount(0),
 | |
|     m_BlocksFreeSize(0),
 | |
|     m_IsFreeBitmap(0),
 | |
|     m_MemoryClasses(0),
 | |
|     m_ListsCount(0),
 | |
|     m_FreeList(VMA_NULL),
 | |
|     m_BlockAllocator(pAllocationCallbacks, INITIAL_BLOCK_ALLOC_COUNT),
 | |
|     m_NullBlock(VMA_NULL),
 | |
|     m_GranularityHandler(bufferImageGranularity) {}
 | |
| 
 | |
| VmaBlockMetadata_TLSF::~VmaBlockMetadata_TLSF()
 | |
| {
 | |
|     if (m_FreeList)
 | |
|         vma_delete_array(GetAllocationCallbacks(), m_FreeList, m_ListsCount);
 | |
|     m_GranularityHandler.Destroy(GetAllocationCallbacks());
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::Init(VkDeviceSize size)
 | |
| {
 | |
|     VmaBlockMetadata::Init(size);
 | |
| 
 | |
|     if (!IsVirtual())
 | |
|         m_GranularityHandler.Init(GetAllocationCallbacks(), size);
 | |
| 
 | |
|     m_NullBlock = m_BlockAllocator.Alloc();
 | |
|     m_NullBlock->size = size;
 | |
|     m_NullBlock->offset = 0;
 | |
|     m_NullBlock->prevPhysical = VMA_NULL;
 | |
|     m_NullBlock->nextPhysical = VMA_NULL;
 | |
|     m_NullBlock->MarkFree();
 | |
|     m_NullBlock->NextFree() = VMA_NULL;
 | |
|     m_NullBlock->PrevFree() = VMA_NULL;
 | |
|     uint8_t memoryClass = SizeToMemoryClass(size);
 | |
|     uint16_t sli = SizeToSecondIndex(size, memoryClass);
 | |
|     m_ListsCount = (memoryClass == 0 ? 0 : (memoryClass - 1) * (1UL << SECOND_LEVEL_INDEX) + sli) + 1;
 | |
|     if (IsVirtual())
 | |
|         m_ListsCount += 1UL << SECOND_LEVEL_INDEX;
 | |
|     else
 | |
|         m_ListsCount += 4;
 | |
| 
 | |
|     m_MemoryClasses = memoryClass + uint8_t(2);
 | |
|     memset(m_InnerIsFreeBitmap, 0, MAX_MEMORY_CLASSES * sizeof(uint32_t));
 | |
| 
 | |
|     m_FreeList = vma_new_array(GetAllocationCallbacks(), Block*, m_ListsCount);
 | |
|     memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_TLSF::Validate() const
 | |
| {
 | |
|     VMA_VALIDATE(GetSumFreeSize() <= GetSize());
 | |
| 
 | |
|     VkDeviceSize calculatedSize = m_NullBlock->size;
 | |
|     VkDeviceSize calculatedFreeSize = m_NullBlock->size;
 | |
|     size_t allocCount = 0;
 | |
|     size_t freeCount = 0;
 | |
| 
 | |
|     // Check integrity of free lists
 | |
|     for (uint32_t list = 0; list < m_ListsCount; ++list)
 | |
|     {
 | |
|         Block* block = m_FreeList[list];
 | |
|         if (block != VMA_NULL)
 | |
|         {
 | |
|             VMA_VALIDATE(block->IsFree());
 | |
|             VMA_VALIDATE(block->PrevFree() == VMA_NULL);
 | |
|             while (block->NextFree())
 | |
|             {
 | |
|                 VMA_VALIDATE(block->NextFree()->IsFree());
 | |
|                 VMA_VALIDATE(block->NextFree()->PrevFree() == block);
 | |
|                 block = block->NextFree();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VkDeviceSize nextOffset = m_NullBlock->offset;
 | |
|     auto validateCtx = m_GranularityHandler.StartValidation(GetAllocationCallbacks(), IsVirtual());
 | |
| 
 | |
|     VMA_VALIDATE(m_NullBlock->nextPhysical == VMA_NULL);
 | |
|     if (m_NullBlock->prevPhysical)
 | |
|     {
 | |
|         VMA_VALIDATE(m_NullBlock->prevPhysical->nextPhysical == m_NullBlock);
 | |
|     }
 | |
|     // Check all blocks
 | |
|     for (Block* prev = m_NullBlock->prevPhysical; prev != VMA_NULL; prev = prev->prevPhysical)
 | |
|     {
 | |
|         VMA_VALIDATE(prev->offset + prev->size == nextOffset);
 | |
|         nextOffset = prev->offset;
 | |
|         calculatedSize += prev->size;
 | |
| 
 | |
|         uint32_t listIndex = GetListIndex(prev->size);
 | |
|         if (prev->IsFree())
 | |
|         {
 | |
|             ++freeCount;
 | |
|             // Check if free block belongs to free list
 | |
|             Block* freeBlock = m_FreeList[listIndex];
 | |
|             VMA_VALIDATE(freeBlock != VMA_NULL);
 | |
| 
 | |
|             bool found = false;
 | |
|             do
 | |
|             {
 | |
|                 if (freeBlock == prev)
 | |
|                     found = true;
 | |
| 
 | |
|                 freeBlock = freeBlock->NextFree();
 | |
|             } while (!found && freeBlock != VMA_NULL);
 | |
| 
 | |
|             VMA_VALIDATE(found);
 | |
|             calculatedFreeSize += prev->size;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             ++allocCount;
 | |
|             // Check if taken block is not on a free list
 | |
|             Block* freeBlock = m_FreeList[listIndex];
 | |
|             while (freeBlock)
 | |
|             {
 | |
|                 VMA_VALIDATE(freeBlock != prev);
 | |
|                 freeBlock = freeBlock->NextFree();
 | |
|             }
 | |
| 
 | |
|             if (!IsVirtual())
 | |
|             {
 | |
|                 VMA_VALIDATE(m_GranularityHandler.Validate(validateCtx, prev->offset, prev->size));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (prev->prevPhysical)
 | |
|         {
 | |
|             VMA_VALIDATE(prev->prevPhysical->nextPhysical == prev);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (!IsVirtual())
 | |
|     {
 | |
|         VMA_VALIDATE(m_GranularityHandler.FinishValidation(validateCtx));
 | |
|     }
 | |
| 
 | |
|     VMA_VALIDATE(nextOffset == 0);
 | |
|     VMA_VALIDATE(calculatedSize == GetSize());
 | |
|     VMA_VALIDATE(calculatedFreeSize == GetSumFreeSize());
 | |
|     VMA_VALIDATE(allocCount == m_AllocCount);
 | |
|     VMA_VALIDATE(freeCount == m_BlocksFreeCount);
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::AddDetailedStatistics(VmaDetailedStatistics& inoutStats) const
 | |
| {
 | |
|     inoutStats.statistics.blockCount++;
 | |
|     inoutStats.statistics.blockBytes += GetSize();
 | |
|     if (m_NullBlock->size > 0)
 | |
|         VmaAddDetailedStatisticsUnusedRange(inoutStats, m_NullBlock->size);
 | |
| 
 | |
|     for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | |
|     {
 | |
|         if (block->IsFree())
 | |
|             VmaAddDetailedStatisticsUnusedRange(inoutStats, block->size);
 | |
|         else
 | |
|             VmaAddDetailedStatisticsAllocation(inoutStats, block->size);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::AddStatistics(VmaStatistics& inoutStats) const
 | |
| {
 | |
|     inoutStats.blockCount++;
 | |
|     inoutStats.allocationCount += (uint32_t)m_AllocCount;
 | |
|     inoutStats.blockBytes += GetSize();
 | |
|     inoutStats.allocationBytes += GetSize() - GetSumFreeSize();
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockMetadata_TLSF::PrintDetailedMap(class VmaJsonWriter& json) const
 | |
| {
 | |
|     size_t blockCount = m_AllocCount + m_BlocksFreeCount;
 | |
|     VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
 | |
|     VmaVector<Block*, VmaStlAllocator<Block*>> blockList(blockCount, allocator);
 | |
| 
 | |
|     size_t i = blockCount;
 | |
|     for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | |
|     {
 | |
|         blockList[--i] = block;
 | |
|     }
 | |
|     VMA_ASSERT(i == 0);
 | |
| 
 | |
|     VmaDetailedStatistics stats;
 | |
|     VmaClearDetailedStatistics(stats);
 | |
|     AddDetailedStatistics(stats);
 | |
| 
 | |
|     PrintDetailedMap_Begin(json,
 | |
|         stats.statistics.blockBytes - stats.statistics.allocationBytes,
 | |
|         stats.statistics.allocationCount,
 | |
|         stats.unusedRangeCount);
 | |
| 
 | |
|     for (; i < blockCount; ++i)
 | |
|     {
 | |
|         Block* block = blockList[i];
 | |
|         if (block->IsFree())
 | |
|             PrintDetailedMap_UnusedRange(json, block->offset, block->size);
 | |
|         else
 | |
|             PrintDetailedMap_Allocation(json, block->offset, block->size, block->UserData());
 | |
|     }
 | |
|     if (m_NullBlock->size > 0)
 | |
|         PrintDetailedMap_UnusedRange(json, m_NullBlock->offset, m_NullBlock->size);
 | |
| 
 | |
|     PrintDetailedMap_End(json);
 | |
| }
 | |
| #endif
 | |
| 
 | |
| bool VmaBlockMetadata_TLSF::CreateAllocationRequest(
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     bool upperAddress,
 | |
|     VmaSuballocationType allocType,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(allocSize > 0 && "Cannot allocate empty block!");
 | |
|     VMA_ASSERT(!upperAddress && "VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT can be used only with linear algorithm.");
 | |
| 
 | |
|     // For small granularity round up
 | |
|     if (!IsVirtual())
 | |
|         m_GranularityHandler.RoundupAllocRequest(allocType, allocSize, allocAlignment);
 | |
| 
 | |
|     allocSize += GetDebugMargin();
 | |
|     // Quick check for too small pool
 | |
|     if (allocSize > GetSumFreeSize())
 | |
|         return false;
 | |
| 
 | |
|     // If no free blocks in pool then check only null block
 | |
|     if (m_BlocksFreeCount == 0)
 | |
|         return CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest);
 | |
| 
 | |
|     // Round up to the next block
 | |
|     VkDeviceSize sizeForNextList = allocSize;
 | |
|     VkDeviceSize smallSizeStep = VkDeviceSize(SMALL_BUFFER_SIZE / (IsVirtual() ? 1 << SECOND_LEVEL_INDEX : 4));
 | |
|     if (allocSize > SMALL_BUFFER_SIZE)
 | |
|     {
 | |
|         sizeForNextList += (1ULL << (VMA_BITSCAN_MSB(allocSize) - SECOND_LEVEL_INDEX));
 | |
|     }
 | |
|     else if (allocSize > SMALL_BUFFER_SIZE - smallSizeStep)
 | |
|         sizeForNextList = SMALL_BUFFER_SIZE + 1;
 | |
|     else
 | |
|         sizeForNextList += smallSizeStep;
 | |
| 
 | |
|     uint32_t nextListIndex = m_ListsCount;
 | |
|     uint32_t prevListIndex = m_ListsCount;
 | |
|     Block* nextListBlock = VMA_NULL;
 | |
|     Block* prevListBlock = VMA_NULL;
 | |
| 
 | |
|     // Check blocks according to strategies
 | |
|     if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT)
 | |
|     {
 | |
|         // Quick check for larger block first
 | |
|         nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
 | |
|         if (nextListBlock != VMA_NULL && CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|             return true;
 | |
| 
 | |
|         // If not fitted then null block
 | |
|         if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|             return true;
 | |
| 
 | |
|         // Null block failed, search larger bucket
 | |
|         while (nextListBlock)
 | |
|         {
 | |
|             if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|                 return true;
 | |
|             nextListBlock = nextListBlock->NextFree();
 | |
|         }
 | |
| 
 | |
|         // Failed again, check best fit bucket
 | |
|         prevListBlock = FindFreeBlock(allocSize, prevListIndex);
 | |
|         while (prevListBlock)
 | |
|         {
 | |
|             if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|                 return true;
 | |
|             prevListBlock = prevListBlock->NextFree();
 | |
|         }
 | |
|     }
 | |
|     else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_MEMORY_BIT)
 | |
|     {
 | |
|         // Check best fit bucket
 | |
|         prevListBlock = FindFreeBlock(allocSize, prevListIndex);
 | |
|         while (prevListBlock)
 | |
|         {
 | |
|             if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|                 return true;
 | |
|             prevListBlock = prevListBlock->NextFree();
 | |
|         }
 | |
| 
 | |
|         // If failed check null block
 | |
|         if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|             return true;
 | |
| 
 | |
|         // Check larger bucket
 | |
|         nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
 | |
|         while (nextListBlock)
 | |
|         {
 | |
|             if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|                 return true;
 | |
|             nextListBlock = nextListBlock->NextFree();
 | |
|         }
 | |
|     }
 | |
|     else if (strategy & VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT )
 | |
|     {
 | |
|         // Perform search from the start
 | |
|         VmaStlAllocator<Block*> allocator(GetAllocationCallbacks());
 | |
|         VmaVector<Block*, VmaStlAllocator<Block*>> blockList(m_BlocksFreeCount, allocator);
 | |
| 
 | |
|         size_t i = m_BlocksFreeCount;
 | |
|         for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | |
|         {
 | |
|             if (block->IsFree() && block->size >= allocSize)
 | |
|                 blockList[--i] = block;
 | |
|         }
 | |
| 
 | |
|         for (; i < m_BlocksFreeCount; ++i)
 | |
|         {
 | |
|             Block& block = *blockList[i];
 | |
|             if (CheckBlock(block, GetListIndex(block.size), allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|                 return true;
 | |
|         }
 | |
| 
 | |
|         // If failed check null block
 | |
|         if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|             return true;
 | |
| 
 | |
|         // Whole range searched, no more memory
 | |
|         return false;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Check larger bucket
 | |
|         nextListBlock = FindFreeBlock(sizeForNextList, nextListIndex);
 | |
|         while (nextListBlock)
 | |
|         {
 | |
|             if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|                 return true;
 | |
|             nextListBlock = nextListBlock->NextFree();
 | |
|         }
 | |
| 
 | |
|         // If failed check null block
 | |
|         if (CheckBlock(*m_NullBlock, m_ListsCount, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|             return true;
 | |
| 
 | |
|         // Check best fit bucket
 | |
|         prevListBlock = FindFreeBlock(allocSize, prevListIndex);
 | |
|         while (prevListBlock)
 | |
|         {
 | |
|             if (CheckBlock(*prevListBlock, prevListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|                 return true;
 | |
|             prevListBlock = prevListBlock->NextFree();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Worst case, full search has to be done
 | |
|     while (++nextListIndex < m_ListsCount)
 | |
|     {
 | |
|         nextListBlock = m_FreeList[nextListIndex];
 | |
|         while (nextListBlock)
 | |
|         {
 | |
|             if (CheckBlock(*nextListBlock, nextListIndex, allocSize, allocAlignment, allocType, pAllocationRequest))
 | |
|                 return true;
 | |
|             nextListBlock = nextListBlock->NextFree();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // No more memory sadly
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockMetadata_TLSF::CheckCorruption(const void* pBlockData)
 | |
| {
 | |
|     for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | |
|     {
 | |
|         if (!block->IsFree())
 | |
|         {
 | |
|             if (!VmaValidateMagicValue(pBlockData, block->offset + block->size))
 | |
|             {
 | |
|                 VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER VALIDATED ALLOCATION!");
 | |
|                 return VK_ERROR_UNKNOWN_COPY;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::Alloc(
 | |
|     const VmaAllocationRequest& request,
 | |
|     VmaSuballocationType type,
 | |
|     void* userData)
 | |
| {
 | |
|     VMA_ASSERT(request.type == VmaAllocationRequestType::TLSF);
 | |
| 
 | |
|     // Get block and pop it from the free list
 | |
|     Block* currentBlock = (Block*)request.allocHandle;
 | |
|     VkDeviceSize offset = request.algorithmData;
 | |
|     VMA_ASSERT(currentBlock != VMA_NULL);
 | |
|     VMA_ASSERT(currentBlock->offset <= offset);
 | |
| 
 | |
|     if (currentBlock != m_NullBlock)
 | |
|         RemoveFreeBlock(currentBlock);
 | |
| 
 | |
|     VkDeviceSize debugMargin = GetDebugMargin();
 | |
|     VkDeviceSize misssingAlignment = offset - currentBlock->offset;
 | |
| 
 | |
|     // Append missing alignment to prev block or create new one
 | |
|     if (misssingAlignment)
 | |
|     {
 | |
|         Block* prevBlock = currentBlock->prevPhysical;
 | |
|         VMA_ASSERT(prevBlock != VMA_NULL && "There should be no missing alignment at offset 0!");
 | |
| 
 | |
|         if (prevBlock->IsFree() && prevBlock->size != debugMargin)
 | |
|         {
 | |
|             uint32_t oldList = GetListIndex(prevBlock->size);
 | |
|             prevBlock->size += misssingAlignment;
 | |
|             // Check if new size crosses list bucket
 | |
|             if (oldList != GetListIndex(prevBlock->size))
 | |
|             {
 | |
|                 prevBlock->size -= misssingAlignment;
 | |
|                 RemoveFreeBlock(prevBlock);
 | |
|                 prevBlock->size += misssingAlignment;
 | |
|                 InsertFreeBlock(prevBlock);
 | |
|             }
 | |
|             else
 | |
|                 m_BlocksFreeSize += misssingAlignment;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             Block* newBlock = m_BlockAllocator.Alloc();
 | |
|             currentBlock->prevPhysical = newBlock;
 | |
|             prevBlock->nextPhysical = newBlock;
 | |
|             newBlock->prevPhysical = prevBlock;
 | |
|             newBlock->nextPhysical = currentBlock;
 | |
|             newBlock->size = misssingAlignment;
 | |
|             newBlock->offset = currentBlock->offset;
 | |
|             newBlock->MarkTaken();
 | |
| 
 | |
|             InsertFreeBlock(newBlock);
 | |
|         }
 | |
| 
 | |
|         currentBlock->size -= misssingAlignment;
 | |
|         currentBlock->offset += misssingAlignment;
 | |
|     }
 | |
| 
 | |
|     VkDeviceSize size = request.size + debugMargin;
 | |
|     if (currentBlock->size == size)
 | |
|     {
 | |
|         if (currentBlock == m_NullBlock)
 | |
|         {
 | |
|             // Setup new null block
 | |
|             m_NullBlock = m_BlockAllocator.Alloc();
 | |
|             m_NullBlock->size = 0;
 | |
|             m_NullBlock->offset = currentBlock->offset + size;
 | |
|             m_NullBlock->prevPhysical = currentBlock;
 | |
|             m_NullBlock->nextPhysical = VMA_NULL;
 | |
|             m_NullBlock->MarkFree();
 | |
|             m_NullBlock->PrevFree() = VMA_NULL;
 | |
|             m_NullBlock->NextFree() = VMA_NULL;
 | |
|             currentBlock->nextPhysical = m_NullBlock;
 | |
|             currentBlock->MarkTaken();
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(currentBlock->size > size && "Proper block already found, shouldn't find smaller one!");
 | |
| 
 | |
|         // Create new free block
 | |
|         Block* newBlock = m_BlockAllocator.Alloc();
 | |
|         newBlock->size = currentBlock->size - size;
 | |
|         newBlock->offset = currentBlock->offset + size;
 | |
|         newBlock->prevPhysical = currentBlock;
 | |
|         newBlock->nextPhysical = currentBlock->nextPhysical;
 | |
|         currentBlock->nextPhysical = newBlock;
 | |
|         currentBlock->size = size;
 | |
| 
 | |
|         if (currentBlock == m_NullBlock)
 | |
|         {
 | |
|             m_NullBlock = newBlock;
 | |
|             m_NullBlock->MarkFree();
 | |
|             m_NullBlock->NextFree() = VMA_NULL;
 | |
|             m_NullBlock->PrevFree() = VMA_NULL;
 | |
|             currentBlock->MarkTaken();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             newBlock->nextPhysical->prevPhysical = newBlock;
 | |
|             newBlock->MarkTaken();
 | |
|             InsertFreeBlock(newBlock);
 | |
|         }
 | |
|     }
 | |
|     currentBlock->UserData() = userData;
 | |
| 
 | |
|     if (debugMargin > 0)
 | |
|     {
 | |
|         currentBlock->size -= debugMargin;
 | |
|         Block* newBlock = m_BlockAllocator.Alloc();
 | |
|         newBlock->size = debugMargin;
 | |
|         newBlock->offset = currentBlock->offset + currentBlock->size;
 | |
|         newBlock->prevPhysical = currentBlock;
 | |
|         newBlock->nextPhysical = currentBlock->nextPhysical;
 | |
|         newBlock->MarkTaken();
 | |
|         currentBlock->nextPhysical->prevPhysical = newBlock;
 | |
|         currentBlock->nextPhysical = newBlock;
 | |
|         InsertFreeBlock(newBlock);
 | |
|     }
 | |
| 
 | |
|     if (!IsVirtual())
 | |
|         m_GranularityHandler.AllocPages((uint8_t)(uintptr_t)request.customData,
 | |
|             currentBlock->offset, currentBlock->size);
 | |
|     ++m_AllocCount;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::Free(VmaAllocHandle allocHandle)
 | |
| {
 | |
|     Block* block = (Block*)allocHandle;
 | |
|     Block* next = block->nextPhysical;
 | |
|     VMA_ASSERT(!block->IsFree() && "Block is already free!");
 | |
| 
 | |
|     if (!IsVirtual())
 | |
|         m_GranularityHandler.FreePages(block->offset, block->size);
 | |
|     --m_AllocCount;
 | |
| 
 | |
|     VkDeviceSize debugMargin = GetDebugMargin();
 | |
|     if (debugMargin > 0)
 | |
|     {
 | |
|         RemoveFreeBlock(next);
 | |
|         MergeBlock(next, block);
 | |
|         block = next;
 | |
|         next = next->nextPhysical;
 | |
|     }
 | |
| 
 | |
|     // Try merging
 | |
|     Block* prev = block->prevPhysical;
 | |
|     if (prev != VMA_NULL && prev->IsFree() && prev->size != debugMargin)
 | |
|     {
 | |
|         RemoveFreeBlock(prev);
 | |
|         MergeBlock(block, prev);
 | |
|     }
 | |
| 
 | |
|     if (!next->IsFree())
 | |
|         InsertFreeBlock(block);
 | |
|     else if (next == m_NullBlock)
 | |
|         MergeBlock(m_NullBlock, block);
 | |
|     else
 | |
|     {
 | |
|         RemoveFreeBlock(next);
 | |
|         MergeBlock(next, block);
 | |
|         InsertFreeBlock(next);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::GetAllocationInfo(VmaAllocHandle allocHandle, VmaVirtualAllocationInfo& outInfo)
 | |
| {
 | |
|     Block* block = (Block*)allocHandle;
 | |
|     VMA_ASSERT(!block->IsFree() && "Cannot get allocation info for free block!");
 | |
|     outInfo.offset = block->offset;
 | |
|     outInfo.size = block->size;
 | |
|     outInfo.pUserData = block->UserData();
 | |
| }
 | |
| 
 | |
| void* VmaBlockMetadata_TLSF::GetAllocationUserData(VmaAllocHandle allocHandle) const
 | |
| {
 | |
|     Block* block = (Block*)allocHandle;
 | |
|     VMA_ASSERT(!block->IsFree() && "Cannot get user data for free block!");
 | |
|     return block->UserData();
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaBlockMetadata_TLSF::GetAllocationListBegin() const
 | |
| {
 | |
|     if (m_AllocCount == 0)
 | |
|         return VK_NULL_HANDLE;
 | |
| 
 | |
|     for (Block* block = m_NullBlock->prevPhysical; block; block = block->prevPhysical)
 | |
|     {
 | |
|         if (!block->IsFree())
 | |
|             return (VmaAllocHandle)block;
 | |
|     }
 | |
|     VMA_ASSERT(false && "If m_AllocCount > 0 then should find any allocation!");
 | |
|     return VK_NULL_HANDLE;
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaBlockMetadata_TLSF::GetNextAllocation(VmaAllocHandle prevAlloc) const
 | |
| {
 | |
|     Block* startBlock = (Block*)prevAlloc;
 | |
|     VMA_ASSERT(!startBlock->IsFree() && "Incorrect block!");
 | |
| 
 | |
|     for (Block* block = startBlock->prevPhysical; block; block = block->prevPhysical)
 | |
|     {
 | |
|         if (!block->IsFree())
 | |
|             return (VmaAllocHandle)block;
 | |
|     }
 | |
|     return VK_NULL_HANDLE;
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaBlockMetadata_TLSF::GetNextFreeRegionSize(VmaAllocHandle alloc) const
 | |
| {
 | |
|     Block* block = (Block*)alloc;
 | |
|     VMA_ASSERT(!block->IsFree() && "Incorrect block!");
 | |
| 
 | |
|     if (block->prevPhysical)
 | |
|         return block->prevPhysical->IsFree() ? block->prevPhysical->size : 0;
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::Clear()
 | |
| {
 | |
|     m_AllocCount = 0;
 | |
|     m_BlocksFreeCount = 0;
 | |
|     m_BlocksFreeSize = 0;
 | |
|     m_IsFreeBitmap = 0;
 | |
|     m_NullBlock->offset = 0;
 | |
|     m_NullBlock->size = GetSize();
 | |
|     Block* block = m_NullBlock->prevPhysical;
 | |
|     m_NullBlock->prevPhysical = VMA_NULL;
 | |
|     while (block)
 | |
|     {
 | |
|         Block* prev = block->prevPhysical;
 | |
|         m_BlockAllocator.Free(block);
 | |
|         block = prev;
 | |
|     }
 | |
|     memset(m_FreeList, 0, m_ListsCount * sizeof(Block*));
 | |
|     memset(m_InnerIsFreeBitmap, 0, m_MemoryClasses * sizeof(uint32_t));
 | |
|     m_GranularityHandler.Clear();
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::SetAllocationUserData(VmaAllocHandle allocHandle, void* userData)
 | |
| {
 | |
|     Block* block = (Block*)allocHandle;
 | |
|     VMA_ASSERT(!block->IsFree() && "Trying to set user data for not allocated block!");
 | |
|     block->UserData() = userData;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::DebugLogAllAllocations() const
 | |
| {
 | |
|     for (Block* block = m_NullBlock->prevPhysical; block != VMA_NULL; block = block->prevPhysical)
 | |
|         if (!block->IsFree())
 | |
|             DebugLogAllocation(block->offset, block->size, block->UserData());
 | |
| }
 | |
| 
 | |
| uint8_t VmaBlockMetadata_TLSF::SizeToMemoryClass(VkDeviceSize size) const
 | |
| {
 | |
|     if (size > SMALL_BUFFER_SIZE)
 | |
|         return uint8_t(VMA_BITSCAN_MSB(size) - MEMORY_CLASS_SHIFT);
 | |
|     return 0;
 | |
| }
 | |
| 
 | |
| uint16_t VmaBlockMetadata_TLSF::SizeToSecondIndex(VkDeviceSize size, uint8_t memoryClass) const
 | |
| {
 | |
|     if (memoryClass == 0)
 | |
|     {
 | |
|         if (IsVirtual())
 | |
|             return static_cast<uint16_t>((size - 1) / 8);
 | |
|         else
 | |
|             return static_cast<uint16_t>((size - 1) / 64);
 | |
|     }
 | |
|     return static_cast<uint16_t>((size >> (memoryClass + MEMORY_CLASS_SHIFT - SECOND_LEVEL_INDEX)) ^ (1U << SECOND_LEVEL_INDEX));
 | |
| }
 | |
| 
 | |
| uint32_t VmaBlockMetadata_TLSF::GetListIndex(uint8_t memoryClass, uint16_t secondIndex) const
 | |
| {
 | |
|     if (memoryClass == 0)
 | |
|         return secondIndex;
 | |
| 
 | |
|     const uint32_t index = static_cast<uint32_t>(memoryClass - 1) * (1 << SECOND_LEVEL_INDEX) + secondIndex;
 | |
|     if (IsVirtual())
 | |
|         return index + (1 << SECOND_LEVEL_INDEX);
 | |
|     else
 | |
|         return index + 4;
 | |
| }
 | |
| 
 | |
| uint32_t VmaBlockMetadata_TLSF::GetListIndex(VkDeviceSize size) const
 | |
| {
 | |
|     uint8_t memoryClass = SizeToMemoryClass(size);
 | |
|     return GetListIndex(memoryClass, SizeToSecondIndex(size, memoryClass));
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::RemoveFreeBlock(Block* block)
 | |
| {
 | |
|     VMA_ASSERT(block != m_NullBlock);
 | |
|     VMA_ASSERT(block->IsFree());
 | |
| 
 | |
|     if (block->NextFree() != VMA_NULL)
 | |
|         block->NextFree()->PrevFree() = block->PrevFree();
 | |
|     if (block->PrevFree() != VMA_NULL)
 | |
|         block->PrevFree()->NextFree() = block->NextFree();
 | |
|     else
 | |
|     {
 | |
|         uint8_t memClass = SizeToMemoryClass(block->size);
 | |
|         uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
 | |
|         uint32_t index = GetListIndex(memClass, secondIndex);
 | |
|         VMA_ASSERT(m_FreeList[index] == block);
 | |
|         m_FreeList[index] = block->NextFree();
 | |
|         if (block->NextFree() == VMA_NULL)
 | |
|         {
 | |
|             m_InnerIsFreeBitmap[memClass] &= ~(1U << secondIndex);
 | |
|             if (m_InnerIsFreeBitmap[memClass] == 0)
 | |
|                 m_IsFreeBitmap &= ~(1UL << memClass);
 | |
|         }
 | |
|     }
 | |
|     block->MarkTaken();
 | |
|     block->UserData() = VMA_NULL;
 | |
|     --m_BlocksFreeCount;
 | |
|     m_BlocksFreeSize -= block->size;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::InsertFreeBlock(Block* block)
 | |
| {
 | |
|     VMA_ASSERT(block != m_NullBlock);
 | |
|     VMA_ASSERT(!block->IsFree() && "Cannot insert block twice!");
 | |
| 
 | |
|     uint8_t memClass = SizeToMemoryClass(block->size);
 | |
|     uint16_t secondIndex = SizeToSecondIndex(block->size, memClass);
 | |
|     uint32_t index = GetListIndex(memClass, secondIndex);
 | |
|     VMA_ASSERT(index < m_ListsCount);
 | |
|     block->PrevFree() = VMA_NULL;
 | |
|     block->NextFree() = m_FreeList[index];
 | |
|     m_FreeList[index] = block;
 | |
|     if (block->NextFree() != VMA_NULL)
 | |
|         block->NextFree()->PrevFree() = block;
 | |
|     else
 | |
|     {
 | |
|         m_InnerIsFreeBitmap[memClass] |= 1U << secondIndex;
 | |
|         m_IsFreeBitmap |= 1UL << memClass;
 | |
|     }
 | |
|     ++m_BlocksFreeCount;
 | |
|     m_BlocksFreeSize += block->size;
 | |
| }
 | |
| 
 | |
| void VmaBlockMetadata_TLSF::MergeBlock(Block* block, Block* prev)
 | |
| {
 | |
|     VMA_ASSERT(block->prevPhysical == prev && "Cannot merge separate physical regions!");
 | |
|     VMA_ASSERT(!prev->IsFree() && "Cannot merge block that belongs to free list!");
 | |
| 
 | |
|     block->offset = prev->offset;
 | |
|     block->size += prev->size;
 | |
|     block->prevPhysical = prev->prevPhysical;
 | |
|     if (block->prevPhysical)
 | |
|         block->prevPhysical->nextPhysical = block;
 | |
|     m_BlockAllocator.Free(prev);
 | |
| }
 | |
| 
 | |
| VmaBlockMetadata_TLSF::Block* VmaBlockMetadata_TLSF::FindFreeBlock(VkDeviceSize size, uint32_t& listIndex) const
 | |
| {
 | |
|     uint8_t memoryClass = SizeToMemoryClass(size);
 | |
|     uint32_t innerFreeMap = m_InnerIsFreeBitmap[memoryClass] & (~0U << SizeToSecondIndex(size, memoryClass));
 | |
|     if (!innerFreeMap)
 | |
|     {
 | |
|         // Check higher levels for available blocks
 | |
|         uint32_t freeMap = m_IsFreeBitmap & (~0UL << (memoryClass + 1));
 | |
|         if (!freeMap)
 | |
|             return VMA_NULL; // No more memory available
 | |
| 
 | |
|         // Find lowest free region
 | |
|         memoryClass = VMA_BITSCAN_LSB(freeMap);
 | |
|         innerFreeMap = m_InnerIsFreeBitmap[memoryClass];
 | |
|         VMA_ASSERT(innerFreeMap != 0);
 | |
|     }
 | |
|     // Find lowest free subregion
 | |
|     listIndex = GetListIndex(memoryClass, VMA_BITSCAN_LSB(innerFreeMap));
 | |
|     VMA_ASSERT(m_FreeList[listIndex]);
 | |
|     return m_FreeList[listIndex];
 | |
| }
 | |
| 
 | |
| bool VmaBlockMetadata_TLSF::CheckBlock(
 | |
|     Block& block,
 | |
|     uint32_t listIndex,
 | |
|     VkDeviceSize allocSize,
 | |
|     VkDeviceSize allocAlignment,
 | |
|     VmaSuballocationType allocType,
 | |
|     VmaAllocationRequest* pAllocationRequest)
 | |
| {
 | |
|     VMA_ASSERT(block.IsFree() && "Block is already taken!");
 | |
| 
 | |
|     VkDeviceSize alignedOffset = VmaAlignUp(block.offset, allocAlignment);
 | |
|     if (block.size < allocSize + alignedOffset - block.offset)
 | |
|         return false;
 | |
| 
 | |
|     // Check for granularity conflicts
 | |
|     if (!IsVirtual() &&
 | |
|         m_GranularityHandler.CheckConflictAndAlignUp(alignedOffset, allocSize, block.offset, block.size, allocType))
 | |
|         return false;
 | |
| 
 | |
|     // Alloc successful
 | |
|     pAllocationRequest->type = VmaAllocationRequestType::TLSF;
 | |
|     pAllocationRequest->allocHandle = (VmaAllocHandle)█
 | |
|     pAllocationRequest->size = allocSize - GetDebugMargin();
 | |
|     pAllocationRequest->customData = (void*)allocType;
 | |
|     pAllocationRequest->algorithmData = alignedOffset;
 | |
| 
 | |
|     // Place block at the start of list if it's normal block
 | |
|     if (listIndex != m_ListsCount && block.PrevFree())
 | |
|     {
 | |
|         block.PrevFree()->NextFree() = block.NextFree();
 | |
|         if (block.NextFree())
 | |
|             block.NextFree()->PrevFree() = block.PrevFree();
 | |
|         block.PrevFree() = VMA_NULL;
 | |
|         block.NextFree() = m_FreeList[listIndex];
 | |
|         m_FreeList[listIndex] = █
 | |
|         if (block.NextFree())
 | |
|             block.NextFree()->PrevFree() = █
 | |
|     }
 | |
| 
 | |
|     return true;
 | |
| }
 | |
| #endif // _VMA_BLOCK_METADATA_TLSF_FUNCTIONS
 | |
| #endif // _VMA_BLOCK_METADATA_TLSF
 | |
| 
 | |
| #ifndef _VMA_BLOCK_VECTOR
 | |
| /*
 | |
| Sequence of VmaDeviceMemoryBlock. Represents memory blocks allocated for a specific
 | |
| Vulkan memory type.
 | |
| 
 | |
| Synchronized internally with a mutex.
 | |
| */
 | |
| class VmaBlockVector
 | |
| {
 | |
|     friend struct VmaDefragmentationContext_T;
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaBlockVector)
 | |
| public:
 | |
|     VmaBlockVector(
 | |
|         VmaAllocator hAllocator,
 | |
|         VmaPool hParentPool,
 | |
|         uint32_t memoryTypeIndex,
 | |
|         VkDeviceSize preferredBlockSize,
 | |
|         size_t minBlockCount,
 | |
|         size_t maxBlockCount,
 | |
|         VkDeviceSize bufferImageGranularity,
 | |
|         bool explicitBlockSize,
 | |
|         uint32_t algorithm,
 | |
|         float priority,
 | |
|         VkDeviceSize minAllocationAlignment,
 | |
|         void* pMemoryAllocateNext);
 | |
|     ~VmaBlockVector();
 | |
| 
 | |
|     VmaAllocator GetAllocator() const { return m_hAllocator; }
 | |
|     VmaPool GetParentPool() const { return m_hParentPool; }
 | |
|     bool IsCustomPool() const { return m_hParentPool != VMA_NULL; }
 | |
|     uint32_t GetMemoryTypeIndex() const { return m_MemoryTypeIndex; }
 | |
|     VkDeviceSize GetPreferredBlockSize() const { return m_PreferredBlockSize; }
 | |
|     VkDeviceSize GetBufferImageGranularity() const { return m_BufferImageGranularity; }
 | |
|     uint32_t GetAlgorithm() const { return m_Algorithm; }
 | |
|     bool HasExplicitBlockSize() const { return m_ExplicitBlockSize; }
 | |
|     float GetPriority() const { return m_Priority; }
 | |
|     const void* GetAllocationNextPtr() const { return m_pMemoryAllocateNext; }
 | |
|     // To be used only while the m_Mutex is locked. Used during defragmentation.
 | |
|     size_t GetBlockCount() const { return m_Blocks.size(); }
 | |
|     // To be used only while the m_Mutex is locked. Used during defragmentation.
 | |
|     VmaDeviceMemoryBlock* GetBlock(size_t index) const { return m_Blocks[index]; }
 | |
|     VMA_RW_MUTEX &GetMutex() { return m_Mutex; }
 | |
| 
 | |
|     VkResult CreateMinBlocks();
 | |
|     void AddStatistics(VmaStatistics& inoutStats);
 | |
|     void AddDetailedStatistics(VmaDetailedStatistics& inoutStats);
 | |
|     bool IsEmpty();
 | |
|     bool IsCorruptionDetectionEnabled() const;
 | |
| 
 | |
|     VkResult Allocate(
 | |
|         VkDeviceSize size,
 | |
|         VkDeviceSize alignment,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaSuballocationType suballocType,
 | |
|         size_t allocationCount,
 | |
|         VmaAllocation* pAllocations);
 | |
| 
 | |
|     void Free(const VmaAllocation hAllocation);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap(class VmaJsonWriter& json);
 | |
| #endif
 | |
| 
 | |
|     VkResult CheckCorruption();
 | |
| 
 | |
| private:
 | |
|     const VmaAllocator m_hAllocator;
 | |
|     const VmaPool m_hParentPool;
 | |
|     const uint32_t m_MemoryTypeIndex;
 | |
|     const VkDeviceSize m_PreferredBlockSize;
 | |
|     const size_t m_MinBlockCount;
 | |
|     const size_t m_MaxBlockCount;
 | |
|     const VkDeviceSize m_BufferImageGranularity;
 | |
|     const bool m_ExplicitBlockSize;
 | |
|     const uint32_t m_Algorithm;
 | |
|     const float m_Priority;
 | |
|     const VkDeviceSize m_MinAllocationAlignment;
 | |
| 
 | |
|     void* const m_pMemoryAllocateNext;
 | |
|     VMA_RW_MUTEX m_Mutex;
 | |
|     // Incrementally sorted by sumFreeSize, ascending.
 | |
|     VmaVector<VmaDeviceMemoryBlock*, VmaStlAllocator<VmaDeviceMemoryBlock*>> m_Blocks;
 | |
|     uint32_t m_NextBlockId;
 | |
|     bool m_IncrementalSort = true;
 | |
| 
 | |
|     void SetIncrementalSort(bool val) { m_IncrementalSort = val; }
 | |
| 
 | |
|     VkDeviceSize CalcMaxBlockSize() const;
 | |
|     // Finds and removes given block from vector.
 | |
|     void Remove(VmaDeviceMemoryBlock* pBlock);
 | |
|     // Performs single step in sorting m_Blocks. They may not be fully sorted
 | |
|     // after this call.
 | |
|     void IncrementallySortBlocks();
 | |
|     void SortByFreeSize();
 | |
| 
 | |
|     VkResult AllocatePage(
 | |
|         VkDeviceSize size,
 | |
|         VkDeviceSize alignment,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaSuballocationType suballocType,
 | |
|         VmaAllocation* pAllocation);
 | |
| 
 | |
|     VkResult AllocateFromBlock(
 | |
|         VmaDeviceMemoryBlock* pBlock,
 | |
|         VkDeviceSize size,
 | |
|         VkDeviceSize alignment,
 | |
|         VmaAllocationCreateFlags allocFlags,
 | |
|         void* pUserData,
 | |
|         VmaSuballocationType suballocType,
 | |
|         uint32_t strategy,
 | |
|         VmaAllocation* pAllocation);
 | |
| 
 | |
|     VkResult CommitAllocationRequest(
 | |
|         VmaAllocationRequest& allocRequest,
 | |
|         VmaDeviceMemoryBlock* pBlock,
 | |
|         VkDeviceSize alignment,
 | |
|         VmaAllocationCreateFlags allocFlags,
 | |
|         void* pUserData,
 | |
|         VmaSuballocationType suballocType,
 | |
|         VmaAllocation* pAllocation);
 | |
| 
 | |
|     VkResult CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex);
 | |
|     bool HasEmptyBlock();
 | |
| };
 | |
| #endif // _VMA_BLOCK_VECTOR
 | |
| 
 | |
| #ifndef _VMA_DEFRAGMENTATION_CONTEXT
 | |
| struct VmaDefragmentationContext_T
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaDefragmentationContext_T)
 | |
| public:
 | |
|     VmaDefragmentationContext_T(
 | |
|         VmaAllocator hAllocator,
 | |
|         const VmaDefragmentationInfo& info);
 | |
|     ~VmaDefragmentationContext_T();
 | |
| 
 | |
|     void GetStats(VmaDefragmentationStats& outStats) { outStats = m_GlobalStats; }
 | |
| 
 | |
|     VkResult DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo);
 | |
|     VkResult DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo);
 | |
| 
 | |
| private:
 | |
|     // Max number of allocations to ignore due to size constraints before ending single pass
 | |
|     static const uint8_t MAX_ALLOCS_TO_IGNORE = 16;
 | |
|     enum class CounterStatus { Pass, Ignore, End };
 | |
| 
 | |
|     struct FragmentedBlock
 | |
|     {
 | |
|         uint32_t data;
 | |
|         VmaDeviceMemoryBlock* block;
 | |
|     };
 | |
|     struct StateBalanced
 | |
|     {
 | |
|         VkDeviceSize avgFreeSize = 0;
 | |
|         VkDeviceSize avgAllocSize = UINT64_MAX;
 | |
|     };
 | |
|     struct StateExtensive
 | |
|     {
 | |
|         enum class Operation : uint8_t
 | |
|         {
 | |
|             FindFreeBlockBuffer, FindFreeBlockTexture, FindFreeBlockAll,
 | |
|             MoveBuffers, MoveTextures, MoveAll,
 | |
|             Cleanup, Done
 | |
|         };
 | |
| 
 | |
|         Operation operation = Operation::FindFreeBlockTexture;
 | |
|         size_t firstFreeBlock = SIZE_MAX;
 | |
|     };
 | |
|     struct MoveAllocationData
 | |
|     {
 | |
|         VkDeviceSize size;
 | |
|         VkDeviceSize alignment;
 | |
|         VmaSuballocationType type;
 | |
|         VmaAllocationCreateFlags flags;
 | |
|         VmaDefragmentationMove move = {};
 | |
|     };
 | |
| 
 | |
|     const VkDeviceSize m_MaxPassBytes;
 | |
|     const uint32_t m_MaxPassAllocations;
 | |
|     const PFN_vmaCheckDefragmentationBreakFunction m_BreakCallback;
 | |
|     void* m_BreakCallbackUserData;
 | |
| 
 | |
|     VmaStlAllocator<VmaDefragmentationMove> m_MoveAllocator;
 | |
|     VmaVector<VmaDefragmentationMove, VmaStlAllocator<VmaDefragmentationMove>> m_Moves;
 | |
| 
 | |
|     uint8_t m_IgnoredAllocs = 0;
 | |
|     uint32_t m_Algorithm;
 | |
|     uint32_t m_BlockVectorCount;
 | |
|     VmaBlockVector* m_PoolBlockVector;
 | |
|     VmaBlockVector** m_pBlockVectors;
 | |
|     size_t m_ImmovableBlockCount = 0;
 | |
|     VmaDefragmentationStats m_GlobalStats = { 0 };
 | |
|     VmaDefragmentationStats m_PassStats = { 0 };
 | |
|     void* m_AlgorithmState = VMA_NULL;
 | |
| 
 | |
|     static MoveAllocationData GetMoveData(VmaAllocHandle handle, VmaBlockMetadata* metadata);
 | |
|     CounterStatus CheckCounters(VkDeviceSize bytes);
 | |
|     bool IncrementCounters(VkDeviceSize bytes);
 | |
|     bool ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block);
 | |
|     bool AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector);
 | |
| 
 | |
|     bool ComputeDefragmentation(VmaBlockVector& vector, size_t index);
 | |
|     bool ComputeDefragmentation_Fast(VmaBlockVector& vector);
 | |
|     bool ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update);
 | |
|     bool ComputeDefragmentation_Full(VmaBlockVector& vector);
 | |
|     bool ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index);
 | |
| 
 | |
|     void UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state);
 | |
|     bool MoveDataToFreeBlocks(VmaSuballocationType currentType,
 | |
|         VmaBlockVector& vector, size_t firstFreeBlock,
 | |
|         bool& texturePresent, bool& bufferPresent, bool& otherPresent);
 | |
| };
 | |
| #endif // _VMA_DEFRAGMENTATION_CONTEXT
 | |
| 
 | |
| #ifndef _VMA_POOL_T
 | |
| struct VmaPool_T
 | |
| {
 | |
|     friend struct VmaPoolListItemTraits;
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaPool_T)
 | |
| public:
 | |
|     VmaBlockVector m_BlockVector;
 | |
|     VmaDedicatedAllocationList m_DedicatedAllocations;
 | |
| 
 | |
|     VmaPool_T(
 | |
|         VmaAllocator hAllocator,
 | |
|         const VmaPoolCreateInfo& createInfo,
 | |
|         VkDeviceSize preferredBlockSize);
 | |
|     ~VmaPool_T();
 | |
| 
 | |
|     uint32_t GetId() const { return m_Id; }
 | |
|     void SetId(uint32_t id) { VMA_ASSERT(m_Id == 0); m_Id = id; }
 | |
| 
 | |
|     const char* GetName() const { return m_Name; }
 | |
|     void SetName(const char* pName);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     //void PrintDetailedMap(class VmaStringBuilder& sb);
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|     uint32_t m_Id;
 | |
|     char* m_Name;
 | |
|     VmaPool_T* m_PrevPool = VMA_NULL;
 | |
|     VmaPool_T* m_NextPool = VMA_NULL;
 | |
| };
 | |
| 
 | |
| struct VmaPoolListItemTraits
 | |
| {
 | |
|     typedef VmaPool_T ItemType;
 | |
| 
 | |
|     static ItemType* GetPrev(const ItemType* item) { return item->m_PrevPool; }
 | |
|     static ItemType* GetNext(const ItemType* item) { return item->m_NextPool; }
 | |
|     static ItemType*& AccessPrev(ItemType* item) { return item->m_PrevPool; }
 | |
|     static ItemType*& AccessNext(ItemType* item) { return item->m_NextPool; }
 | |
| };
 | |
| #endif // _VMA_POOL_T
 | |
| 
 | |
| #ifndef _VMA_CURRENT_BUDGET_DATA
 | |
| struct VmaCurrentBudgetData
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaCurrentBudgetData)
 | |
| public:
 | |
| 
 | |
|     VMA_ATOMIC_UINT32 m_BlockCount[VK_MAX_MEMORY_HEAPS];
 | |
|     VMA_ATOMIC_UINT32 m_AllocationCount[VK_MAX_MEMORY_HEAPS];
 | |
|     VMA_ATOMIC_UINT64 m_BlockBytes[VK_MAX_MEMORY_HEAPS];
 | |
|     VMA_ATOMIC_UINT64 m_AllocationBytes[VK_MAX_MEMORY_HEAPS];
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     VMA_ATOMIC_UINT32 m_OperationsSinceBudgetFetch;
 | |
|     VMA_RW_MUTEX m_BudgetMutex;
 | |
|     uint64_t m_VulkanUsage[VK_MAX_MEMORY_HEAPS];
 | |
|     uint64_t m_VulkanBudget[VK_MAX_MEMORY_HEAPS];
 | |
|     uint64_t m_BlockBytesAtBudgetFetch[VK_MAX_MEMORY_HEAPS];
 | |
| #endif // VMA_MEMORY_BUDGET
 | |
| 
 | |
|     VmaCurrentBudgetData();
 | |
| 
 | |
|     void AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
 | |
|     void RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize);
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
 | |
| VmaCurrentBudgetData::VmaCurrentBudgetData()
 | |
| {
 | |
|     for (uint32_t heapIndex = 0; heapIndex < VK_MAX_MEMORY_HEAPS; ++heapIndex)
 | |
|     {
 | |
|         m_BlockCount[heapIndex] = 0;
 | |
|         m_AllocationCount[heapIndex] = 0;
 | |
|         m_BlockBytes[heapIndex] = 0;
 | |
|         m_AllocationBytes[heapIndex] = 0;
 | |
| #if VMA_MEMORY_BUDGET
 | |
|         m_VulkanUsage[heapIndex] = 0;
 | |
|         m_VulkanBudget[heapIndex] = 0;
 | |
|         m_BlockBytesAtBudgetFetch[heapIndex] = 0;
 | |
| #endif
 | |
|     }
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     m_OperationsSinceBudgetFetch = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void VmaCurrentBudgetData::AddAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
 | |
| {
 | |
|     m_AllocationBytes[heapIndex] += allocationSize;
 | |
|     ++m_AllocationCount[heapIndex];
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     ++m_OperationsSinceBudgetFetch;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void VmaCurrentBudgetData::RemoveAllocation(uint32_t heapIndex, VkDeviceSize allocationSize)
 | |
| {
 | |
|     VMA_ASSERT(m_AllocationBytes[heapIndex] >= allocationSize);
 | |
|     m_AllocationBytes[heapIndex] -= allocationSize;
 | |
|     VMA_ASSERT(m_AllocationCount[heapIndex] > 0);
 | |
|     --m_AllocationCount[heapIndex];
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     ++m_OperationsSinceBudgetFetch;
 | |
| #endif
 | |
| }
 | |
| #endif // _VMA_CURRENT_BUDGET_DATA_FUNCTIONS
 | |
| #endif // _VMA_CURRENT_BUDGET_DATA
 | |
| 
 | |
| #ifndef _VMA_ALLOCATION_OBJECT_ALLOCATOR
 | |
| /*
 | |
| Thread-safe wrapper over VmaPoolAllocator free list, for allocation of VmaAllocation_T objects.
 | |
| */
 | |
| class VmaAllocationObjectAllocator
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocationObjectAllocator)
 | |
| public:
 | |
|     VmaAllocationObjectAllocator(const VkAllocationCallbacks* pAllocationCallbacks)
 | |
|         : m_Allocator(pAllocationCallbacks, 1024) {}
 | |
| 
 | |
|     template<typename... Types> VmaAllocation Allocate(Types&&... args);
 | |
|     void Free(VmaAllocation hAlloc);
 | |
| 
 | |
| private:
 | |
|     VMA_MUTEX m_Mutex;
 | |
|     VmaPoolAllocator<VmaAllocation_T> m_Allocator;
 | |
| };
 | |
| 
 | |
| template<typename... Types>
 | |
| VmaAllocation VmaAllocationObjectAllocator::Allocate(Types&&... args)
 | |
| {
 | |
|     VmaMutexLock mutexLock(m_Mutex);
 | |
|     return m_Allocator.Alloc<Types...>(std::forward<Types>(args)...);
 | |
| }
 | |
| 
 | |
| void VmaAllocationObjectAllocator::Free(VmaAllocation hAlloc)
 | |
| {
 | |
|     VmaMutexLock mutexLock(m_Mutex);
 | |
|     m_Allocator.Free(hAlloc);
 | |
| }
 | |
| #endif // _VMA_ALLOCATION_OBJECT_ALLOCATOR
 | |
| 
 | |
| #ifndef _VMA_VIRTUAL_BLOCK_T
 | |
| struct VmaVirtualBlock_T
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaVirtualBlock_T)
 | |
| public:
 | |
|     const bool m_AllocationCallbacksSpecified;
 | |
|     const VkAllocationCallbacks m_AllocationCallbacks;
 | |
| 
 | |
|     VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo);
 | |
|     ~VmaVirtualBlock_T();
 | |
| 
 | |
|     VkResult Init() { return VK_SUCCESS; }
 | |
|     bool IsEmpty() const { return m_Metadata->IsEmpty(); }
 | |
|     void Free(VmaVirtualAllocation allocation) { m_Metadata->Free((VmaAllocHandle)allocation); }
 | |
|     void SetAllocationUserData(VmaVirtualAllocation allocation, void* userData) { m_Metadata->SetAllocationUserData((VmaAllocHandle)allocation, userData); }
 | |
|     void Clear() { m_Metadata->Clear(); }
 | |
| 
 | |
|     const VkAllocationCallbacks* GetAllocationCallbacks() const;
 | |
|     void GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo);
 | |
|     VkResult Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
 | |
|         VkDeviceSize* outOffset);
 | |
|     void GetStatistics(VmaStatistics& outStats) const;
 | |
|     void CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const;
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const;
 | |
| #endif
 | |
| 
 | |
| private:
 | |
|     VmaBlockMetadata* m_Metadata;
 | |
| };
 | |
| 
 | |
| #ifndef _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
 | |
| VmaVirtualBlock_T::VmaVirtualBlock_T(const VmaVirtualBlockCreateInfo& createInfo)
 | |
|     : m_AllocationCallbacksSpecified(createInfo.pAllocationCallbacks != VMA_NULL),
 | |
|     m_AllocationCallbacks(createInfo.pAllocationCallbacks != VMA_NULL ? *createInfo.pAllocationCallbacks : VmaEmptyAllocationCallbacks)
 | |
| {
 | |
|     const uint32_t algorithm = createInfo.flags & VMA_VIRTUAL_BLOCK_CREATE_ALGORITHM_MASK;
 | |
|     switch (algorithm)
 | |
|     {
 | |
|     case 0:
 | |
|         m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
 | |
|         break;
 | |
|     case VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT:
 | |
|         m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_Linear)(VK_NULL_HANDLE, 1, true);
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         m_Metadata = vma_new(GetAllocationCallbacks(), VmaBlockMetadata_TLSF)(VK_NULL_HANDLE, 1, true);
 | |
|     }
 | |
| 
 | |
|     m_Metadata->Init(createInfo.size);
 | |
| }
 | |
| 
 | |
| VmaVirtualBlock_T::~VmaVirtualBlock_T()
 | |
| {
 | |
|     // Define macro VMA_DEBUG_LOG_FORMAT to receive the list of the unfreed allocations
 | |
|     if (!m_Metadata->IsEmpty())
 | |
|         m_Metadata->DebugLogAllAllocations();
 | |
|     // This is the most important assert in the entire library.
 | |
|     // Hitting it means you have some memory leak - unreleased virtual allocations.
 | |
|     VMA_ASSERT(m_Metadata->IsEmpty() && "Some virtual allocations were not freed before destruction of this virtual block!");
 | |
| 
 | |
|     vma_delete(GetAllocationCallbacks(), m_Metadata);
 | |
| }
 | |
| 
 | |
| const VkAllocationCallbacks* VmaVirtualBlock_T::GetAllocationCallbacks() const
 | |
| {
 | |
|     return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
 | |
| }
 | |
| 
 | |
| void VmaVirtualBlock_T::GetAllocationInfo(VmaVirtualAllocation allocation, VmaVirtualAllocationInfo& outInfo)
 | |
| {
 | |
|     m_Metadata->GetAllocationInfo((VmaAllocHandle)allocation, outInfo);
 | |
| }
 | |
| 
 | |
| VkResult VmaVirtualBlock_T::Allocate(const VmaVirtualAllocationCreateInfo& createInfo, VmaVirtualAllocation& outAllocation,
 | |
|     VkDeviceSize* outOffset)
 | |
| {
 | |
|     VmaAllocationRequest request = {};
 | |
|     if (m_Metadata->CreateAllocationRequest(
 | |
|         createInfo.size, // allocSize
 | |
|         VMA_MAX(createInfo.alignment, (VkDeviceSize)1), // allocAlignment
 | |
|         (createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0, // upperAddress
 | |
|         VMA_SUBALLOCATION_TYPE_UNKNOWN, // allocType - unimportant
 | |
|         createInfo.flags & VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MASK, // strategy
 | |
|         &request))
 | |
|     {
 | |
|         m_Metadata->Alloc(request,
 | |
|             VMA_SUBALLOCATION_TYPE_UNKNOWN, // type - unimportant
 | |
|             createInfo.pUserData);
 | |
|         outAllocation = (VmaVirtualAllocation)request.allocHandle;
 | |
|         if(outOffset)
 | |
|             *outOffset = m_Metadata->GetAllocationOffset(request.allocHandle);
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
|     outAllocation = (VmaVirtualAllocation)VK_NULL_HANDLE;
 | |
|     if (outOffset)
 | |
|         *outOffset = UINT64_MAX;
 | |
|     return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
| }
 | |
| 
 | |
| void VmaVirtualBlock_T::GetStatistics(VmaStatistics& outStats) const
 | |
| {
 | |
|     VmaClearStatistics(outStats);
 | |
|     m_Metadata->AddStatistics(outStats);
 | |
| }
 | |
| 
 | |
| void VmaVirtualBlock_T::CalculateDetailedStatistics(VmaDetailedStatistics& outStats) const
 | |
| {
 | |
|     VmaClearDetailedStatistics(outStats);
 | |
|     m_Metadata->AddDetailedStatistics(outStats);
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaVirtualBlock_T::BuildStatsString(bool detailedMap, VmaStringBuilder& sb) const
 | |
| {
 | |
|     VmaJsonWriter json(GetAllocationCallbacks(), sb);
 | |
|     json.BeginObject();
 | |
| 
 | |
|     VmaDetailedStatistics stats;
 | |
|     CalculateDetailedStatistics(stats);
 | |
| 
 | |
|     json.WriteString("Stats");
 | |
|     VmaPrintDetailedStatistics(json, stats);
 | |
| 
 | |
|     if (detailedMap)
 | |
|     {
 | |
|         json.WriteString("Details");
 | |
|         json.BeginObject();
 | |
|         m_Metadata->PrintDetailedMap(json);
 | |
|         json.EndObject();
 | |
|     }
 | |
| 
 | |
|     json.EndObject();
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| #endif // _VMA_VIRTUAL_BLOCK_T_FUNCTIONS
 | |
| #endif // _VMA_VIRTUAL_BLOCK_T
 | |
| 
 | |
| 
 | |
| // Main allocator object.
 | |
| struct VmaAllocator_T
 | |
| {
 | |
|     VMA_CLASS_NO_COPY_NO_MOVE(VmaAllocator_T)
 | |
| public:
 | |
|     bool m_UseMutex;
 | |
|     uint32_t m_VulkanApiVersion;
 | |
|     bool m_UseKhrDedicatedAllocation; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
 | |
|     bool m_UseKhrBindMemory2; // Can be set only if m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0).
 | |
|     bool m_UseExtMemoryBudget;
 | |
|     bool m_UseAmdDeviceCoherentMemory;
 | |
|     bool m_UseKhrBufferDeviceAddress;
 | |
|     bool m_UseExtMemoryPriority;
 | |
|     VkDevice m_hDevice;
 | |
|     VkInstance m_hInstance;
 | |
|     bool m_AllocationCallbacksSpecified;
 | |
|     VkAllocationCallbacks m_AllocationCallbacks;
 | |
|     VmaDeviceMemoryCallbacks m_DeviceMemoryCallbacks;
 | |
|     VmaAllocationObjectAllocator m_AllocationObjectAllocator;
 | |
| 
 | |
|     // Each bit (1 << i) is set if HeapSizeLimit is enabled for that heap, so cannot allocate more than the heap size.
 | |
|     uint32_t m_HeapSizeLimitMask;
 | |
| 
 | |
|     VkPhysicalDeviceProperties m_PhysicalDeviceProperties;
 | |
|     VkPhysicalDeviceMemoryProperties m_MemProps;
 | |
| 
 | |
|     // Default pools.
 | |
|     VmaBlockVector* m_pBlockVectors[VK_MAX_MEMORY_TYPES];
 | |
|     VmaDedicatedAllocationList m_DedicatedAllocations[VK_MAX_MEMORY_TYPES];
 | |
| 
 | |
|     VmaCurrentBudgetData m_Budget;
 | |
|     VMA_ATOMIC_UINT32 m_DeviceMemoryCount; // Total number of VkDeviceMemory objects.
 | |
| 
 | |
|     VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo);
 | |
|     VkResult Init(const VmaAllocatorCreateInfo* pCreateInfo);
 | |
|     ~VmaAllocator_T();
 | |
| 
 | |
|     const VkAllocationCallbacks* GetAllocationCallbacks() const
 | |
|     {
 | |
|         return m_AllocationCallbacksSpecified ? &m_AllocationCallbacks : VMA_NULL;
 | |
|     }
 | |
|     const VmaVulkanFunctions& GetVulkanFunctions() const
 | |
|     {
 | |
|         return m_VulkanFunctions;
 | |
|     }
 | |
| 
 | |
|     VkPhysicalDevice GetPhysicalDevice() const { return m_PhysicalDevice; }
 | |
| 
 | |
|     VkDeviceSize GetBufferImageGranularity() const
 | |
|     {
 | |
|         return VMA_MAX(
 | |
|             static_cast<VkDeviceSize>(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY),
 | |
|             m_PhysicalDeviceProperties.limits.bufferImageGranularity);
 | |
|     }
 | |
| 
 | |
|     uint32_t GetMemoryHeapCount() const { return m_MemProps.memoryHeapCount; }
 | |
|     uint32_t GetMemoryTypeCount() const { return m_MemProps.memoryTypeCount; }
 | |
| 
 | |
|     uint32_t MemoryTypeIndexToHeapIndex(uint32_t memTypeIndex) const
 | |
|     {
 | |
|         VMA_ASSERT(memTypeIndex < m_MemProps.memoryTypeCount);
 | |
|         return m_MemProps.memoryTypes[memTypeIndex].heapIndex;
 | |
|     }
 | |
|     // True when specific memory type is HOST_VISIBLE but not HOST_COHERENT.
 | |
|     bool IsMemoryTypeNonCoherent(uint32_t memTypeIndex) const
 | |
|     {
 | |
|         return (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & (VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)) ==
 | |
|             VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
|     }
 | |
|     // Minimum alignment for all allocations in specific memory type.
 | |
|     VkDeviceSize GetMemoryTypeMinAlignment(uint32_t memTypeIndex) const
 | |
|     {
 | |
|         return IsMemoryTypeNonCoherent(memTypeIndex) ?
 | |
|             VMA_MAX((VkDeviceSize)VMA_MIN_ALIGNMENT, m_PhysicalDeviceProperties.limits.nonCoherentAtomSize) :
 | |
|             (VkDeviceSize)VMA_MIN_ALIGNMENT;
 | |
|     }
 | |
| 
 | |
|     bool IsIntegratedGpu() const
 | |
|     {
 | |
|         return m_PhysicalDeviceProperties.deviceType == VK_PHYSICAL_DEVICE_TYPE_INTEGRATED_GPU;
 | |
|     }
 | |
| 
 | |
|     uint32_t GetGlobalMemoryTypeBits() const { return m_GlobalMemoryTypeBits; }
 | |
| 
 | |
|     void GetBufferMemoryRequirements(
 | |
|         VkBuffer hBuffer,
 | |
|         VkMemoryRequirements& memReq,
 | |
|         bool& requiresDedicatedAllocation,
 | |
|         bool& prefersDedicatedAllocation) const;
 | |
|     void GetImageMemoryRequirements(
 | |
|         VkImage hImage,
 | |
|         VkMemoryRequirements& memReq,
 | |
|         bool& requiresDedicatedAllocation,
 | |
|         bool& prefersDedicatedAllocation) const;
 | |
|     VkResult FindMemoryTypeIndex(
 | |
|         uint32_t memoryTypeBits,
 | |
|         const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|         VkFlags bufImgUsage, // VkBufferCreateInfo::usage or VkImageCreateInfo::usage. UINT32_MAX if unknown.
 | |
|         uint32_t* pMemoryTypeIndex) const;
 | |
| 
 | |
|     // Main allocation function.
 | |
|     VkResult AllocateMemory(
 | |
|         const VkMemoryRequirements& vkMemReq,
 | |
|         bool requiresDedicatedAllocation,
 | |
|         bool prefersDedicatedAllocation,
 | |
|         VkBuffer dedicatedBuffer,
 | |
|         VkImage dedicatedImage,
 | |
|         VkFlags dedicatedBufferImageUsage, // UINT32_MAX if unknown.
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         VmaSuballocationType suballocType,
 | |
|         size_t allocationCount,
 | |
|         VmaAllocation* pAllocations);
 | |
| 
 | |
|     // Main deallocation function.
 | |
|     void FreeMemory(
 | |
|         size_t allocationCount,
 | |
|         const VmaAllocation* pAllocations);
 | |
| 
 | |
|     void CalculateStatistics(VmaTotalStatistics* pStats);
 | |
| 
 | |
|     void GetHeapBudgets(
 | |
|         VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     void PrintDetailedMap(class VmaJsonWriter& json);
 | |
| #endif
 | |
| 
 | |
|     void GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo);
 | |
| 
 | |
|     VkResult CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool);
 | |
|     void DestroyPool(VmaPool pool);
 | |
|     void GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats);
 | |
|     void CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats);
 | |
| 
 | |
|     void SetCurrentFrameIndex(uint32_t frameIndex);
 | |
|     uint32_t GetCurrentFrameIndex() const { return m_CurrentFrameIndex.load(); }
 | |
| 
 | |
|     VkResult CheckPoolCorruption(VmaPool hPool);
 | |
|     VkResult CheckCorruption(uint32_t memoryTypeBits);
 | |
| 
 | |
|     // Call to Vulkan function vkAllocateMemory with accompanying bookkeeping.
 | |
|     VkResult AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory);
 | |
|     // Call to Vulkan function vkFreeMemory with accompanying bookkeeping.
 | |
|     void FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory);
 | |
|     // Call to Vulkan function vkBindBufferMemory or vkBindBufferMemory2KHR.
 | |
|     VkResult BindVulkanBuffer(
 | |
|         VkDeviceMemory memory,
 | |
|         VkDeviceSize memoryOffset,
 | |
|         VkBuffer buffer,
 | |
|         const void* pNext);
 | |
|     // Call to Vulkan function vkBindImageMemory or vkBindImageMemory2KHR.
 | |
|     VkResult BindVulkanImage(
 | |
|         VkDeviceMemory memory,
 | |
|         VkDeviceSize memoryOffset,
 | |
|         VkImage image,
 | |
|         const void* pNext);
 | |
| 
 | |
|     VkResult Map(VmaAllocation hAllocation, void** ppData);
 | |
|     void Unmap(VmaAllocation hAllocation);
 | |
| 
 | |
|     VkResult BindBufferMemory(
 | |
|         VmaAllocation hAllocation,
 | |
|         VkDeviceSize allocationLocalOffset,
 | |
|         VkBuffer hBuffer,
 | |
|         const void* pNext);
 | |
|     VkResult BindImageMemory(
 | |
|         VmaAllocation hAllocation,
 | |
|         VkDeviceSize allocationLocalOffset,
 | |
|         VkImage hImage,
 | |
|         const void* pNext);
 | |
| 
 | |
|     VkResult FlushOrInvalidateAllocation(
 | |
|         VmaAllocation hAllocation,
 | |
|         VkDeviceSize offset, VkDeviceSize size,
 | |
|         VMA_CACHE_OPERATION op);
 | |
|     VkResult FlushOrInvalidateAllocations(
 | |
|         uint32_t allocationCount,
 | |
|         const VmaAllocation* allocations,
 | |
|         const VkDeviceSize* offsets, const VkDeviceSize* sizes,
 | |
|         VMA_CACHE_OPERATION op);
 | |
| 
 | |
|     void FillAllocation(const VmaAllocation hAllocation, uint8_t pattern);
 | |
| 
 | |
|     /*
 | |
|     Returns bit mask of memory types that can support defragmentation on GPU as
 | |
|     they support creation of required buffer for copy operations.
 | |
|     */
 | |
|     uint32_t GetGpuDefragmentationMemoryTypeBits();
 | |
| 
 | |
| #if VMA_EXTERNAL_MEMORY
 | |
|     VkExternalMemoryHandleTypeFlagsKHR GetExternalMemoryHandleTypeFlags(uint32_t memTypeIndex) const
 | |
|     {
 | |
|         return m_TypeExternalMemoryHandleTypes[memTypeIndex];
 | |
|     }
 | |
| #endif // #if VMA_EXTERNAL_MEMORY
 | |
| 
 | |
| private:
 | |
|     VkDeviceSize m_PreferredLargeHeapBlockSize;
 | |
| 
 | |
|     VkPhysicalDevice m_PhysicalDevice;
 | |
|     VMA_ATOMIC_UINT32 m_CurrentFrameIndex;
 | |
|     VMA_ATOMIC_UINT32 m_GpuDefragmentationMemoryTypeBits; // UINT32_MAX means uninitialized.
 | |
| #if VMA_EXTERNAL_MEMORY
 | |
|     VkExternalMemoryHandleTypeFlagsKHR m_TypeExternalMemoryHandleTypes[VK_MAX_MEMORY_TYPES];
 | |
| #endif // #if VMA_EXTERNAL_MEMORY
 | |
| 
 | |
|     VMA_RW_MUTEX m_PoolsMutex;
 | |
|     typedef VmaIntrusiveLinkedList<VmaPoolListItemTraits> PoolList;
 | |
|     // Protected by m_PoolsMutex.
 | |
|     PoolList m_Pools;
 | |
|     uint32_t m_NextPoolId;
 | |
| 
 | |
|     VmaVulkanFunctions m_VulkanFunctions;
 | |
| 
 | |
|     // Global bit mask AND-ed with any memoryTypeBits to disallow certain memory types.
 | |
|     uint32_t m_GlobalMemoryTypeBits;
 | |
| 
 | |
|     void ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions);
 | |
| 
 | |
| #if VMA_STATIC_VULKAN_FUNCTIONS == 1
 | |
|     void ImportVulkanFunctions_Static();
 | |
| #endif
 | |
| 
 | |
|     void ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions);
 | |
| 
 | |
| #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
 | |
|     void ImportVulkanFunctions_Dynamic();
 | |
| #endif
 | |
| 
 | |
|     void ValidateVulkanFunctions();
 | |
| 
 | |
|     VkDeviceSize CalcPreferredBlockSize(uint32_t memTypeIndex);
 | |
| 
 | |
|     VkResult AllocateMemoryOfType(
 | |
|         VmaPool pool,
 | |
|         VkDeviceSize size,
 | |
|         VkDeviceSize alignment,
 | |
|         bool dedicatedPreferred,
 | |
|         VkBuffer dedicatedBuffer,
 | |
|         VkImage dedicatedImage,
 | |
|         VkFlags dedicatedBufferImageUsage,
 | |
|         const VmaAllocationCreateInfo& createInfo,
 | |
|         uint32_t memTypeIndex,
 | |
|         VmaSuballocationType suballocType,
 | |
|         VmaDedicatedAllocationList& dedicatedAllocations,
 | |
|         VmaBlockVector& blockVector,
 | |
|         size_t allocationCount,
 | |
|         VmaAllocation* pAllocations);
 | |
| 
 | |
|     // Helper function only to be used inside AllocateDedicatedMemory.
 | |
|     VkResult AllocateDedicatedMemoryPage(
 | |
|         VmaPool pool,
 | |
|         VkDeviceSize size,
 | |
|         VmaSuballocationType suballocType,
 | |
|         uint32_t memTypeIndex,
 | |
|         const VkMemoryAllocateInfo& allocInfo,
 | |
|         bool map,
 | |
|         bool isUserDataString,
 | |
|         bool isMappingAllowed,
 | |
|         void* pUserData,
 | |
|         VmaAllocation* pAllocation);
 | |
| 
 | |
|     // Allocates and registers new VkDeviceMemory specifically for dedicated allocations.
 | |
|     VkResult AllocateDedicatedMemory(
 | |
|         VmaPool pool,
 | |
|         VkDeviceSize size,
 | |
|         VmaSuballocationType suballocType,
 | |
|         VmaDedicatedAllocationList& dedicatedAllocations,
 | |
|         uint32_t memTypeIndex,
 | |
|         bool map,
 | |
|         bool isUserDataString,
 | |
|         bool isMappingAllowed,
 | |
|         bool canAliasMemory,
 | |
|         void* pUserData,
 | |
|         float priority,
 | |
|         VkBuffer dedicatedBuffer,
 | |
|         VkImage dedicatedImage,
 | |
|         VkFlags dedicatedBufferImageUsage,
 | |
|         size_t allocationCount,
 | |
|         VmaAllocation* pAllocations,
 | |
|         const void* pNextChain = nullptr);
 | |
| 
 | |
|     void FreeDedicatedMemory(const VmaAllocation allocation);
 | |
| 
 | |
|     VkResult CalcMemTypeParams(
 | |
|         VmaAllocationCreateInfo& outCreateInfo,
 | |
|         uint32_t memTypeIndex,
 | |
|         VkDeviceSize size,
 | |
|         size_t allocationCount);
 | |
|     VkResult CalcAllocationParams(
 | |
|         VmaAllocationCreateInfo& outCreateInfo,
 | |
|         bool dedicatedRequired,
 | |
|         bool dedicatedPreferred);
 | |
| 
 | |
|     /*
 | |
|     Calculates and returns bit mask of memory types that can support defragmentation
 | |
|     on GPU as they support creation of required buffer for copy operations.
 | |
|     */
 | |
|     uint32_t CalculateGpuDefragmentationMemoryTypeBits() const;
 | |
|     uint32_t CalculateGlobalMemoryTypeBits() const;
 | |
| 
 | |
|     bool GetFlushOrInvalidateRange(
 | |
|         VmaAllocation allocation,
 | |
|         VkDeviceSize offset, VkDeviceSize size,
 | |
|         VkMappedMemoryRange& outRange) const;
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     void UpdateVulkanBudget();
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| };
 | |
| 
 | |
| 
 | |
| #ifndef _VMA_MEMORY_FUNCTIONS
 | |
| static void* VmaMalloc(VmaAllocator hAllocator, size_t size, size_t alignment)
 | |
| {
 | |
|     return VmaMalloc(&hAllocator->m_AllocationCallbacks, size, alignment);
 | |
| }
 | |
| 
 | |
| static void VmaFree(VmaAllocator hAllocator, void* ptr)
 | |
| {
 | |
|     VmaFree(&hAllocator->m_AllocationCallbacks, ptr);
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T* VmaAllocate(VmaAllocator hAllocator)
 | |
| {
 | |
|     return (T*)VmaMalloc(hAllocator, sizeof(T), VMA_ALIGN_OF(T));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static T* VmaAllocateArray(VmaAllocator hAllocator, size_t count)
 | |
| {
 | |
|     return (T*)VmaMalloc(hAllocator, sizeof(T) * count, VMA_ALIGN_OF(T));
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void vma_delete(VmaAllocator hAllocator, T* ptr)
 | |
| {
 | |
|     if(ptr != VMA_NULL)
 | |
|     {
 | |
|         ptr->~T();
 | |
|         VmaFree(hAllocator, ptr);
 | |
|     }
 | |
| }
 | |
| 
 | |
| template<typename T>
 | |
| static void vma_delete_array(VmaAllocator hAllocator, T* ptr, size_t count)
 | |
| {
 | |
|     if(ptr != VMA_NULL)
 | |
|     {
 | |
|         for(size_t i = count; i--; )
 | |
|             ptr[i].~T();
 | |
|         VmaFree(hAllocator, ptr);
 | |
|     }
 | |
| }
 | |
| #endif // _VMA_MEMORY_FUNCTIONS
 | |
| 
 | |
| #ifndef _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
 | |
| VmaDeviceMemoryBlock::VmaDeviceMemoryBlock(VmaAllocator hAllocator)
 | |
|     : m_pMetadata(VMA_NULL),
 | |
|     m_MemoryTypeIndex(UINT32_MAX),
 | |
|     m_Id(0),
 | |
|     m_hMemory(VK_NULL_HANDLE),
 | |
|     m_MapCount(0),
 | |
|     m_pMappedData(VMA_NULL) {}
 | |
| 
 | |
| VmaDeviceMemoryBlock::~VmaDeviceMemoryBlock()
 | |
| {
 | |
|     VMA_ASSERT(m_MapCount == 0 && "VkDeviceMemory block is being destroyed while it is still mapped.");
 | |
|     VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
 | |
| }
 | |
| 
 | |
| void VmaDeviceMemoryBlock::Init(
 | |
|     VmaAllocator hAllocator,
 | |
|     VmaPool hParentPool,
 | |
|     uint32_t newMemoryTypeIndex,
 | |
|     VkDeviceMemory newMemory,
 | |
|     VkDeviceSize newSize,
 | |
|     uint32_t id,
 | |
|     uint32_t algorithm,
 | |
|     VkDeviceSize bufferImageGranularity)
 | |
| {
 | |
|     VMA_ASSERT(m_hMemory == VK_NULL_HANDLE);
 | |
| 
 | |
|     m_hParentPool = hParentPool;
 | |
|     m_MemoryTypeIndex = newMemoryTypeIndex;
 | |
|     m_Id = id;
 | |
|     m_hMemory = newMemory;
 | |
| 
 | |
|     switch (algorithm)
 | |
|     {
 | |
|     case 0:
 | |
|         m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
 | |
|             bufferImageGranularity, false); // isVirtual
 | |
|         break;
 | |
|     case VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT:
 | |
|         m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_Linear)(hAllocator->GetAllocationCallbacks(),
 | |
|             bufferImageGranularity, false); // isVirtual
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         m_pMetadata = vma_new(hAllocator, VmaBlockMetadata_TLSF)(hAllocator->GetAllocationCallbacks(),
 | |
|             bufferImageGranularity, false); // isVirtual
 | |
|     }
 | |
|     m_pMetadata->Init(newSize);
 | |
| }
 | |
| 
 | |
| void VmaDeviceMemoryBlock::Destroy(VmaAllocator allocator)
 | |
| {
 | |
|     // Define macro VMA_DEBUG_LOG_FORMAT to receive the list of the unfreed allocations
 | |
|     if (!m_pMetadata->IsEmpty())
 | |
|         m_pMetadata->DebugLogAllAllocations();
 | |
|     // This is the most important assert in the entire library.
 | |
|     // Hitting it means you have some memory leak - unreleased VmaAllocation objects.
 | |
|     VMA_ASSERT(m_pMetadata->IsEmpty() && "Some allocations were not freed before destruction of this memory block!");
 | |
| 
 | |
|     VMA_ASSERT(m_hMemory != VK_NULL_HANDLE);
 | |
|     allocator->FreeVulkanMemory(m_MemoryTypeIndex, m_pMetadata->GetSize(), m_hMemory);
 | |
|     m_hMemory = VK_NULL_HANDLE;
 | |
| 
 | |
|     vma_delete(allocator, m_pMetadata);
 | |
|     m_pMetadata = VMA_NULL;
 | |
| }
 | |
| 
 | |
| void VmaDeviceMemoryBlock::PostAlloc(VmaAllocator hAllocator)
 | |
| {
 | |
|     VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | |
|     m_MappingHysteresis.PostAlloc();
 | |
| }
 | |
| 
 | |
| void VmaDeviceMemoryBlock::PostFree(VmaAllocator hAllocator)
 | |
| {
 | |
|     VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | |
|     if(m_MappingHysteresis.PostFree())
 | |
|     {
 | |
|         VMA_ASSERT(m_MappingHysteresis.GetExtraMapping() == 0);
 | |
|         if (m_MapCount == 0)
 | |
|         {
 | |
|             m_pMappedData = VMA_NULL;
 | |
|             (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaDeviceMemoryBlock::Validate() const
 | |
| {
 | |
|     VMA_VALIDATE((m_hMemory != VK_NULL_HANDLE) &&
 | |
|         (m_pMetadata->GetSize() != 0));
 | |
| 
 | |
|     return m_pMetadata->Validate();
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::CheckCorruption(VmaAllocator hAllocator)
 | |
| {
 | |
|     void* pData = nullptr;
 | |
|     VkResult res = Map(hAllocator, 1, &pData);
 | |
|     if (res != VK_SUCCESS)
 | |
|     {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     res = m_pMetadata->CheckCorruption(pData);
 | |
| 
 | |
|     Unmap(hAllocator, 1);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::Map(VmaAllocator hAllocator, uint32_t count, void** ppData)
 | |
| {
 | |
|     if (count == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | |
|     const uint32_t oldTotalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
 | |
|     m_MappingHysteresis.PostMap();
 | |
|     if (oldTotalMapCount != 0)
 | |
|     {
 | |
|         m_MapCount += count;
 | |
|         VMA_ASSERT(m_pMappedData != VMA_NULL);
 | |
|         if (ppData != VMA_NULL)
 | |
|         {
 | |
|             *ppData = m_pMappedData;
 | |
|         }
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
 | |
|             hAllocator->m_hDevice,
 | |
|             m_hMemory,
 | |
|             0, // offset
 | |
|             VK_WHOLE_SIZE,
 | |
|             0, // flags
 | |
|             &m_pMappedData);
 | |
|         if (result == VK_SUCCESS)
 | |
|         {
 | |
|             if (ppData != VMA_NULL)
 | |
|             {
 | |
|                 *ppData = m_pMappedData;
 | |
|             }
 | |
|             m_MapCount = count;
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaDeviceMemoryBlock::Unmap(VmaAllocator hAllocator, uint32_t count)
 | |
| {
 | |
|     if (count == 0)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | |
|     if (m_MapCount >= count)
 | |
|     {
 | |
|         m_MapCount -= count;
 | |
|         const uint32_t totalMapCount = m_MapCount + m_MappingHysteresis.GetExtraMapping();
 | |
|         if (totalMapCount == 0)
 | |
|         {
 | |
|             m_pMappedData = VMA_NULL;
 | |
|             (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(hAllocator->m_hDevice, m_hMemory);
 | |
|         }
 | |
|         m_MappingHysteresis.PostUnmap();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(0 && "VkDeviceMemory block is being unmapped while it was not previously mapped.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::WriteMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
 | |
| {
 | |
|     VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
 | |
| 
 | |
|     void* pData;
 | |
|     VkResult res = Map(hAllocator, 1, &pData);
 | |
|     if (res != VK_SUCCESS)
 | |
|     {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     VmaWriteMagicValue(pData, allocOffset + allocSize);
 | |
| 
 | |
|     Unmap(hAllocator, 1);
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::ValidateMagicValueAfterAllocation(VmaAllocator hAllocator, VkDeviceSize allocOffset, VkDeviceSize allocSize)
 | |
| {
 | |
|     VMA_ASSERT(VMA_DEBUG_MARGIN > 0 && VMA_DEBUG_MARGIN % 4 == 0 && VMA_DEBUG_DETECT_CORRUPTION);
 | |
| 
 | |
|     void* pData;
 | |
|     VkResult res = Map(hAllocator, 1, &pData);
 | |
|     if (res != VK_SUCCESS)
 | |
|     {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     if (!VmaValidateMagicValue(pData, allocOffset + allocSize))
 | |
|     {
 | |
|         VMA_ASSERT(0 && "MEMORY CORRUPTION DETECTED AFTER FREED ALLOCATION!");
 | |
|     }
 | |
| 
 | |
|     Unmap(hAllocator, 1);
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::BindBufferMemory(
 | |
|     const VmaAllocator hAllocator,
 | |
|     const VmaAllocation hAllocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkBuffer hBuffer,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
 | |
|         hAllocation->GetBlock() == this);
 | |
|     VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
 | |
|         "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
 | |
|     const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
 | |
|     // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
 | |
|     VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | |
|     return hAllocator->BindVulkanBuffer(m_hMemory, memoryOffset, hBuffer, pNext);
 | |
| }
 | |
| 
 | |
| VkResult VmaDeviceMemoryBlock::BindImageMemory(
 | |
|     const VmaAllocator hAllocator,
 | |
|     const VmaAllocation hAllocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkImage hImage,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VMA_ASSERT(hAllocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_BLOCK &&
 | |
|         hAllocation->GetBlock() == this);
 | |
|     VMA_ASSERT(allocationLocalOffset < hAllocation->GetSize() &&
 | |
|         "Invalid allocationLocalOffset. Did you forget that this offset is relative to the beginning of the allocation, not the whole memory block?");
 | |
|     const VkDeviceSize memoryOffset = hAllocation->GetOffset() + allocationLocalOffset;
 | |
|     // This lock is important so that we don't call vkBind... and/or vkMap... simultaneously on the same VkDeviceMemory from multiple threads.
 | |
|     VmaMutexLock lock(m_MapAndBindMutex, hAllocator->m_UseMutex);
 | |
|     return hAllocator->BindVulkanImage(m_hMemory, memoryOffset, hImage, pNext);
 | |
| }
 | |
| #endif // _VMA_DEVICE_MEMORY_BLOCK_FUNCTIONS
 | |
| 
 | |
| #ifndef _VMA_ALLOCATION_T_FUNCTIONS
 | |
| VmaAllocation_T::VmaAllocation_T(bool mappingAllowed)
 | |
|     : m_Alignment{ 1 },
 | |
|     m_Size{ 0 },
 | |
|     m_pUserData{ VMA_NULL },
 | |
|     m_pName{ VMA_NULL },
 | |
|     m_MemoryTypeIndex{ 0 },
 | |
|     m_Type{ (uint8_t)ALLOCATION_TYPE_NONE },
 | |
|     m_SuballocationType{ (uint8_t)VMA_SUBALLOCATION_TYPE_UNKNOWN },
 | |
|     m_MapCount{ 0 },
 | |
|     m_Flags{ 0 }
 | |
| {
 | |
|     if(mappingAllowed)
 | |
|         m_Flags |= (uint8_t)FLAG_MAPPING_ALLOWED;
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     m_BufferImageUsage = 0;
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VmaAllocation_T::~VmaAllocation_T()
 | |
| {
 | |
|     VMA_ASSERT(m_MapCount == 0 && "Allocation was not unmapped before destruction.");
 | |
| 
 | |
|     // Check if owned string was freed.
 | |
|     VMA_ASSERT(m_pName == VMA_NULL);
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::InitBlockAllocation(
 | |
|     VmaDeviceMemoryBlock* block,
 | |
|     VmaAllocHandle allocHandle,
 | |
|     VkDeviceSize alignment,
 | |
|     VkDeviceSize size,
 | |
|     uint32_t memoryTypeIndex,
 | |
|     VmaSuballocationType suballocationType,
 | |
|     bool mapped)
 | |
| {
 | |
|     VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
 | |
|     VMA_ASSERT(block != VMA_NULL);
 | |
|     m_Type = (uint8_t)ALLOCATION_TYPE_BLOCK;
 | |
|     m_Alignment = alignment;
 | |
|     m_Size = size;
 | |
|     m_MemoryTypeIndex = memoryTypeIndex;
 | |
|     if(mapped)
 | |
|     {
 | |
|         VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
 | |
|         m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
 | |
|     }
 | |
|     m_SuballocationType = (uint8_t)suballocationType;
 | |
|     m_BlockAllocation.m_Block = block;
 | |
|     m_BlockAllocation.m_AllocHandle = allocHandle;
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::InitDedicatedAllocation(
 | |
|     VmaPool hParentPool,
 | |
|     uint32_t memoryTypeIndex,
 | |
|     VkDeviceMemory hMemory,
 | |
|     VmaSuballocationType suballocationType,
 | |
|     void* pMappedData,
 | |
|     VkDeviceSize size)
 | |
| {
 | |
|     VMA_ASSERT(m_Type == ALLOCATION_TYPE_NONE);
 | |
|     VMA_ASSERT(hMemory != VK_NULL_HANDLE);
 | |
|     m_Type = (uint8_t)ALLOCATION_TYPE_DEDICATED;
 | |
|     m_Alignment = 0;
 | |
|     m_Size = size;
 | |
|     m_MemoryTypeIndex = memoryTypeIndex;
 | |
|     m_SuballocationType = (uint8_t)suballocationType;
 | |
|     if(pMappedData != VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
 | |
|         m_Flags |= (uint8_t)FLAG_PERSISTENT_MAP;
 | |
|     }
 | |
|     m_DedicatedAllocation.m_hParentPool = hParentPool;
 | |
|     m_DedicatedAllocation.m_hMemory = hMemory;
 | |
|     m_DedicatedAllocation.m_pMappedData = pMappedData;
 | |
|     m_DedicatedAllocation.m_Prev = VMA_NULL;
 | |
|     m_DedicatedAllocation.m_Next = VMA_NULL;
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::SetName(VmaAllocator hAllocator, const char* pName)
 | |
| {
 | |
|     VMA_ASSERT(pName == VMA_NULL || pName != m_pName);
 | |
| 
 | |
|     FreeName(hAllocator);
 | |
| 
 | |
|     if (pName != VMA_NULL)
 | |
|         m_pName = VmaCreateStringCopy(hAllocator->GetAllocationCallbacks(), pName);
 | |
| }
 | |
| 
 | |
| uint8_t VmaAllocation_T::SwapBlockAllocation(VmaAllocator hAllocator, VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocation != VMA_NULL);
 | |
|     VMA_ASSERT(m_Type == ALLOCATION_TYPE_BLOCK);
 | |
|     VMA_ASSERT(allocation->m_Type == ALLOCATION_TYPE_BLOCK);
 | |
| 
 | |
|     if (m_MapCount != 0)
 | |
|         m_BlockAllocation.m_Block->Unmap(hAllocator, m_MapCount);
 | |
| 
 | |
|     m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, allocation);
 | |
|     VMA_SWAP(m_BlockAllocation, allocation->m_BlockAllocation);
 | |
|     m_BlockAllocation.m_Block->m_pMetadata->SetAllocationUserData(m_BlockAllocation.m_AllocHandle, this);
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
|     VMA_SWAP(m_BufferImageUsage, allocation->m_BufferImageUsage);
 | |
| #endif
 | |
|     return m_MapCount;
 | |
| }
 | |
| 
 | |
| VmaAllocHandle VmaAllocation_T::GetAllocHandle() const
 | |
| {
 | |
|     switch (m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         return m_BlockAllocation.m_AllocHandle;
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         return VK_NULL_HANDLE;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return VK_NULL_HANDLE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaAllocation_T::GetOffset() const
 | |
| {
 | |
|     switch (m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         return m_BlockAllocation.m_Block->m_pMetadata->GetAllocationOffset(m_BlockAllocation.m_AllocHandle);
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         return 0;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VmaPool VmaAllocation_T::GetParentPool() const
 | |
| {
 | |
|     switch (m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         return m_BlockAllocation.m_Block->GetParentPool();
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         return m_DedicatedAllocation.m_hParentPool;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return VK_NULL_HANDLE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkDeviceMemory VmaAllocation_T::GetMemory() const
 | |
| {
 | |
|     switch (m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         return m_BlockAllocation.m_Block->GetDeviceMemory();
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         return m_DedicatedAllocation.m_hMemory;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return VK_NULL_HANDLE;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void* VmaAllocation_T::GetMappedData() const
 | |
| {
 | |
|     switch (m_Type)
 | |
|     {
 | |
|     case ALLOCATION_TYPE_BLOCK:
 | |
|         if (m_MapCount != 0 || IsPersistentMap())
 | |
|         {
 | |
|             void* pBlockData = m_BlockAllocation.m_Block->GetMappedData();
 | |
|             VMA_ASSERT(pBlockData != VMA_NULL);
 | |
|             return (char*)pBlockData + GetOffset();
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             return VMA_NULL;
 | |
|         }
 | |
|         break;
 | |
|     case ALLOCATION_TYPE_DEDICATED:
 | |
|         VMA_ASSERT((m_DedicatedAllocation.m_pMappedData != VMA_NULL) == (m_MapCount != 0 || IsPersistentMap()));
 | |
|         return m_DedicatedAllocation.m_pMappedData;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return VMA_NULL;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::BlockAllocMap()
 | |
| {
 | |
|     VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
 | |
|     VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
 | |
| 
 | |
|     if (m_MapCount < 0xFF)
 | |
|     {
 | |
|         ++m_MapCount;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Allocation mapped too many times simultaneously.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::BlockAllocUnmap()
 | |
| {
 | |
|     VMA_ASSERT(GetType() == ALLOCATION_TYPE_BLOCK);
 | |
| 
 | |
|     if (m_MapCount > 0)
 | |
|     {
 | |
|         --m_MapCount;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Unmapping allocation not previously mapped.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocation_T::DedicatedAllocMap(VmaAllocator hAllocator, void** ppData)
 | |
| {
 | |
|     VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
 | |
|     VMA_ASSERT(IsMappingAllowed() && "Mapping is not allowed on this allocation! Please use one of the new VMA_ALLOCATION_CREATE_HOST_ACCESS_* flags when creating it.");
 | |
| 
 | |
|     if (m_MapCount != 0 || IsPersistentMap())
 | |
|     {
 | |
|         if (m_MapCount < 0xFF)
 | |
|         {
 | |
|             VMA_ASSERT(m_DedicatedAllocation.m_pMappedData != VMA_NULL);
 | |
|             *ppData = m_DedicatedAllocation.m_pMappedData;
 | |
|             ++m_MapCount;
 | |
|             return VK_SUCCESS;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_ASSERT(0 && "Dedicated allocation mapped too many times simultaneously.");
 | |
|             return VK_ERROR_MEMORY_MAP_FAILED;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VkResult result = (*hAllocator->GetVulkanFunctions().vkMapMemory)(
 | |
|             hAllocator->m_hDevice,
 | |
|             m_DedicatedAllocation.m_hMemory,
 | |
|             0, // offset
 | |
|             VK_WHOLE_SIZE,
 | |
|             0, // flags
 | |
|             ppData);
 | |
|         if (result == VK_SUCCESS)
 | |
|         {
 | |
|             m_DedicatedAllocation.m_pMappedData = *ppData;
 | |
|             m_MapCount = 1;
 | |
|         }
 | |
|         return result;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::DedicatedAllocUnmap(VmaAllocator hAllocator)
 | |
| {
 | |
|     VMA_ASSERT(GetType() == ALLOCATION_TYPE_DEDICATED);
 | |
| 
 | |
|     if (m_MapCount > 0)
 | |
|     {
 | |
|         --m_MapCount;
 | |
|         if (m_MapCount == 0 && !IsPersistentMap())
 | |
|         {
 | |
|             m_DedicatedAllocation.m_pMappedData = VMA_NULL;
 | |
|             (*hAllocator->GetVulkanFunctions().vkUnmapMemory)(
 | |
|                 hAllocator->m_hDevice,
 | |
|                 m_DedicatedAllocation.m_hMemory);
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Unmapping dedicated allocation not previously mapped.");
 | |
|     }
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaAllocation_T::InitBufferImageUsage(uint32_t bufferImageUsage)
 | |
| {
 | |
|     VMA_ASSERT(m_BufferImageUsage == 0);
 | |
|     m_BufferImageUsage = bufferImageUsage;
 | |
| }
 | |
| 
 | |
| void VmaAllocation_T::PrintParameters(class VmaJsonWriter& json) const
 | |
| {
 | |
|     json.WriteString("Type");
 | |
|     json.WriteString(VMA_SUBALLOCATION_TYPE_NAMES[m_SuballocationType]);
 | |
| 
 | |
|     json.WriteString("Size");
 | |
|     json.WriteNumber(m_Size);
 | |
|     json.WriteString("Usage");
 | |
|     json.WriteNumber(m_BufferImageUsage);
 | |
| 
 | |
|     if (m_pUserData != VMA_NULL)
 | |
|     {
 | |
|         json.WriteString("CustomData");
 | |
|         json.BeginString();
 | |
|         json.ContinueString_Pointer(m_pUserData);
 | |
|         json.EndString();
 | |
|     }
 | |
|     if (m_pName != VMA_NULL)
 | |
|     {
 | |
|         json.WriteString("Name");
 | |
|         json.WriteString(m_pName);
 | |
|     }
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| void VmaAllocation_T::FreeName(VmaAllocator hAllocator)
 | |
| {
 | |
|     if(m_pName)
 | |
|     {
 | |
|         VmaFreeString(hAllocator->GetAllocationCallbacks(), m_pName);
 | |
|         m_pName = VMA_NULL;
 | |
|     }
 | |
| }
 | |
| #endif // _VMA_ALLOCATION_T_FUNCTIONS
 | |
| 
 | |
| #ifndef _VMA_BLOCK_VECTOR_FUNCTIONS
 | |
| VmaBlockVector::VmaBlockVector(
 | |
|     VmaAllocator hAllocator,
 | |
|     VmaPool hParentPool,
 | |
|     uint32_t memoryTypeIndex,
 | |
|     VkDeviceSize preferredBlockSize,
 | |
|     size_t minBlockCount,
 | |
|     size_t maxBlockCount,
 | |
|     VkDeviceSize bufferImageGranularity,
 | |
|     bool explicitBlockSize,
 | |
|     uint32_t algorithm,
 | |
|     float priority,
 | |
|     VkDeviceSize minAllocationAlignment,
 | |
|     void* pMemoryAllocateNext)
 | |
|     : m_hAllocator(hAllocator),
 | |
|     m_hParentPool(hParentPool),
 | |
|     m_MemoryTypeIndex(memoryTypeIndex),
 | |
|     m_PreferredBlockSize(preferredBlockSize),
 | |
|     m_MinBlockCount(minBlockCount),
 | |
|     m_MaxBlockCount(maxBlockCount),
 | |
|     m_BufferImageGranularity(bufferImageGranularity),
 | |
|     m_ExplicitBlockSize(explicitBlockSize),
 | |
|     m_Algorithm(algorithm),
 | |
|     m_Priority(priority),
 | |
|     m_MinAllocationAlignment(minAllocationAlignment),
 | |
|     m_pMemoryAllocateNext(pMemoryAllocateNext),
 | |
|     m_Blocks(VmaStlAllocator<VmaDeviceMemoryBlock*>(hAllocator->GetAllocationCallbacks())),
 | |
|     m_NextBlockId(0) {}
 | |
| 
 | |
| VmaBlockVector::~VmaBlockVector()
 | |
| {
 | |
|     for (size_t i = m_Blocks.size(); i--; )
 | |
|     {
 | |
|         m_Blocks[i]->Destroy(m_hAllocator);
 | |
|         vma_delete(m_hAllocator, m_Blocks[i]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::CreateMinBlocks()
 | |
| {
 | |
|     for (size_t i = 0; i < m_MinBlockCount; ++i)
 | |
|     {
 | |
|         VkResult res = CreateBlock(m_PreferredBlockSize, VMA_NULL);
 | |
|         if (res != VK_SUCCESS)
 | |
|         {
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::AddStatistics(VmaStatistics& inoutStats)
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
| 
 | |
|     const size_t blockCount = m_Blocks.size();
 | |
|     for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | |
|     {
 | |
|         const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | |
|         VMA_ASSERT(pBlock);
 | |
|         VMA_HEAVY_ASSERT(pBlock->Validate());
 | |
|         pBlock->m_pMetadata->AddStatistics(inoutStats);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::AddDetailedStatistics(VmaDetailedStatistics& inoutStats)
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
| 
 | |
|     const size_t blockCount = m_Blocks.size();
 | |
|     for (uint32_t blockIndex = 0; blockIndex < blockCount; ++blockIndex)
 | |
|     {
 | |
|         const VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | |
|         VMA_ASSERT(pBlock);
 | |
|         VMA_HEAVY_ASSERT(pBlock->Validate());
 | |
|         pBlock->m_pMetadata->AddDetailedStatistics(inoutStats);
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool VmaBlockVector::IsEmpty()
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
|     return m_Blocks.empty();
 | |
| }
 | |
| 
 | |
| bool VmaBlockVector::IsCorruptionDetectionEnabled() const
 | |
| {
 | |
|     const uint32_t requiredMemFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT;
 | |
|     return (VMA_DEBUG_DETECT_CORRUPTION != 0) &&
 | |
|         (VMA_DEBUG_MARGIN > 0) &&
 | |
|         (m_Algorithm == 0 || m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT) &&
 | |
|         (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & requiredMemFlags) == requiredMemFlags;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::Allocate(
 | |
|     VkDeviceSize size,
 | |
|     VkDeviceSize alignment,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     VmaSuballocationType suballocType,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations)
 | |
| {
 | |
|     size_t allocIndex;
 | |
|     VkResult res = VK_SUCCESS;
 | |
| 
 | |
|     alignment = VMA_MAX(alignment, m_MinAllocationAlignment);
 | |
| 
 | |
|     if (IsCorruptionDetectionEnabled())
 | |
|     {
 | |
|         size = VmaAlignUp<VkDeviceSize>(size, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
 | |
|         alignment = VmaAlignUp<VkDeviceSize>(alignment, sizeof(VMA_CORRUPTION_DETECTION_MAGIC_VALUE));
 | |
|     }
 | |
| 
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
|         for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | |
|         {
 | |
|             res = AllocatePage(
 | |
|                 size,
 | |
|                 alignment,
 | |
|                 createInfo,
 | |
|                 suballocType,
 | |
|                 pAllocations + allocIndex);
 | |
|             if (res != VK_SUCCESS)
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (res != VK_SUCCESS)
 | |
|     {
 | |
|         // Free all already created allocations.
 | |
|         while (allocIndex--)
 | |
|             Free(pAllocations[allocIndex]);
 | |
|         memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::AllocatePage(
 | |
|     VkDeviceSize size,
 | |
|     VkDeviceSize alignment,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     VmaSuballocationType suballocType,
 | |
|     VmaAllocation* pAllocation)
 | |
| {
 | |
|     const bool isUpperAddress = (createInfo.flags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
 | |
| 
 | |
|     VkDeviceSize freeMemory;
 | |
|     {
 | |
|         const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
 | |
|         VmaBudget heapBudget = {};
 | |
|         m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
 | |
|         freeMemory = (heapBudget.usage < heapBudget.budget) ? (heapBudget.budget - heapBudget.usage) : 0;
 | |
|     }
 | |
| 
 | |
|     const bool canFallbackToDedicated = !HasExplicitBlockSize() &&
 | |
|         (createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0;
 | |
|     const bool canCreateNewBlock =
 | |
|         ((createInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0) &&
 | |
|         (m_Blocks.size() < m_MaxBlockCount) &&
 | |
|         (freeMemory >= size || !canFallbackToDedicated);
 | |
|     uint32_t strategy = createInfo.flags & VMA_ALLOCATION_CREATE_STRATEGY_MASK;
 | |
| 
 | |
|     // Upper address can only be used with linear allocator and within single memory block.
 | |
|     if (isUpperAddress &&
 | |
|         (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT || m_MaxBlockCount > 1))
 | |
|     {
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
| 
 | |
|     // Early reject: requested allocation size is larger that maximum block size for this block vector.
 | |
|     if (size + VMA_DEBUG_MARGIN > m_PreferredBlockSize)
 | |
|     {
 | |
|         return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|     }
 | |
| 
 | |
|     // 1. Search existing allocations. Try to allocate.
 | |
|     if (m_Algorithm == VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
 | |
|     {
 | |
|         // Use only last block.
 | |
|         if (!m_Blocks.empty())
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks.back();
 | |
|             VMA_ASSERT(pCurrBlock);
 | |
|             VkResult res = AllocateFromBlock(
 | |
|                 pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | |
|             if (res == VK_SUCCESS)
 | |
|             {
 | |
|                 VMA_DEBUG_LOG_FORMAT("    Returned from last block #%u", pCurrBlock->GetId());
 | |
|                 IncrementallySortBlocks();
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if (strategy != VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT) // MIN_MEMORY or default
 | |
|         {
 | |
|             const bool isHostVisible =
 | |
|                 (m_hAllocator->m_MemProps.memoryTypes[m_MemoryTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0;
 | |
|             if(isHostVisible)
 | |
|             {
 | |
|                 const bool isMappingAllowed = (createInfo.flags &
 | |
|                     (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
 | |
|                 /*
 | |
|                 For non-mappable allocations, check blocks that are not mapped first.
 | |
|                 For mappable allocations, check blocks that are already mapped first.
 | |
|                 This way, having many blocks, we will separate mappable and non-mappable allocations,
 | |
|                 hopefully limiting the number of blocks that are mapped, which will help tools like RenderDoc.
 | |
|                 */
 | |
|                 for(size_t mappingI = 0; mappingI < 2; ++mappingI)
 | |
|                 {
 | |
|                     // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
 | |
|                     for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | |
|                     {
 | |
|                         VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | |
|                         VMA_ASSERT(pCurrBlock);
 | |
|                         const bool isBlockMapped = pCurrBlock->GetMappedData() != VMA_NULL;
 | |
|                         if((mappingI == 0) == (isMappingAllowed == isBlockMapped))
 | |
|                         {
 | |
|                             VkResult res = AllocateFromBlock(
 | |
|                                 pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | |
|                             if (res == VK_SUCCESS)
 | |
|                             {
 | |
|                                 VMA_DEBUG_LOG_FORMAT("    Returned from existing block #%u", pCurrBlock->GetId());
 | |
|                                 IncrementallySortBlocks();
 | |
|                                 return VK_SUCCESS;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Forward order in m_Blocks - prefer blocks with smallest amount of free space.
 | |
|                 for (size_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | |
|                 {
 | |
|                     VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | |
|                     VMA_ASSERT(pCurrBlock);
 | |
|                     VkResult res = AllocateFromBlock(
 | |
|                         pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | |
|                     if (res == VK_SUCCESS)
 | |
|                     {
 | |
|                         VMA_DEBUG_LOG_FORMAT("    Returned from existing block #%u", pCurrBlock->GetId());
 | |
|                         IncrementallySortBlocks();
 | |
|                         return VK_SUCCESS;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else // VMA_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT
 | |
|         {
 | |
|             // Backward order in m_Blocks - prefer blocks with largest amount of free space.
 | |
|             for (size_t blockIndex = m_Blocks.size(); blockIndex--; )
 | |
|             {
 | |
|                 VmaDeviceMemoryBlock* const pCurrBlock = m_Blocks[blockIndex];
 | |
|                 VMA_ASSERT(pCurrBlock);
 | |
|                 VkResult res = AllocateFromBlock(pCurrBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | |
|                 if (res == VK_SUCCESS)
 | |
|                 {
 | |
|                     VMA_DEBUG_LOG_FORMAT("    Returned from existing block #%u", pCurrBlock->GetId());
 | |
|                     IncrementallySortBlocks();
 | |
|                     return VK_SUCCESS;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // 2. Try to create new block.
 | |
|     if (canCreateNewBlock)
 | |
|     {
 | |
|         // Calculate optimal size for new block.
 | |
|         VkDeviceSize newBlockSize = m_PreferredBlockSize;
 | |
|         uint32_t newBlockSizeShift = 0;
 | |
|         const uint32_t NEW_BLOCK_SIZE_SHIFT_MAX = 3;
 | |
| 
 | |
|         if (!m_ExplicitBlockSize)
 | |
|         {
 | |
|             // Allocate 1/8, 1/4, 1/2 as first blocks.
 | |
|             const VkDeviceSize maxExistingBlockSize = CalcMaxBlockSize();
 | |
|             for (uint32_t i = 0; i < NEW_BLOCK_SIZE_SHIFT_MAX; ++i)
 | |
|             {
 | |
|                 const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
 | |
|                 if (smallerNewBlockSize > maxExistingBlockSize && smallerNewBlockSize >= size * 2)
 | |
|                 {
 | |
|                     newBlockSize = smallerNewBlockSize;
 | |
|                     ++newBlockSizeShift;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         size_t newBlockIndex = 0;
 | |
|         VkResult res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
 | |
|             CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|         // Allocation of this size failed? Try 1/2, 1/4, 1/8 of m_PreferredBlockSize.
 | |
|         if (!m_ExplicitBlockSize)
 | |
|         {
 | |
|             while (res < 0 && newBlockSizeShift < NEW_BLOCK_SIZE_SHIFT_MAX)
 | |
|             {
 | |
|                 const VkDeviceSize smallerNewBlockSize = newBlockSize / 2;
 | |
|                 if (smallerNewBlockSize >= size)
 | |
|                 {
 | |
|                     newBlockSize = smallerNewBlockSize;
 | |
|                     ++newBlockSizeShift;
 | |
|                     res = (newBlockSize <= freeMemory || !canFallbackToDedicated) ?
 | |
|                         CreateBlock(newBlockSize, &newBlockIndex) : VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (res == VK_SUCCESS)
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* const pBlock = m_Blocks[newBlockIndex];
 | |
|             VMA_ASSERT(pBlock->m_pMetadata->GetSize() >= size);
 | |
| 
 | |
|             res = AllocateFromBlock(
 | |
|                 pBlock, size, alignment, createInfo.flags, createInfo.pUserData, suballocType, strategy, pAllocation);
 | |
|             if (res == VK_SUCCESS)
 | |
|             {
 | |
|                 VMA_DEBUG_LOG_FORMAT("    Created new block #%u Size=%llu", pBlock->GetId(), newBlockSize);
 | |
|                 IncrementallySortBlocks();
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 // Allocation from new block failed, possibly due to VMA_DEBUG_MARGIN or alignment.
 | |
|                 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::Free(const VmaAllocation hAllocation)
 | |
| {
 | |
|     VmaDeviceMemoryBlock* pBlockToDelete = VMA_NULL;
 | |
| 
 | |
|     bool budgetExceeded = false;
 | |
|     {
 | |
|         const uint32_t heapIndex = m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex);
 | |
|         VmaBudget heapBudget = {};
 | |
|         m_hAllocator->GetHeapBudgets(&heapBudget, heapIndex, 1);
 | |
|         budgetExceeded = heapBudget.usage >= heapBudget.budget;
 | |
|     }
 | |
| 
 | |
|     // Scope for lock.
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
| 
 | |
|         VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
 | |
| 
 | |
|         if (IsCorruptionDetectionEnabled())
 | |
|         {
 | |
|             VkResult res = pBlock->ValidateMagicValueAfterAllocation(m_hAllocator, hAllocation->GetOffset(), hAllocation->GetSize());
 | |
|             VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to validate magic value.");
 | |
|         }
 | |
| 
 | |
|         if (hAllocation->IsPersistentMap())
 | |
|         {
 | |
|             pBlock->Unmap(m_hAllocator, 1);
 | |
|         }
 | |
| 
 | |
|         const bool hadEmptyBlockBeforeFree = HasEmptyBlock();
 | |
|         pBlock->m_pMetadata->Free(hAllocation->GetAllocHandle());
 | |
|         pBlock->PostFree(m_hAllocator);
 | |
|         VMA_HEAVY_ASSERT(pBlock->Validate());
 | |
| 
 | |
|         VMA_DEBUG_LOG_FORMAT("  Freed from MemoryTypeIndex=%u", m_MemoryTypeIndex);
 | |
| 
 | |
|         const bool canDeleteBlock = m_Blocks.size() > m_MinBlockCount;
 | |
|         // pBlock became empty after this deallocation.
 | |
|         if (pBlock->m_pMetadata->IsEmpty())
 | |
|         {
 | |
|             // Already had empty block. We don't want to have two, so delete this one.
 | |
|             if ((hadEmptyBlockBeforeFree || budgetExceeded) && canDeleteBlock)
 | |
|             {
 | |
|                 pBlockToDelete = pBlock;
 | |
|                 Remove(pBlock);
 | |
|             }
 | |
|             // else: We now have one empty block - leave it. A hysteresis to avoid allocating whole block back and forth.
 | |
|         }
 | |
|         // pBlock didn't become empty, but we have another empty block - find and free that one.
 | |
|         // (This is optional, heuristics.)
 | |
|         else if (hadEmptyBlockBeforeFree && canDeleteBlock)
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* pLastBlock = m_Blocks.back();
 | |
|             if (pLastBlock->m_pMetadata->IsEmpty())
 | |
|             {
 | |
|                 pBlockToDelete = pLastBlock;
 | |
|                 m_Blocks.pop_back();
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         IncrementallySortBlocks();
 | |
|     }
 | |
| 
 | |
|     // Destruction of a free block. Deferred until this point, outside of mutex
 | |
|     // lock, for performance reason.
 | |
|     if (pBlockToDelete != VMA_NULL)
 | |
|     {
 | |
|         VMA_DEBUG_LOG_FORMAT("    Deleted empty block #%u", pBlockToDelete->GetId());
 | |
|         pBlockToDelete->Destroy(m_hAllocator);
 | |
|         vma_delete(m_hAllocator, pBlockToDelete);
 | |
|     }
 | |
| 
 | |
|     m_hAllocator->m_Budget.RemoveAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), hAllocation->GetSize());
 | |
|     m_hAllocator->m_AllocationObjectAllocator.Free(hAllocation);
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaBlockVector::CalcMaxBlockSize() const
 | |
| {
 | |
|     VkDeviceSize result = 0;
 | |
|     for (size_t i = m_Blocks.size(); i--; )
 | |
|     {
 | |
|         result = VMA_MAX(result, m_Blocks[i]->m_pMetadata->GetSize());
 | |
|         if (result >= m_PreferredBlockSize)
 | |
|         {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::Remove(VmaDeviceMemoryBlock* pBlock)
 | |
| {
 | |
|     for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | |
|     {
 | |
|         if (m_Blocks[blockIndex] == pBlock)
 | |
|         {
 | |
|             VmaVectorRemove(m_Blocks, blockIndex);
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
|     VMA_ASSERT(0);
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::IncrementallySortBlocks()
 | |
| {
 | |
|     if (!m_IncrementalSort)
 | |
|         return;
 | |
|     if (m_Algorithm != VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
 | |
|     {
 | |
|         // Bubble sort only until first swap.
 | |
|         for (size_t i = 1; i < m_Blocks.size(); ++i)
 | |
|         {
 | |
|             if (m_Blocks[i - 1]->m_pMetadata->GetSumFreeSize() > m_Blocks[i]->m_pMetadata->GetSumFreeSize())
 | |
|             {
 | |
|                 VMA_SWAP(m_Blocks[i - 1], m_Blocks[i]);
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaBlockVector::SortByFreeSize()
 | |
| {
 | |
|     VMA_SORT(m_Blocks.begin(), m_Blocks.end(),
 | |
|         [](VmaDeviceMemoryBlock* b1, VmaDeviceMemoryBlock* b2) -> bool
 | |
|         {
 | |
|             return b1->m_pMetadata->GetSumFreeSize() < b2->m_pMetadata->GetSumFreeSize();
 | |
|         });
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::AllocateFromBlock(
 | |
|     VmaDeviceMemoryBlock* pBlock,
 | |
|     VkDeviceSize size,
 | |
|     VkDeviceSize alignment,
 | |
|     VmaAllocationCreateFlags allocFlags,
 | |
|     void* pUserData,
 | |
|     VmaSuballocationType suballocType,
 | |
|     uint32_t strategy,
 | |
|     VmaAllocation* pAllocation)
 | |
| {
 | |
|     const bool isUpperAddress = (allocFlags & VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT) != 0;
 | |
| 
 | |
|     VmaAllocationRequest currRequest = {};
 | |
|     if (pBlock->m_pMetadata->CreateAllocationRequest(
 | |
|         size,
 | |
|         alignment,
 | |
|         isUpperAddress,
 | |
|         suballocType,
 | |
|         strategy,
 | |
|         &currRequest))
 | |
|     {
 | |
|         return CommitAllocationRequest(currRequest, pBlock, alignment, allocFlags, pUserData, suballocType, pAllocation);
 | |
|     }
 | |
|     return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::CommitAllocationRequest(
 | |
|     VmaAllocationRequest& allocRequest,
 | |
|     VmaDeviceMemoryBlock* pBlock,
 | |
|     VkDeviceSize alignment,
 | |
|     VmaAllocationCreateFlags allocFlags,
 | |
|     void* pUserData,
 | |
|     VmaSuballocationType suballocType,
 | |
|     VmaAllocation* pAllocation)
 | |
| {
 | |
|     const bool mapped = (allocFlags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0;
 | |
|     const bool isUserDataString = (allocFlags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0;
 | |
|     const bool isMappingAllowed = (allocFlags &
 | |
|         (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0;
 | |
| 
 | |
|     pBlock->PostAlloc(m_hAllocator);
 | |
|     // Allocate from pCurrBlock.
 | |
|     if (mapped)
 | |
|     {
 | |
|         VkResult res = pBlock->Map(m_hAllocator, 1, VMA_NULL);
 | |
|         if (res != VK_SUCCESS)
 | |
|         {
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *pAllocation = m_hAllocator->m_AllocationObjectAllocator.Allocate(isMappingAllowed);
 | |
|     pBlock->m_pMetadata->Alloc(allocRequest, suballocType, *pAllocation);
 | |
|     (*pAllocation)->InitBlockAllocation(
 | |
|         pBlock,
 | |
|         allocRequest.allocHandle,
 | |
|         alignment,
 | |
|         allocRequest.size, // Not size, as actual allocation size may be larger than requested!
 | |
|         m_MemoryTypeIndex,
 | |
|         suballocType,
 | |
|         mapped);
 | |
|     VMA_HEAVY_ASSERT(pBlock->Validate());
 | |
|     if (isUserDataString)
 | |
|         (*pAllocation)->SetName(m_hAllocator, (const char*)pUserData);
 | |
|     else
 | |
|         (*pAllocation)->SetUserData(m_hAllocator, pUserData);
 | |
|     m_hAllocator->m_Budget.AddAllocation(m_hAllocator->MemoryTypeIndexToHeapIndex(m_MemoryTypeIndex), allocRequest.size);
 | |
|     if (VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | |
|     {
 | |
|         m_hAllocator->FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
 | |
|     }
 | |
|     if (IsCorruptionDetectionEnabled())
 | |
|     {
 | |
|         VkResult res = pBlock->WriteMagicValueAfterAllocation(m_hAllocator, (*pAllocation)->GetOffset(), allocRequest.size);
 | |
|         VMA_ASSERT(res == VK_SUCCESS && "Couldn't map block memory to write magic value.");
 | |
|     }
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VkResult VmaBlockVector::CreateBlock(VkDeviceSize blockSize, size_t* pNewBlockIndex)
 | |
| {
 | |
|     VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
 | |
|     allocInfo.pNext = m_pMemoryAllocateNext;
 | |
|     allocInfo.memoryTypeIndex = m_MemoryTypeIndex;
 | |
|     allocInfo.allocationSize = blockSize;
 | |
| 
 | |
| #if VMA_BUFFER_DEVICE_ADDRESS
 | |
|     // Every standalone block can potentially contain a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT - always enable the feature.
 | |
|     VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
 | |
|     if (m_hAllocator->m_UseKhrBufferDeviceAddress)
 | |
|     {
 | |
|         allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
 | |
|         VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
 | |
|     }
 | |
| #endif // VMA_BUFFER_DEVICE_ADDRESS
 | |
| 
 | |
| #if VMA_MEMORY_PRIORITY
 | |
|     VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
 | |
|     if (m_hAllocator->m_UseExtMemoryPriority)
 | |
|     {
 | |
|         VMA_ASSERT(m_Priority >= 0.f && m_Priority <= 1.f);
 | |
|         priorityInfo.priority = m_Priority;
 | |
|         VmaPnextChainPushFront(&allocInfo, &priorityInfo);
 | |
|     }
 | |
| #endif // VMA_MEMORY_PRIORITY
 | |
| 
 | |
| #if VMA_EXTERNAL_MEMORY
 | |
|     // Attach VkExportMemoryAllocateInfoKHR if necessary.
 | |
|     VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
 | |
|     exportMemoryAllocInfo.handleTypes = m_hAllocator->GetExternalMemoryHandleTypeFlags(m_MemoryTypeIndex);
 | |
|     if (exportMemoryAllocInfo.handleTypes != 0)
 | |
|     {
 | |
|         VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
 | |
|     }
 | |
| #endif // VMA_EXTERNAL_MEMORY
 | |
| 
 | |
|     VkDeviceMemory mem = VK_NULL_HANDLE;
 | |
|     VkResult res = m_hAllocator->AllocateVulkanMemory(&allocInfo, &mem);
 | |
|     if (res < 0)
 | |
|     {
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     // New VkDeviceMemory successfully created.
 | |
| 
 | |
|     // Create new Allocation for it.
 | |
|     VmaDeviceMemoryBlock* const pBlock = vma_new(m_hAllocator, VmaDeviceMemoryBlock)(m_hAllocator);
 | |
|     pBlock->Init(
 | |
|         m_hAllocator,
 | |
|         m_hParentPool,
 | |
|         m_MemoryTypeIndex,
 | |
|         mem,
 | |
|         allocInfo.allocationSize,
 | |
|         m_NextBlockId++,
 | |
|         m_Algorithm,
 | |
|         m_BufferImageGranularity);
 | |
| 
 | |
|     m_Blocks.push_back(pBlock);
 | |
|     if (pNewBlockIndex != VMA_NULL)
 | |
|     {
 | |
|         *pNewBlockIndex = m_Blocks.size() - 1;
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| bool VmaBlockVector::HasEmptyBlock()
 | |
| {
 | |
|     for (size_t index = 0, count = m_Blocks.size(); index < count; ++index)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* const pBlock = m_Blocks[index];
 | |
|         if (pBlock->m_pMetadata->IsEmpty())
 | |
|         {
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaBlockVector::PrintDetailedMap(class VmaJsonWriter& json)
 | |
| {
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
| 
 | |
| 
 | |
|     json.BeginObject();
 | |
|     for (size_t i = 0; i < m_Blocks.size(); ++i)
 | |
|     {
 | |
|         json.BeginString();
 | |
|         json.ContinueString(m_Blocks[i]->GetId());
 | |
|         json.EndString();
 | |
| 
 | |
|         json.BeginObject();
 | |
|         json.WriteString("MapRefCount");
 | |
|         json.WriteNumber(m_Blocks[i]->GetMapRefCount());
 | |
| 
 | |
|         m_Blocks[i]->m_pMetadata->PrintDetailedMap(json);
 | |
|         json.EndObject();
 | |
|     }
 | |
|     json.EndObject();
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| VkResult VmaBlockVector::CheckCorruption()
 | |
| {
 | |
|     if (!IsCorruptionDetectionEnabled())
 | |
|     {
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
| 
 | |
|     VmaMutexLockRead lock(m_Mutex, m_hAllocator->m_UseMutex);
 | |
|     for (uint32_t blockIndex = 0; blockIndex < m_Blocks.size(); ++blockIndex)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* const pBlock = m_Blocks[blockIndex];
 | |
|         VMA_ASSERT(pBlock);
 | |
|         VkResult res = pBlock->CheckCorruption(m_hAllocator);
 | |
|         if (res != VK_SUCCESS)
 | |
|         {
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| #endif // _VMA_BLOCK_VECTOR_FUNCTIONS
 | |
| 
 | |
| #ifndef _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
 | |
| VmaDefragmentationContext_T::VmaDefragmentationContext_T(
 | |
|     VmaAllocator hAllocator,
 | |
|     const VmaDefragmentationInfo& info)
 | |
|     : m_MaxPassBytes(info.maxBytesPerPass == 0 ? VK_WHOLE_SIZE : info.maxBytesPerPass),
 | |
|     m_MaxPassAllocations(info.maxAllocationsPerPass == 0 ? UINT32_MAX : info.maxAllocationsPerPass),
 | |
|     m_BreakCallback(info.pfnBreakCallback),
 | |
|     m_BreakCallbackUserData(info.pBreakCallbackUserData),
 | |
|     m_MoveAllocator(hAllocator->GetAllocationCallbacks()),
 | |
|     m_Moves(m_MoveAllocator)
 | |
| {
 | |
|     m_Algorithm = info.flags & VMA_DEFRAGMENTATION_FLAG_ALGORITHM_MASK;
 | |
| 
 | |
|     if (info.pool != VMA_NULL)
 | |
|     {
 | |
|         m_BlockVectorCount = 1;
 | |
|         m_PoolBlockVector = &info.pool->m_BlockVector;
 | |
|         m_pBlockVectors = &m_PoolBlockVector;
 | |
|         m_PoolBlockVector->SetIncrementalSort(false);
 | |
|         m_PoolBlockVector->SortByFreeSize();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_BlockVectorCount = hAllocator->GetMemoryTypeCount();
 | |
|         m_PoolBlockVector = VMA_NULL;
 | |
|         m_pBlockVectors = hAllocator->m_pBlockVectors;
 | |
|         for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
 | |
|         {
 | |
|             VmaBlockVector* vector = m_pBlockVectors[i];
 | |
|             if (vector != VMA_NULL)
 | |
|             {
 | |
|                 vector->SetIncrementalSort(false);
 | |
|                 vector->SortByFreeSize();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     switch (m_Algorithm)
 | |
|     {
 | |
|     case 0: // Default algorithm
 | |
|         m_Algorithm = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT;
 | |
|         m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
 | |
|         break;
 | |
|     case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
 | |
|         m_AlgorithmState = vma_new_array(hAllocator, StateBalanced, m_BlockVectorCount);
 | |
|         break;
 | |
|     case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
 | |
|         if (hAllocator->GetBufferImageGranularity() > 1)
 | |
|         {
 | |
|             m_AlgorithmState = vma_new_array(hAllocator, StateExtensive, m_BlockVectorCount);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VmaDefragmentationContext_T::~VmaDefragmentationContext_T()
 | |
| {
 | |
|     if (m_PoolBlockVector != VMA_NULL)
 | |
|     {
 | |
|         m_PoolBlockVector->SetIncrementalSort(true);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
 | |
|         {
 | |
|             VmaBlockVector* vector = m_pBlockVectors[i];
 | |
|             if (vector != VMA_NULL)
 | |
|                 vector->SetIncrementalSort(true);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_AlgorithmState)
 | |
|     {
 | |
|         switch (m_Algorithm)
 | |
|         {
 | |
|         case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
 | |
|             vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateBalanced*>(m_AlgorithmState), m_BlockVectorCount);
 | |
|             break;
 | |
|         case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
 | |
|             vma_delete_array(m_MoveAllocator.m_pCallbacks, reinterpret_cast<StateExtensive*>(m_AlgorithmState), m_BlockVectorCount);
 | |
|             break;
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaDefragmentationContext_T::DefragmentPassBegin(VmaDefragmentationPassMoveInfo& moveInfo)
 | |
| {
 | |
|     if (m_PoolBlockVector != VMA_NULL)
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_PoolBlockVector->GetMutex(), m_PoolBlockVector->GetAllocator()->m_UseMutex);
 | |
| 
 | |
|         if (m_PoolBlockVector->GetBlockCount() > 1)
 | |
|             ComputeDefragmentation(*m_PoolBlockVector, 0);
 | |
|         else if (m_PoolBlockVector->GetBlockCount() == 1)
 | |
|             ReallocWithinBlock(*m_PoolBlockVector, m_PoolBlockVector->GetBlock(0));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         for (uint32_t i = 0; i < m_BlockVectorCount; ++i)
 | |
|         {
 | |
|             if (m_pBlockVectors[i] != VMA_NULL)
 | |
|             {
 | |
|                 VmaMutexLockWrite lock(m_pBlockVectors[i]->GetMutex(), m_pBlockVectors[i]->GetAllocator()->m_UseMutex);
 | |
| 
 | |
|                 if (m_pBlockVectors[i]->GetBlockCount() > 1)
 | |
|                 {
 | |
|                     if (ComputeDefragmentation(*m_pBlockVectors[i], i))
 | |
|                         break;
 | |
|                 }
 | |
|                 else if (m_pBlockVectors[i]->GetBlockCount() == 1)
 | |
|                 {
 | |
|                     if (ReallocWithinBlock(*m_pBlockVectors[i], m_pBlockVectors[i]->GetBlock(0)))
 | |
|                         break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     moveInfo.moveCount = static_cast<uint32_t>(m_Moves.size());
 | |
|     if (moveInfo.moveCount > 0)
 | |
|     {
 | |
|         moveInfo.pMoves = m_Moves.data();
 | |
|         return VK_INCOMPLETE;
 | |
|     }
 | |
| 
 | |
|     moveInfo.pMoves = VMA_NULL;
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VkResult VmaDefragmentationContext_T::DefragmentPassEnd(VmaDefragmentationPassMoveInfo& moveInfo)
 | |
| {
 | |
|     VMA_ASSERT(moveInfo.moveCount > 0 ? moveInfo.pMoves != VMA_NULL : true);
 | |
| 
 | |
|     VkResult result = VK_SUCCESS;
 | |
|     VmaStlAllocator<FragmentedBlock> blockAllocator(m_MoveAllocator.m_pCallbacks);
 | |
|     VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> immovableBlocks(blockAllocator);
 | |
|     VmaVector<FragmentedBlock, VmaStlAllocator<FragmentedBlock>> mappedBlocks(blockAllocator);
 | |
| 
 | |
|     VmaAllocator allocator = VMA_NULL;
 | |
|     for (uint32_t i = 0; i < moveInfo.moveCount; ++i)
 | |
|     {
 | |
|         VmaDefragmentationMove& move = moveInfo.pMoves[i];
 | |
|         size_t prevCount = 0, currentCount = 0;
 | |
|         VkDeviceSize freedBlockSize = 0;
 | |
| 
 | |
|         uint32_t vectorIndex;
 | |
|         VmaBlockVector* vector;
 | |
|         if (m_PoolBlockVector != VMA_NULL)
 | |
|         {
 | |
|             vectorIndex = 0;
 | |
|             vector = m_PoolBlockVector;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             vectorIndex = move.srcAllocation->GetMemoryTypeIndex();
 | |
|             vector = m_pBlockVectors[vectorIndex];
 | |
|             VMA_ASSERT(vector != VMA_NULL);
 | |
|         }
 | |
| 
 | |
|         switch (move.operation)
 | |
|         {
 | |
|         case VMA_DEFRAGMENTATION_MOVE_OPERATION_COPY:
 | |
|         {
 | |
|             uint8_t mapCount = move.srcAllocation->SwapBlockAllocation(vector->m_hAllocator, move.dstTmpAllocation);
 | |
|             if (mapCount > 0)
 | |
|             {
 | |
|                 allocator = vector->m_hAllocator;
 | |
|                 VmaDeviceMemoryBlock* newMapBlock = move.srcAllocation->GetBlock();
 | |
|                 bool notPresent = true;
 | |
|                 for (FragmentedBlock& block : mappedBlocks)
 | |
|                 {
 | |
|                     if (block.block == newMapBlock)
 | |
|                     {
 | |
|                         notPresent = false;
 | |
|                         block.data += mapCount;
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|                 if (notPresent)
 | |
|                     mappedBlocks.push_back({ mapCount, newMapBlock });
 | |
|             }
 | |
| 
 | |
|             // Scope for locks, Free have it's own lock
 | |
|             {
 | |
|                 VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | |
|                 prevCount = vector->GetBlockCount();
 | |
|                 freedBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
 | |
|             }
 | |
|             vector->Free(move.dstTmpAllocation);
 | |
|             {
 | |
|                 VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | |
|                 currentCount = vector->GetBlockCount();
 | |
|             }
 | |
| 
 | |
|             result = VK_INCOMPLETE;
 | |
|             break;
 | |
|         }
 | |
|         case VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE:
 | |
|         {
 | |
|             m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
 | |
|             --m_PassStats.allocationsMoved;
 | |
|             vector->Free(move.dstTmpAllocation);
 | |
| 
 | |
|             VmaDeviceMemoryBlock* newBlock = move.srcAllocation->GetBlock();
 | |
|             bool notPresent = true;
 | |
|             for (const FragmentedBlock& block : immovableBlocks)
 | |
|             {
 | |
|                 if (block.block == newBlock)
 | |
|                 {
 | |
|                     notPresent = false;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|             if (notPresent)
 | |
|                 immovableBlocks.push_back({ vectorIndex, newBlock });
 | |
|             break;
 | |
|         }
 | |
|         case VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY:
 | |
|         {
 | |
|             m_PassStats.bytesMoved -= move.srcAllocation->GetSize();
 | |
|             --m_PassStats.allocationsMoved;
 | |
|             // Scope for locks, Free have it's own lock
 | |
|             {
 | |
|                 VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | |
|                 prevCount = vector->GetBlockCount();
 | |
|                 freedBlockSize = move.srcAllocation->GetBlock()->m_pMetadata->GetSize();
 | |
|             }
 | |
|             vector->Free(move.srcAllocation);
 | |
|             {
 | |
|                 VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | |
|                 currentCount = vector->GetBlockCount();
 | |
|             }
 | |
|             freedBlockSize *= prevCount - currentCount;
 | |
| 
 | |
|             VkDeviceSize dstBlockSize;
 | |
|             {
 | |
|                 VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | |
|                 dstBlockSize = move.dstTmpAllocation->GetBlock()->m_pMetadata->GetSize();
 | |
|             }
 | |
|             vector->Free(move.dstTmpAllocation);
 | |
|             {
 | |
|                 VmaMutexLockRead lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | |
|                 freedBlockSize += dstBlockSize * (currentCount - vector->GetBlockCount());
 | |
|                 currentCount = vector->GetBlockCount();
 | |
|             }
 | |
| 
 | |
|             result = VK_INCOMPLETE;
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
| 
 | |
|         if (prevCount > currentCount)
 | |
|         {
 | |
|             size_t freedBlocks = prevCount - currentCount;
 | |
|             m_PassStats.deviceMemoryBlocksFreed += static_cast<uint32_t>(freedBlocks);
 | |
|             m_PassStats.bytesFreed += freedBlockSize;
 | |
|         }
 | |
| 
 | |
|         if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT &&
 | |
|             m_AlgorithmState != VMA_NULL)
 | |
|         {
 | |
|             // Avoid unnecessary tries to allocate when new free block is available
 | |
|             StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[vectorIndex];
 | |
|             if (state.firstFreeBlock != SIZE_MAX)
 | |
|             {
 | |
|                 const size_t diff = prevCount - currentCount;
 | |
|                 if (state.firstFreeBlock >= diff)
 | |
|                 {
 | |
|                     state.firstFreeBlock -= diff;
 | |
|                     if (state.firstFreeBlock != 0)
 | |
|                         state.firstFreeBlock -= vector->GetBlock(state.firstFreeBlock - 1)->m_pMetadata->IsEmpty();
 | |
|                 }
 | |
|                 else
 | |
|                     state.firstFreeBlock = 0;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     moveInfo.moveCount = 0;
 | |
|     moveInfo.pMoves = VMA_NULL;
 | |
|     m_Moves.clear();
 | |
| 
 | |
|     // Update stats
 | |
|     m_GlobalStats.allocationsMoved += m_PassStats.allocationsMoved;
 | |
|     m_GlobalStats.bytesFreed += m_PassStats.bytesFreed;
 | |
|     m_GlobalStats.bytesMoved += m_PassStats.bytesMoved;
 | |
|     m_GlobalStats.deviceMemoryBlocksFreed += m_PassStats.deviceMemoryBlocksFreed;
 | |
|     m_PassStats = { 0 };
 | |
| 
 | |
|     // Move blocks with immovable allocations according to algorithm
 | |
|     if (immovableBlocks.size() > 0)
 | |
|     {
 | |
|         do
 | |
|         {
 | |
|             if(m_Algorithm == VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT)
 | |
|             {
 | |
|                 if (m_AlgorithmState != VMA_NULL)
 | |
|                 {
 | |
|                     bool swapped = false;
 | |
|                     // Move to the start of free blocks range
 | |
|                     for (const FragmentedBlock& block : immovableBlocks)
 | |
|                     {
 | |
|                         StateExtensive& state = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[block.data];
 | |
|                         if (state.operation != StateExtensive::Operation::Cleanup)
 | |
|                         {
 | |
|                             VmaBlockVector* vector = m_pBlockVectors[block.data];
 | |
|                             VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | |
| 
 | |
|                             for (size_t i = 0, count = vector->GetBlockCount() - m_ImmovableBlockCount; i < count; ++i)
 | |
|                             {
 | |
|                                 if (vector->GetBlock(i) == block.block)
 | |
|                                 {
 | |
|                                     VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[vector->GetBlockCount() - ++m_ImmovableBlockCount]);
 | |
|                                     if (state.firstFreeBlock != SIZE_MAX)
 | |
|                                     {
 | |
|                                         if (i + 1 < state.firstFreeBlock)
 | |
|                                         {
 | |
|                                             if (state.firstFreeBlock > 1)
 | |
|                                                 VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[--state.firstFreeBlock]);
 | |
|                                             else
 | |
|                                                 --state.firstFreeBlock;
 | |
|                                         }
 | |
|                                     }
 | |
|                                     swapped = true;
 | |
|                                     break;
 | |
|                                 }
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                     if (swapped)
 | |
|                         result = VK_INCOMPLETE;
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Move to the beginning
 | |
|             for (const FragmentedBlock& block : immovableBlocks)
 | |
|             {
 | |
|                 VmaBlockVector* vector = m_pBlockVectors[block.data];
 | |
|                 VmaMutexLockWrite lock(vector->GetMutex(), vector->GetAllocator()->m_UseMutex);
 | |
| 
 | |
|                 for (size_t i = m_ImmovableBlockCount; i < vector->GetBlockCount(); ++i)
 | |
|                 {
 | |
|                     if (vector->GetBlock(i) == block.block)
 | |
|                     {
 | |
|                         VMA_SWAP(vector->m_Blocks[i], vector->m_Blocks[m_ImmovableBlockCount++]);
 | |
|                         break;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         } while (false);
 | |
|     }
 | |
| 
 | |
|     // Bulk-map destination blocks
 | |
|     for (const FragmentedBlock& block : mappedBlocks)
 | |
|     {
 | |
|         VkResult res = block.block->Map(allocator, block.data, VMA_NULL);
 | |
|         VMA_ASSERT(res == VK_SUCCESS);
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::ComputeDefragmentation(VmaBlockVector& vector, size_t index)
 | |
| {
 | |
|     switch (m_Algorithm)
 | |
|     {
 | |
|     case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT:
 | |
|         return ComputeDefragmentation_Fast(vector);
 | |
|     case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_BALANCED_BIT:
 | |
|         return ComputeDefragmentation_Balanced(vector, index, true);
 | |
|     case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FULL_BIT:
 | |
|         return ComputeDefragmentation_Full(vector);
 | |
|     case VMA_DEFRAGMENTATION_FLAG_ALGORITHM_EXTENSIVE_BIT:
 | |
|         return ComputeDefragmentation_Extensive(vector, index);
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return ComputeDefragmentation_Balanced(vector, index, true);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VmaDefragmentationContext_T::MoveAllocationData VmaDefragmentationContext_T::GetMoveData(
 | |
|     VmaAllocHandle handle, VmaBlockMetadata* metadata)
 | |
| {
 | |
|     MoveAllocationData moveData;
 | |
|     moveData.move.srcAllocation = (VmaAllocation)metadata->GetAllocationUserData(handle);
 | |
|     moveData.size = moveData.move.srcAllocation->GetSize();
 | |
|     moveData.alignment = moveData.move.srcAllocation->GetAlignment();
 | |
|     moveData.type = moveData.move.srcAllocation->GetSuballocationType();
 | |
|     moveData.flags = 0;
 | |
| 
 | |
|     if (moveData.move.srcAllocation->IsPersistentMap())
 | |
|         moveData.flags |= VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
|     if (moveData.move.srcAllocation->IsMappingAllowed())
 | |
|         moveData.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
 | |
| 
 | |
|     return moveData;
 | |
| }
 | |
| 
 | |
| VmaDefragmentationContext_T::CounterStatus VmaDefragmentationContext_T::CheckCounters(VkDeviceSize bytes)
 | |
| {
 | |
|     // Check custom criteria if exists
 | |
|     if (m_BreakCallback && m_BreakCallback(m_BreakCallbackUserData))
 | |
|         return CounterStatus::End;
 | |
| 
 | |
|     // Ignore allocation if will exceed max size for copy
 | |
|     if (m_PassStats.bytesMoved + bytes > m_MaxPassBytes)
 | |
|     {
 | |
|         if (++m_IgnoredAllocs < MAX_ALLOCS_TO_IGNORE)
 | |
|             return CounterStatus::Ignore;
 | |
|         else
 | |
|             return CounterStatus::End;
 | |
|     }
 | |
|     else
 | |
|         m_IgnoredAllocs = 0;
 | |
|     return CounterStatus::Pass;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::IncrementCounters(VkDeviceSize bytes)
 | |
| {
 | |
|     m_PassStats.bytesMoved += bytes;
 | |
|     // Early return when max found
 | |
|     if (++m_PassStats.allocationsMoved >= m_MaxPassAllocations || m_PassStats.bytesMoved >= m_MaxPassBytes)
 | |
|     {
 | |
|         VMA_ASSERT((m_PassStats.allocationsMoved == m_MaxPassAllocations ||
 | |
|             m_PassStats.bytesMoved == m_MaxPassBytes) && "Exceeded maximal pass threshold!");
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::ReallocWithinBlock(VmaBlockVector& vector, VmaDeviceMemoryBlock* block)
 | |
| {
 | |
|     VmaBlockMetadata* metadata = block->m_pMetadata;
 | |
| 
 | |
|     for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | |
|         handle != VK_NULL_HANDLE;
 | |
|         handle = metadata->GetNextAllocation(handle))
 | |
|     {
 | |
|         MoveAllocationData moveData = GetMoveData(handle, metadata);
 | |
|         // Ignore newly created allocations by defragmentation algorithm
 | |
|         if (moveData.move.srcAllocation->GetUserData() == this)
 | |
|             continue;
 | |
|         switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | |
|         {
 | |
|         case CounterStatus::Ignore:
 | |
|             continue;
 | |
|         case CounterStatus::End:
 | |
|             return true;
 | |
|         case CounterStatus::Pass:
 | |
|             break;
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
| 
 | |
|         VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
 | |
|         if (offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
 | |
|         {
 | |
|             VmaAllocationRequest request = {};
 | |
|             if (metadata->CreateAllocationRequest(
 | |
|                 moveData.size,
 | |
|                 moveData.alignment,
 | |
|                 false,
 | |
|                 moveData.type,
 | |
|                 VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | |
|                 &request))
 | |
|             {
 | |
|                 if (metadata->GetAllocationOffset(request.allocHandle) < offset)
 | |
|                 {
 | |
|                     if (vector.CommitAllocationRequest(
 | |
|                         request,
 | |
|                         block,
 | |
|                         moveData.alignment,
 | |
|                         moveData.flags,
 | |
|                         this,
 | |
|                         moveData.type,
 | |
|                         &moveData.move.dstTmpAllocation) == VK_SUCCESS)
 | |
|                     {
 | |
|                         m_Moves.push_back(moveData.move);
 | |
|                         if (IncrementCounters(moveData.size))
 | |
|                             return true;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::AllocInOtherBlock(size_t start, size_t end, MoveAllocationData& data, VmaBlockVector& vector)
 | |
| {
 | |
|     for (; start < end; ++start)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* dstBlock = vector.GetBlock(start);
 | |
|         if (dstBlock->m_pMetadata->GetSumFreeSize() >= data.size)
 | |
|         {
 | |
|             if (vector.AllocateFromBlock(dstBlock,
 | |
|                 data.size,
 | |
|                 data.alignment,
 | |
|                 data.flags,
 | |
|                 this,
 | |
|                 data.type,
 | |
|                 0,
 | |
|                 &data.move.dstTmpAllocation) == VK_SUCCESS)
 | |
|             {
 | |
|                 m_Moves.push_back(data.move);
 | |
|                 if (IncrementCounters(data.size))
 | |
|                     return true;
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::ComputeDefragmentation_Fast(VmaBlockVector& vector)
 | |
| {
 | |
|     // Move only between blocks
 | |
| 
 | |
|     // Go through allocations in last blocks and try to fit them inside first ones
 | |
|     for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
 | |
|     {
 | |
|         VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
 | |
| 
 | |
|         for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | |
|             handle != VK_NULL_HANDLE;
 | |
|             handle = metadata->GetNextAllocation(handle))
 | |
|         {
 | |
|             MoveAllocationData moveData = GetMoveData(handle, metadata);
 | |
|             // Ignore newly created allocations by defragmentation algorithm
 | |
|             if (moveData.move.srcAllocation->GetUserData() == this)
 | |
|                 continue;
 | |
|             switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | |
|             {
 | |
|             case CounterStatus::Ignore:
 | |
|                 continue;
 | |
|             case CounterStatus::End:
 | |
|                 return true;
 | |
|             case CounterStatus::Pass:
 | |
|                 break;
 | |
|             default:
 | |
|                 VMA_ASSERT(0);
 | |
|             }
 | |
| 
 | |
|             // Check all previous blocks for free space
 | |
|             if (AllocInOtherBlock(0, i, moveData, vector))
 | |
|                 return true;
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::ComputeDefragmentation_Balanced(VmaBlockVector& vector, size_t index, bool update)
 | |
| {
 | |
|     // Go over every allocation and try to fit it in previous blocks at lowest offsets,
 | |
|     // if not possible: realloc within single block to minimize offset (exclude offset == 0),
 | |
|     // but only if there are noticeable gaps between them (some heuristic, ex. average size of allocation in block)
 | |
|     VMA_ASSERT(m_AlgorithmState != VMA_NULL);
 | |
| 
 | |
|     StateBalanced& vectorState = reinterpret_cast<StateBalanced*>(m_AlgorithmState)[index];
 | |
|     if (update && vectorState.avgAllocSize == UINT64_MAX)
 | |
|         UpdateVectorStatistics(vector, vectorState);
 | |
| 
 | |
|     const size_t startMoveCount = m_Moves.size();
 | |
|     VkDeviceSize minimalFreeRegion = vectorState.avgFreeSize / 2;
 | |
|     for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* block = vector.GetBlock(i);
 | |
|         VmaBlockMetadata* metadata = block->m_pMetadata;
 | |
|         VkDeviceSize prevFreeRegionSize = 0;
 | |
| 
 | |
|         for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | |
|             handle != VK_NULL_HANDLE;
 | |
|             handle = metadata->GetNextAllocation(handle))
 | |
|         {
 | |
|             MoveAllocationData moveData = GetMoveData(handle, metadata);
 | |
|             // Ignore newly created allocations by defragmentation algorithm
 | |
|             if (moveData.move.srcAllocation->GetUserData() == this)
 | |
|                 continue;
 | |
|             switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | |
|             {
 | |
|             case CounterStatus::Ignore:
 | |
|                 continue;
 | |
|             case CounterStatus::End:
 | |
|                 return true;
 | |
|             case CounterStatus::Pass:
 | |
|                 break;
 | |
|             default:
 | |
|                 VMA_ASSERT(0);
 | |
|             }
 | |
| 
 | |
|             // Check all previous blocks for free space
 | |
|             const size_t prevMoveCount = m_Moves.size();
 | |
|             if (AllocInOtherBlock(0, i, moveData, vector))
 | |
|                 return true;
 | |
| 
 | |
|             VkDeviceSize nextFreeRegionSize = metadata->GetNextFreeRegionSize(handle);
 | |
|             // If no room found then realloc within block for lower offset
 | |
|             VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
 | |
|             if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
 | |
|             {
 | |
|                 // Check if realloc will make sense
 | |
|                 if (prevFreeRegionSize >= minimalFreeRegion ||
 | |
|                     nextFreeRegionSize >= minimalFreeRegion ||
 | |
|                     moveData.size <= vectorState.avgFreeSize ||
 | |
|                     moveData.size <= vectorState.avgAllocSize)
 | |
|                 {
 | |
|                     VmaAllocationRequest request = {};
 | |
|                     if (metadata->CreateAllocationRequest(
 | |
|                         moveData.size,
 | |
|                         moveData.alignment,
 | |
|                         false,
 | |
|                         moveData.type,
 | |
|                         VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | |
|                         &request))
 | |
|                     {
 | |
|                         if (metadata->GetAllocationOffset(request.allocHandle) < offset)
 | |
|                         {
 | |
|                             if (vector.CommitAllocationRequest(
 | |
|                                 request,
 | |
|                                 block,
 | |
|                                 moveData.alignment,
 | |
|                                 moveData.flags,
 | |
|                                 this,
 | |
|                                 moveData.type,
 | |
|                                 &moveData.move.dstTmpAllocation) == VK_SUCCESS)
 | |
|                             {
 | |
|                                 m_Moves.push_back(moveData.move);
 | |
|                                 if (IncrementCounters(moveData.size))
 | |
|                                     return true;
 | |
|                             }
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             prevFreeRegionSize = nextFreeRegionSize;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // No moves performed, update statistics to current vector state
 | |
|     if (startMoveCount == m_Moves.size() && !update)
 | |
|     {
 | |
|         vectorState.avgAllocSize = UINT64_MAX;
 | |
|         return ComputeDefragmentation_Balanced(vector, index, false);
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::ComputeDefragmentation_Full(VmaBlockVector& vector)
 | |
| {
 | |
|     // Go over every allocation and try to fit it in previous blocks at lowest offsets,
 | |
|     // if not possible: realloc within single block to minimize offset (exclude offset == 0)
 | |
| 
 | |
|     for (size_t i = vector.GetBlockCount() - 1; i > m_ImmovableBlockCount; --i)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* block = vector.GetBlock(i);
 | |
|         VmaBlockMetadata* metadata = block->m_pMetadata;
 | |
| 
 | |
|         for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | |
|             handle != VK_NULL_HANDLE;
 | |
|             handle = metadata->GetNextAllocation(handle))
 | |
|         {
 | |
|             MoveAllocationData moveData = GetMoveData(handle, metadata);
 | |
|             // Ignore newly created allocations by defragmentation algorithm
 | |
|             if (moveData.move.srcAllocation->GetUserData() == this)
 | |
|                 continue;
 | |
|             switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | |
|             {
 | |
|             case CounterStatus::Ignore:
 | |
|                 continue;
 | |
|             case CounterStatus::End:
 | |
|                 return true;
 | |
|             case CounterStatus::Pass:
 | |
|                 break;
 | |
|             default:
 | |
|                 VMA_ASSERT(0);
 | |
|             }
 | |
| 
 | |
|             // Check all previous blocks for free space
 | |
|             const size_t prevMoveCount = m_Moves.size();
 | |
|             if (AllocInOtherBlock(0, i, moveData, vector))
 | |
|                 return true;
 | |
| 
 | |
|             // If no room found then realloc within block for lower offset
 | |
|             VkDeviceSize offset = moveData.move.srcAllocation->GetOffset();
 | |
|             if (prevMoveCount == m_Moves.size() && offset != 0 && metadata->GetSumFreeSize() >= moveData.size)
 | |
|             {
 | |
|                 VmaAllocationRequest request = {};
 | |
|                 if (metadata->CreateAllocationRequest(
 | |
|                     moveData.size,
 | |
|                     moveData.alignment,
 | |
|                     false,
 | |
|                     moveData.type,
 | |
|                     VMA_ALLOCATION_CREATE_STRATEGY_MIN_OFFSET_BIT,
 | |
|                     &request))
 | |
|                 {
 | |
|                     if (metadata->GetAllocationOffset(request.allocHandle) < offset)
 | |
|                     {
 | |
|                         if (vector.CommitAllocationRequest(
 | |
|                             request,
 | |
|                             block,
 | |
|                             moveData.alignment,
 | |
|                             moveData.flags,
 | |
|                             this,
 | |
|                             moveData.type,
 | |
|                             &moveData.move.dstTmpAllocation) == VK_SUCCESS)
 | |
|                         {
 | |
|                             m_Moves.push_back(moveData.move);
 | |
|                             if (IncrementCounters(moveData.size))
 | |
|                                 return true;
 | |
|                         }
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::ComputeDefragmentation_Extensive(VmaBlockVector& vector, size_t index)
 | |
| {
 | |
|     // First free single block, then populate it to the brim, then free another block, and so on
 | |
| 
 | |
|     // Fallback to previous algorithm since without granularity conflicts it can achieve max packing
 | |
|     if (vector.m_BufferImageGranularity == 1)
 | |
|         return ComputeDefragmentation_Full(vector);
 | |
| 
 | |
|     VMA_ASSERT(m_AlgorithmState != VMA_NULL);
 | |
| 
 | |
|     StateExtensive& vectorState = reinterpret_cast<StateExtensive*>(m_AlgorithmState)[index];
 | |
| 
 | |
|     bool texturePresent = false, bufferPresent = false, otherPresent = false;
 | |
|     switch (vectorState.operation)
 | |
|     {
 | |
|     case StateExtensive::Operation::Done: // Vector defragmented
 | |
|         return false;
 | |
|     case StateExtensive::Operation::FindFreeBlockBuffer:
 | |
|     case StateExtensive::Operation::FindFreeBlockTexture:
 | |
|     case StateExtensive::Operation::FindFreeBlockAll:
 | |
|     {
 | |
|         // No more blocks to free, just perform fast realloc and move to cleanup
 | |
|         if (vectorState.firstFreeBlock == 0)
 | |
|         {
 | |
|             vectorState.operation = StateExtensive::Operation::Cleanup;
 | |
|             return ComputeDefragmentation_Fast(vector);
 | |
|         }
 | |
| 
 | |
|         // No free blocks, have to clear last one
 | |
|         size_t last = (vectorState.firstFreeBlock == SIZE_MAX ? vector.GetBlockCount() : vectorState.firstFreeBlock) - 1;
 | |
|         VmaBlockMetadata* freeMetadata = vector.GetBlock(last)->m_pMetadata;
 | |
| 
 | |
|         const size_t prevMoveCount = m_Moves.size();
 | |
|         for (VmaAllocHandle handle = freeMetadata->GetAllocationListBegin();
 | |
|             handle != VK_NULL_HANDLE;
 | |
|             handle = freeMetadata->GetNextAllocation(handle))
 | |
|         {
 | |
|             MoveAllocationData moveData = GetMoveData(handle, freeMetadata);
 | |
|             switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | |
|             {
 | |
|             case CounterStatus::Ignore:
 | |
|                 continue;
 | |
|             case CounterStatus::End:
 | |
|                 return true;
 | |
|             case CounterStatus::Pass:
 | |
|                 break;
 | |
|             default:
 | |
|                 VMA_ASSERT(0);
 | |
|             }
 | |
| 
 | |
|             // Check all previous blocks for free space
 | |
|             if (AllocInOtherBlock(0, last, moveData, vector))
 | |
|             {
 | |
|                 // Full clear performed already
 | |
|                 if (prevMoveCount != m_Moves.size() && freeMetadata->GetNextAllocation(handle) == VK_NULL_HANDLE)
 | |
|                     vectorState.firstFreeBlock = last;
 | |
|                 return true;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (prevMoveCount == m_Moves.size())
 | |
|         {
 | |
|             // Cannot perform full clear, have to move data in other blocks around
 | |
|             if (last != 0)
 | |
|             {
 | |
|                 for (size_t i = last - 1; i; --i)
 | |
|                 {
 | |
|                     if (ReallocWithinBlock(vector, vector.GetBlock(i)))
 | |
|                         return true;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (prevMoveCount == m_Moves.size())
 | |
|             {
 | |
|                 // No possible reallocs within blocks, try to move them around fast
 | |
|                 return ComputeDefragmentation_Fast(vector);
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             switch (vectorState.operation)
 | |
|             {
 | |
|             case StateExtensive::Operation::FindFreeBlockBuffer:
 | |
|                 vectorState.operation = StateExtensive::Operation::MoveBuffers;
 | |
|                 break;
 | |
|             case StateExtensive::Operation::FindFreeBlockTexture:
 | |
|                 vectorState.operation = StateExtensive::Operation::MoveTextures;
 | |
|                 break;
 | |
|             case StateExtensive::Operation::FindFreeBlockAll:
 | |
|                 vectorState.operation = StateExtensive::Operation::MoveAll;
 | |
|                 break;
 | |
|             default:
 | |
|                 VMA_ASSERT(0);
 | |
|                 vectorState.operation = StateExtensive::Operation::MoveTextures;
 | |
|             }
 | |
|             vectorState.firstFreeBlock = last;
 | |
|             // Nothing done, block found without reallocations, can perform another reallocs in same pass
 | |
|             return ComputeDefragmentation_Extensive(vector, index);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case StateExtensive::Operation::MoveTextures:
 | |
|     {
 | |
|         if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL, vector,
 | |
|             vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
 | |
|         {
 | |
|             if (texturePresent)
 | |
|             {
 | |
|                 vectorState.operation = StateExtensive::Operation::FindFreeBlockTexture;
 | |
|                 return ComputeDefragmentation_Extensive(vector, index);
 | |
|             }
 | |
| 
 | |
|             if (!bufferPresent && !otherPresent)
 | |
|             {
 | |
|                 vectorState.operation = StateExtensive::Operation::Cleanup;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // No more textures to move, check buffers
 | |
|             vectorState.operation = StateExtensive::Operation::MoveBuffers;
 | |
|             bufferPresent = false;
 | |
|             otherPresent = false;
 | |
|         }
 | |
|         else
 | |
|             break;
 | |
|         VMA_FALLTHROUGH; // Fallthrough
 | |
|     }
 | |
|     case StateExtensive::Operation::MoveBuffers:
 | |
|     {
 | |
|         if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_BUFFER, vector,
 | |
|             vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
 | |
|         {
 | |
|             if (bufferPresent)
 | |
|             {
 | |
|                 vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
 | |
|                 return ComputeDefragmentation_Extensive(vector, index);
 | |
|             }
 | |
| 
 | |
|             if (!otherPresent)
 | |
|             {
 | |
|                 vectorState.operation = StateExtensive::Operation::Cleanup;
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             // No more buffers to move, check all others
 | |
|             vectorState.operation = StateExtensive::Operation::MoveAll;
 | |
|             otherPresent = false;
 | |
|         }
 | |
|         else
 | |
|             break;
 | |
|         VMA_FALLTHROUGH; // Fallthrough
 | |
|     }
 | |
|     case StateExtensive::Operation::MoveAll:
 | |
|     {
 | |
|         if (MoveDataToFreeBlocks(VMA_SUBALLOCATION_TYPE_FREE, vector,
 | |
|             vectorState.firstFreeBlock, texturePresent, bufferPresent, otherPresent))
 | |
|         {
 | |
|             if (otherPresent)
 | |
|             {
 | |
|                 vectorState.operation = StateExtensive::Operation::FindFreeBlockBuffer;
 | |
|                 return ComputeDefragmentation_Extensive(vector, index);
 | |
|             }
 | |
|             // Everything moved
 | |
|             vectorState.operation = StateExtensive::Operation::Cleanup;
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
|     case StateExtensive::Operation::Cleanup:
 | |
|         // Cleanup is handled below so that other operations may reuse the cleanup code. This case is here to prevent the unhandled enum value warning (C4062).
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if (vectorState.operation == StateExtensive::Operation::Cleanup)
 | |
|     {
 | |
|         // All other work done, pack data in blocks even tighter if possible
 | |
|         const size_t prevMoveCount = m_Moves.size();
 | |
|         for (size_t i = 0; i < vector.GetBlockCount(); ++i)
 | |
|         {
 | |
|             if (ReallocWithinBlock(vector, vector.GetBlock(i)))
 | |
|                 return true;
 | |
|         }
 | |
| 
 | |
|         if (prevMoveCount == m_Moves.size())
 | |
|             vectorState.operation = StateExtensive::Operation::Done;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| void VmaDefragmentationContext_T::UpdateVectorStatistics(VmaBlockVector& vector, StateBalanced& state)
 | |
| {
 | |
|     size_t allocCount = 0;
 | |
|     size_t freeCount = 0;
 | |
|     state.avgFreeSize = 0;
 | |
|     state.avgAllocSize = 0;
 | |
| 
 | |
|     for (size_t i = 0; i < vector.GetBlockCount(); ++i)
 | |
|     {
 | |
|         VmaBlockMetadata* metadata = vector.GetBlock(i)->m_pMetadata;
 | |
| 
 | |
|         allocCount += metadata->GetAllocationCount();
 | |
|         freeCount += metadata->GetFreeRegionsCount();
 | |
|         state.avgFreeSize += metadata->GetSumFreeSize();
 | |
|         state.avgAllocSize += metadata->GetSize();
 | |
|     }
 | |
| 
 | |
|     state.avgAllocSize = (state.avgAllocSize - state.avgFreeSize) / allocCount;
 | |
|     state.avgFreeSize /= freeCount;
 | |
| }
 | |
| 
 | |
| bool VmaDefragmentationContext_T::MoveDataToFreeBlocks(VmaSuballocationType currentType,
 | |
|     VmaBlockVector& vector, size_t firstFreeBlock,
 | |
|     bool& texturePresent, bool& bufferPresent, bool& otherPresent)
 | |
| {
 | |
|     const size_t prevMoveCount = m_Moves.size();
 | |
|     for (size_t i = firstFreeBlock ; i;)
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* block = vector.GetBlock(--i);
 | |
|         VmaBlockMetadata* metadata = block->m_pMetadata;
 | |
| 
 | |
|         for (VmaAllocHandle handle = metadata->GetAllocationListBegin();
 | |
|             handle != VK_NULL_HANDLE;
 | |
|             handle = metadata->GetNextAllocation(handle))
 | |
|         {
 | |
|             MoveAllocationData moveData = GetMoveData(handle, metadata);
 | |
|             // Ignore newly created allocations by defragmentation algorithm
 | |
|             if (moveData.move.srcAllocation->GetUserData() == this)
 | |
|                 continue;
 | |
|             switch (CheckCounters(moveData.move.srcAllocation->GetSize()))
 | |
|             {
 | |
|             case CounterStatus::Ignore:
 | |
|                 continue;
 | |
|             case CounterStatus::End:
 | |
|                 return true;
 | |
|             case CounterStatus::Pass:
 | |
|                 break;
 | |
|             default:
 | |
|                 VMA_ASSERT(0);
 | |
|             }
 | |
| 
 | |
|             // Move only single type of resources at once
 | |
|             if (!VmaIsBufferImageGranularityConflict(moveData.type, currentType))
 | |
|             {
 | |
|                 // Try to fit allocation into free blocks
 | |
|                 if (AllocInOtherBlock(firstFreeBlock, vector.GetBlockCount(), moveData, vector))
 | |
|                     return false;
 | |
|             }
 | |
| 
 | |
|             if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL))
 | |
|                 texturePresent = true;
 | |
|             else if (!VmaIsBufferImageGranularityConflict(moveData.type, VMA_SUBALLOCATION_TYPE_BUFFER))
 | |
|                 bufferPresent = true;
 | |
|             else
 | |
|                 otherPresent = true;
 | |
|         }
 | |
|     }
 | |
|     return prevMoveCount == m_Moves.size();
 | |
| }
 | |
| #endif // _VMA_DEFRAGMENTATION_CONTEXT_FUNCTIONS
 | |
| 
 | |
| #ifndef _VMA_POOL_T_FUNCTIONS
 | |
| VmaPool_T::VmaPool_T(
 | |
|     VmaAllocator hAllocator,
 | |
|     const VmaPoolCreateInfo& createInfo,
 | |
|     VkDeviceSize preferredBlockSize)
 | |
|     : m_BlockVector(
 | |
|         hAllocator,
 | |
|         this, // hParentPool
 | |
|         createInfo.memoryTypeIndex,
 | |
|         createInfo.blockSize != 0 ? createInfo.blockSize : preferredBlockSize,
 | |
|         createInfo.minBlockCount,
 | |
|         createInfo.maxBlockCount,
 | |
|         (createInfo.flags& VMA_POOL_CREATE_IGNORE_BUFFER_IMAGE_GRANULARITY_BIT) != 0 ? 1 : hAllocator->GetBufferImageGranularity(),
 | |
|         createInfo.blockSize != 0, // explicitBlockSize
 | |
|         createInfo.flags & VMA_POOL_CREATE_ALGORITHM_MASK, // algorithm
 | |
|         createInfo.priority,
 | |
|         VMA_MAX(hAllocator->GetMemoryTypeMinAlignment(createInfo.memoryTypeIndex), createInfo.minAllocationAlignment),
 | |
|         createInfo.pMemoryAllocateNext),
 | |
|     m_Id(0),
 | |
|     m_Name(VMA_NULL) {}
 | |
| 
 | |
| VmaPool_T::~VmaPool_T()
 | |
| {
 | |
|     VMA_ASSERT(m_PrevPool == VMA_NULL && m_NextPool == VMA_NULL);
 | |
| }
 | |
| 
 | |
| void VmaPool_T::SetName(const char* pName)
 | |
| {
 | |
|     const VkAllocationCallbacks* allocs = m_BlockVector.GetAllocator()->GetAllocationCallbacks();
 | |
|     VmaFreeString(allocs, m_Name);
 | |
| 
 | |
|     if (pName != VMA_NULL)
 | |
|     {
 | |
|         m_Name = VmaCreateStringCopy(allocs, pName);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_Name = VMA_NULL;
 | |
|     }
 | |
| }
 | |
| #endif // _VMA_POOL_T_FUNCTIONS
 | |
| 
 | |
| #ifndef _VMA_ALLOCATOR_T_FUNCTIONS
 | |
| VmaAllocator_T::VmaAllocator_T(const VmaAllocatorCreateInfo* pCreateInfo) :
 | |
|     m_UseMutex((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT) == 0),
 | |
|     m_VulkanApiVersion(pCreateInfo->vulkanApiVersion != 0 ? pCreateInfo->vulkanApiVersion : VK_API_VERSION_1_0),
 | |
|     m_UseKhrDedicatedAllocation((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0),
 | |
|     m_UseKhrBindMemory2((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0),
 | |
|     m_UseExtMemoryBudget((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0),
 | |
|     m_UseAmdDeviceCoherentMemory((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT) != 0),
 | |
|     m_UseKhrBufferDeviceAddress((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT) != 0),
 | |
|     m_UseExtMemoryPriority((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT) != 0),
 | |
|     m_hDevice(pCreateInfo->device),
 | |
|     m_hInstance(pCreateInfo->instance),
 | |
|     m_AllocationCallbacksSpecified(pCreateInfo->pAllocationCallbacks != VMA_NULL),
 | |
|     m_AllocationCallbacks(pCreateInfo->pAllocationCallbacks ?
 | |
|         *pCreateInfo->pAllocationCallbacks : VmaEmptyAllocationCallbacks),
 | |
|     m_AllocationObjectAllocator(&m_AllocationCallbacks),
 | |
|     m_HeapSizeLimitMask(0),
 | |
|     m_DeviceMemoryCount(0),
 | |
|     m_PreferredLargeHeapBlockSize(0),
 | |
|     m_PhysicalDevice(pCreateInfo->physicalDevice),
 | |
|     m_GpuDefragmentationMemoryTypeBits(UINT32_MAX),
 | |
|     m_NextPoolId(0),
 | |
|     m_GlobalMemoryTypeBits(UINT32_MAX)
 | |
| {
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         m_UseKhrDedicatedAllocation = false;
 | |
|         m_UseKhrBindMemory2 = false;
 | |
|     }
 | |
| 
 | |
|     if(VMA_DEBUG_DETECT_CORRUPTION)
 | |
|     {
 | |
|         // Needs to be multiply of uint32_t size because we are going to write VMA_CORRUPTION_DETECTION_MAGIC_VALUE to it.
 | |
|         VMA_ASSERT(VMA_DEBUG_MARGIN % sizeof(uint32_t) == 0);
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(pCreateInfo->physicalDevice && pCreateInfo->device && pCreateInfo->instance);
 | |
| 
 | |
|     if(m_VulkanApiVersion < VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
| #if !(VMA_DEDICATED_ALLOCATION)
 | |
|         if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT) != 0)
 | |
|         {
 | |
|             VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT set but required extensions are disabled by preprocessor macros.");
 | |
|         }
 | |
| #endif
 | |
| #if !(VMA_BIND_MEMORY2)
 | |
|         if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT) != 0)
 | |
|         {
 | |
|             VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_KHR_BIND_MEMORY2_BIT set but required extension is disabled by preprocessor macros.");
 | |
|         }
 | |
| #endif
 | |
|     }
 | |
| #if !(VMA_MEMORY_BUDGET)
 | |
|     if((pCreateInfo->flags & VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT) != 0)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT set but required extension is disabled by preprocessor macros.");
 | |
|     }
 | |
| #endif
 | |
| #if !(VMA_BUFFER_DEVICE_ADDRESS)
 | |
|     if(m_UseKhrBufferDeviceAddress)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT is set but required extension or Vulkan 1.2 is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
 | |
|     }
 | |
| #endif
 | |
| #if VMA_VULKAN_VERSION < 1003000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
 | |
|     {
 | |
|         VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_3 but required Vulkan version is disabled by preprocessor macros.");
 | |
|     }
 | |
| #endif
 | |
| #if VMA_VULKAN_VERSION < 1002000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 2, 0))
 | |
|     {
 | |
|         VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_2 but required Vulkan version is disabled by preprocessor macros.");
 | |
|     }
 | |
| #endif
 | |
| #if VMA_VULKAN_VERSION < 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_ASSERT(0 && "vulkanApiVersion >= VK_API_VERSION_1_1 but required Vulkan version is disabled by preprocessor macros.");
 | |
|     }
 | |
| #endif
 | |
| #if !(VMA_MEMORY_PRIORITY)
 | |
|     if(m_UseExtMemoryPriority)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT is set but required extension is not available in your Vulkan header or its support in VMA has been disabled by a preprocessor macro.");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     memset(&m_DeviceMemoryCallbacks, 0 ,sizeof(m_DeviceMemoryCallbacks));
 | |
|     memset(&m_PhysicalDeviceProperties, 0, sizeof(m_PhysicalDeviceProperties));
 | |
|     memset(&m_MemProps, 0, sizeof(m_MemProps));
 | |
| 
 | |
|     memset(&m_pBlockVectors, 0, sizeof(m_pBlockVectors));
 | |
|     memset(&m_VulkanFunctions, 0, sizeof(m_VulkanFunctions));
 | |
| 
 | |
| #if VMA_EXTERNAL_MEMORY
 | |
|     memset(&m_TypeExternalMemoryHandleTypes, 0, sizeof(m_TypeExternalMemoryHandleTypes));
 | |
| #endif // #if VMA_EXTERNAL_MEMORY
 | |
| 
 | |
|     if(pCreateInfo->pDeviceMemoryCallbacks != VMA_NULL)
 | |
|     {
 | |
|         m_DeviceMemoryCallbacks.pUserData = pCreateInfo->pDeviceMemoryCallbacks->pUserData;
 | |
|         m_DeviceMemoryCallbacks.pfnAllocate = pCreateInfo->pDeviceMemoryCallbacks->pfnAllocate;
 | |
|         m_DeviceMemoryCallbacks.pfnFree = pCreateInfo->pDeviceMemoryCallbacks->pfnFree;
 | |
|     }
 | |
| 
 | |
|     ImportVulkanFunctions(pCreateInfo->pVulkanFunctions);
 | |
| 
 | |
|     (*m_VulkanFunctions.vkGetPhysicalDeviceProperties)(m_PhysicalDevice, &m_PhysicalDeviceProperties);
 | |
|     (*m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties)(m_PhysicalDevice, &m_MemProps);
 | |
| 
 | |
|     VMA_ASSERT(VmaIsPow2(VMA_MIN_ALIGNMENT));
 | |
|     VMA_ASSERT(VmaIsPow2(VMA_DEBUG_MIN_BUFFER_IMAGE_GRANULARITY));
 | |
|     VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.bufferImageGranularity));
 | |
|     VMA_ASSERT(VmaIsPow2(m_PhysicalDeviceProperties.limits.nonCoherentAtomSize));
 | |
| 
 | |
|     m_PreferredLargeHeapBlockSize = (pCreateInfo->preferredLargeHeapBlockSize != 0) ?
 | |
|         pCreateInfo->preferredLargeHeapBlockSize : static_cast<VkDeviceSize>(VMA_DEFAULT_LARGE_HEAP_BLOCK_SIZE);
 | |
| 
 | |
|     m_GlobalMemoryTypeBits = CalculateGlobalMemoryTypeBits();
 | |
| 
 | |
| #if VMA_EXTERNAL_MEMORY
 | |
|     if(pCreateInfo->pTypeExternalMemoryHandleTypes != VMA_NULL)
 | |
|     {
 | |
|         memcpy(m_TypeExternalMemoryHandleTypes, pCreateInfo->pTypeExternalMemoryHandleTypes,
 | |
|             sizeof(VkExternalMemoryHandleTypeFlagsKHR) * GetMemoryTypeCount());
 | |
|     }
 | |
| #endif // #if VMA_EXTERNAL_MEMORY
 | |
| 
 | |
|     if(pCreateInfo->pHeapSizeLimit != VMA_NULL)
 | |
|     {
 | |
|         for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
 | |
|         {
 | |
|             const VkDeviceSize limit = pCreateInfo->pHeapSizeLimit[heapIndex];
 | |
|             if(limit != VK_WHOLE_SIZE)
 | |
|             {
 | |
|                 m_HeapSizeLimitMask |= 1u << heapIndex;
 | |
|                 if(limit < m_MemProps.memoryHeaps[heapIndex].size)
 | |
|                 {
 | |
|                     m_MemProps.memoryHeaps[heapIndex].size = limit;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         // Create only supported types
 | |
|         if((m_GlobalMemoryTypeBits & (1u << memTypeIndex)) != 0)
 | |
|         {
 | |
|             const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(memTypeIndex);
 | |
|             m_pBlockVectors[memTypeIndex] = vma_new(this, VmaBlockVector)(
 | |
|                 this,
 | |
|                 VK_NULL_HANDLE, // hParentPool
 | |
|                 memTypeIndex,
 | |
|                 preferredBlockSize,
 | |
|                 0,
 | |
|                 SIZE_MAX,
 | |
|                 GetBufferImageGranularity(),
 | |
|                 false, // explicitBlockSize
 | |
|                 0, // algorithm
 | |
|                 0.5f, // priority (0.5 is the default per Vulkan spec)
 | |
|                 GetMemoryTypeMinAlignment(memTypeIndex), // minAllocationAlignment
 | |
|                 VMA_NULL); // // pMemoryAllocateNext
 | |
|             // No need to call m_pBlockVectors[memTypeIndex][blockVectorTypeIndex]->CreateMinBlocks here,
 | |
|             // becase minBlockCount is 0.
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::Init(const VmaAllocatorCreateInfo* pCreateInfo)
 | |
| {
 | |
|     VkResult res = VK_SUCCESS;
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     if(m_UseExtMemoryBudget)
 | |
|     {
 | |
|         UpdateVulkanBudget();
 | |
|     }
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VmaAllocator_T::~VmaAllocator_T()
 | |
| {
 | |
|     VMA_ASSERT(m_Pools.IsEmpty());
 | |
| 
 | |
|     for(size_t memTypeIndex = GetMemoryTypeCount(); memTypeIndex--; )
 | |
|     {
 | |
|         vma_delete(this, m_pBlockVectors[memTypeIndex]);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::ImportVulkanFunctions(const VmaVulkanFunctions* pVulkanFunctions)
 | |
| {
 | |
| #if VMA_STATIC_VULKAN_FUNCTIONS == 1
 | |
|     ImportVulkanFunctions_Static();
 | |
| #endif
 | |
| 
 | |
|     if(pVulkanFunctions != VMA_NULL)
 | |
|     {
 | |
|         ImportVulkanFunctions_Custom(pVulkanFunctions);
 | |
|     }
 | |
| 
 | |
| #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
 | |
|     ImportVulkanFunctions_Dynamic();
 | |
| #endif
 | |
| 
 | |
|     ValidateVulkanFunctions();
 | |
| }
 | |
| 
 | |
| #if VMA_STATIC_VULKAN_FUNCTIONS == 1
 | |
| 
 | |
| void VmaAllocator_T::ImportVulkanFunctions_Static()
 | |
| {
 | |
|     // Vulkan 1.0
 | |
|     m_VulkanFunctions.vkGetInstanceProcAddr = (PFN_vkGetInstanceProcAddr)vkGetInstanceProcAddr;
 | |
|     m_VulkanFunctions.vkGetDeviceProcAddr = (PFN_vkGetDeviceProcAddr)vkGetDeviceProcAddr;
 | |
|     m_VulkanFunctions.vkGetPhysicalDeviceProperties = (PFN_vkGetPhysicalDeviceProperties)vkGetPhysicalDeviceProperties;
 | |
|     m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties = (PFN_vkGetPhysicalDeviceMemoryProperties)vkGetPhysicalDeviceMemoryProperties;
 | |
|     m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
 | |
|     m_VulkanFunctions.vkFreeMemory = (PFN_vkFreeMemory)vkFreeMemory;
 | |
|     m_VulkanFunctions.vkMapMemory = (PFN_vkMapMemory)vkMapMemory;
 | |
|     m_VulkanFunctions.vkUnmapMemory = (PFN_vkUnmapMemory)vkUnmapMemory;
 | |
|     m_VulkanFunctions.vkFlushMappedMemoryRanges = (PFN_vkFlushMappedMemoryRanges)vkFlushMappedMemoryRanges;
 | |
|     m_VulkanFunctions.vkInvalidateMappedMemoryRanges = (PFN_vkInvalidateMappedMemoryRanges)vkInvalidateMappedMemoryRanges;
 | |
|     m_VulkanFunctions.vkBindBufferMemory = (PFN_vkBindBufferMemory)vkBindBufferMemory;
 | |
|     m_VulkanFunctions.vkBindImageMemory = (PFN_vkBindImageMemory)vkBindImageMemory;
 | |
|     m_VulkanFunctions.vkGetBufferMemoryRequirements = (PFN_vkGetBufferMemoryRequirements)vkGetBufferMemoryRequirements;
 | |
|     m_VulkanFunctions.vkGetImageMemoryRequirements = (PFN_vkGetImageMemoryRequirements)vkGetImageMemoryRequirements;
 | |
|     m_VulkanFunctions.vkCreateBuffer = (PFN_vkCreateBuffer)vkCreateBuffer;
 | |
|     m_VulkanFunctions.vkDestroyBuffer = (PFN_vkDestroyBuffer)vkDestroyBuffer;
 | |
|     m_VulkanFunctions.vkCreateImage = (PFN_vkCreateImage)vkCreateImage;
 | |
|     m_VulkanFunctions.vkDestroyImage = (PFN_vkDestroyImage)vkDestroyImage;
 | |
|     m_VulkanFunctions.vkCmdCopyBuffer = (PFN_vkCmdCopyBuffer)vkCmdCopyBuffer;
 | |
| 
 | |
|     // Vulkan 1.1
 | |
| #if VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR = (PFN_vkGetBufferMemoryRequirements2)vkGetBufferMemoryRequirements2;
 | |
|         m_VulkanFunctions.vkGetImageMemoryRequirements2KHR = (PFN_vkGetImageMemoryRequirements2)vkGetImageMemoryRequirements2;
 | |
|         m_VulkanFunctions.vkBindBufferMemory2KHR = (PFN_vkBindBufferMemory2)vkBindBufferMemory2;
 | |
|         m_VulkanFunctions.vkBindImageMemory2KHR = (PFN_vkBindImageMemory2)vkBindImageMemory2;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR = (PFN_vkGetPhysicalDeviceMemoryProperties2)vkGetPhysicalDeviceMemoryProperties2;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if VMA_VULKAN_VERSION >= 1003000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
 | |
|     {
 | |
|         m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements = (PFN_vkGetDeviceBufferMemoryRequirements)vkGetDeviceBufferMemoryRequirements;
 | |
|         m_VulkanFunctions.vkGetDeviceImageMemoryRequirements = (PFN_vkGetDeviceImageMemoryRequirements)vkGetDeviceImageMemoryRequirements;
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| #endif // VMA_STATIC_VULKAN_FUNCTIONS == 1
 | |
| 
 | |
| void VmaAllocator_T::ImportVulkanFunctions_Custom(const VmaVulkanFunctions* pVulkanFunctions)
 | |
| {
 | |
|     VMA_ASSERT(pVulkanFunctions != VMA_NULL);
 | |
| 
 | |
| #define VMA_COPY_IF_NOT_NULL(funcName) \
 | |
|     if(pVulkanFunctions->funcName != VMA_NULL) m_VulkanFunctions.funcName = pVulkanFunctions->funcName;
 | |
| 
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetInstanceProcAddr);
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetDeviceProcAddr);
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceProperties);
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties);
 | |
|     VMA_COPY_IF_NOT_NULL(vkAllocateMemory);
 | |
|     VMA_COPY_IF_NOT_NULL(vkFreeMemory);
 | |
|     VMA_COPY_IF_NOT_NULL(vkMapMemory);
 | |
|     VMA_COPY_IF_NOT_NULL(vkUnmapMemory);
 | |
|     VMA_COPY_IF_NOT_NULL(vkFlushMappedMemoryRanges);
 | |
|     VMA_COPY_IF_NOT_NULL(vkInvalidateMappedMemoryRanges);
 | |
|     VMA_COPY_IF_NOT_NULL(vkBindBufferMemory);
 | |
|     VMA_COPY_IF_NOT_NULL(vkBindImageMemory);
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements);
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements);
 | |
|     VMA_COPY_IF_NOT_NULL(vkCreateBuffer);
 | |
|     VMA_COPY_IF_NOT_NULL(vkDestroyBuffer);
 | |
|     VMA_COPY_IF_NOT_NULL(vkCreateImage);
 | |
|     VMA_COPY_IF_NOT_NULL(vkDestroyImage);
 | |
|     VMA_COPY_IF_NOT_NULL(vkCmdCopyBuffer);
 | |
| 
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetBufferMemoryRequirements2KHR);
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetImageMemoryRequirements2KHR);
 | |
| #endif
 | |
| 
 | |
| #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | |
|     VMA_COPY_IF_NOT_NULL(vkBindBufferMemory2KHR);
 | |
|     VMA_COPY_IF_NOT_NULL(vkBindImageMemory2KHR);
 | |
| #endif
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetPhysicalDeviceMemoryProperties2KHR);
 | |
| #endif
 | |
| 
 | |
| #if VMA_VULKAN_VERSION >= 1003000
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetDeviceBufferMemoryRequirements);
 | |
|     VMA_COPY_IF_NOT_NULL(vkGetDeviceImageMemoryRequirements);
 | |
| #endif
 | |
| 
 | |
| #undef VMA_COPY_IF_NOT_NULL
 | |
| }
 | |
| 
 | |
| #if VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
 | |
| 
 | |
| void VmaAllocator_T::ImportVulkanFunctions_Dynamic()
 | |
| {
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetInstanceProcAddr && m_VulkanFunctions.vkGetDeviceProcAddr &&
 | |
|         "To use VMA_DYNAMIC_VULKAN_FUNCTIONS in new versions of VMA you now have to pass "
 | |
|         "VmaVulkanFunctions::vkGetInstanceProcAddr and vkGetDeviceProcAddr as VmaAllocatorCreateInfo::pVulkanFunctions. "
 | |
|         "Other members can be null.");
 | |
| 
 | |
| #define VMA_FETCH_INSTANCE_FUNC(memberName, functionPointerType, functionNameString) \
 | |
|     if(m_VulkanFunctions.memberName == VMA_NULL) \
 | |
|         m_VulkanFunctions.memberName = \
 | |
|             (functionPointerType)m_VulkanFunctions.vkGetInstanceProcAddr(m_hInstance, functionNameString);
 | |
| #define VMA_FETCH_DEVICE_FUNC(memberName, functionPointerType, functionNameString) \
 | |
|     if(m_VulkanFunctions.memberName == VMA_NULL) \
 | |
|         m_VulkanFunctions.memberName = \
 | |
|             (functionPointerType)m_VulkanFunctions.vkGetDeviceProcAddr(m_hDevice, functionNameString);
 | |
| 
 | |
|     VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceProperties, PFN_vkGetPhysicalDeviceProperties, "vkGetPhysicalDeviceProperties");
 | |
|     VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties, PFN_vkGetPhysicalDeviceMemoryProperties, "vkGetPhysicalDeviceMemoryProperties");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkAllocateMemory, PFN_vkAllocateMemory, "vkAllocateMemory");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkFreeMemory, PFN_vkFreeMemory, "vkFreeMemory");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkMapMemory, PFN_vkMapMemory, "vkMapMemory");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkUnmapMemory, PFN_vkUnmapMemory, "vkUnmapMemory");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkFlushMappedMemoryRanges, PFN_vkFlushMappedMemoryRanges, "vkFlushMappedMemoryRanges");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkInvalidateMappedMemoryRanges, PFN_vkInvalidateMappedMemoryRanges, "vkInvalidateMappedMemoryRanges");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory, PFN_vkBindBufferMemory, "vkBindBufferMemory");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkBindImageMemory, PFN_vkBindImageMemory, "vkBindImageMemory");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements, PFN_vkGetBufferMemoryRequirements, "vkGetBufferMemoryRequirements");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements, PFN_vkGetImageMemoryRequirements, "vkGetImageMemoryRequirements");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkCreateBuffer, PFN_vkCreateBuffer, "vkCreateBuffer");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkDestroyBuffer, PFN_vkDestroyBuffer, "vkDestroyBuffer");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkCreateImage, PFN_vkCreateImage, "vkCreateImage");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkDestroyImage, PFN_vkDestroyImage, "vkDestroyImage");
 | |
|     VMA_FETCH_DEVICE_FUNC(vkCmdCopyBuffer, PFN_vkCmdCopyBuffer, "vkCmdCopyBuffer");
 | |
| 
 | |
| #if VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2, "vkGetBufferMemoryRequirements2");
 | |
|         VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2, "vkGetImageMemoryRequirements2");
 | |
|         VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2, "vkBindBufferMemory2");
 | |
|         VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2, "vkBindImageMemory2");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2");
 | |
|     }
 | |
|     else if(m_UseExtMemoryBudget)
 | |
|     {
 | |
|         VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2, "vkGetPhysicalDeviceMemoryProperties2KHR");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if VMA_DEDICATED_ALLOCATION
 | |
|     if(m_UseKhrDedicatedAllocation)
 | |
|     {
 | |
|         VMA_FETCH_DEVICE_FUNC(vkGetBufferMemoryRequirements2KHR, PFN_vkGetBufferMemoryRequirements2KHR, "vkGetBufferMemoryRequirements2KHR");
 | |
|         VMA_FETCH_DEVICE_FUNC(vkGetImageMemoryRequirements2KHR, PFN_vkGetImageMemoryRequirements2KHR, "vkGetImageMemoryRequirements2KHR");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if VMA_BIND_MEMORY2
 | |
|     if(m_UseKhrBindMemory2)
 | |
|     {
 | |
|         VMA_FETCH_DEVICE_FUNC(vkBindBufferMemory2KHR, PFN_vkBindBufferMemory2KHR, "vkBindBufferMemory2KHR");
 | |
|         VMA_FETCH_DEVICE_FUNC(vkBindImageMemory2KHR, PFN_vkBindImageMemory2KHR, "vkBindImageMemory2KHR");
 | |
|     }
 | |
| #endif // #if VMA_BIND_MEMORY2
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2");
 | |
|     }
 | |
|     else if(m_UseExtMemoryBudget)
 | |
|     {
 | |
|         VMA_FETCH_INSTANCE_FUNC(vkGetPhysicalDeviceMemoryProperties2KHR, PFN_vkGetPhysicalDeviceMemoryProperties2KHR, "vkGetPhysicalDeviceMemoryProperties2KHR");
 | |
|     }
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| 
 | |
| #if VMA_VULKAN_VERSION >= 1003000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
 | |
|     {
 | |
|         VMA_FETCH_DEVICE_FUNC(vkGetDeviceBufferMemoryRequirements, PFN_vkGetDeviceBufferMemoryRequirements, "vkGetDeviceBufferMemoryRequirements");
 | |
|         VMA_FETCH_DEVICE_FUNC(vkGetDeviceImageMemoryRequirements, PFN_vkGetDeviceImageMemoryRequirements, "vkGetDeviceImageMemoryRequirements");
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #undef VMA_FETCH_DEVICE_FUNC
 | |
| #undef VMA_FETCH_INSTANCE_FUNC
 | |
| }
 | |
| 
 | |
| #endif // VMA_DYNAMIC_VULKAN_FUNCTIONS == 1
 | |
| 
 | |
| void VmaAllocator_T::ValidateVulkanFunctions()
 | |
| {
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceProperties != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkAllocateMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkFreeMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkMapMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkUnmapMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkFlushMappedMemoryRanges != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkInvalidateMappedMemoryRanges != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkCreateBuffer != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkDestroyBuffer != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkCreateImage != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkDestroyImage != VMA_NULL);
 | |
|     VMA_ASSERT(m_VulkanFunctions.vkCmdCopyBuffer != VMA_NULL);
 | |
| 
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrDedicatedAllocation)
 | |
|     {
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR != VMA_NULL);
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkGetImageMemoryRequirements2KHR != VMA_NULL);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if VMA_BIND_MEMORY2 || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0) || m_UseKhrBindMemory2)
 | |
|     {
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL);
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_UseExtMemoryBudget || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkGetPhysicalDeviceMemoryProperties2KHR != VMA_NULL);
 | |
|     }
 | |
| #endif
 | |
| 
 | |
| #if VMA_VULKAN_VERSION >= 1003000
 | |
|     if(m_VulkanApiVersion >= VK_MAKE_VERSION(1, 3, 0))
 | |
|     {
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkGetDeviceBufferMemoryRequirements != VMA_NULL);
 | |
|         VMA_ASSERT(m_VulkanFunctions.vkGetDeviceImageMemoryRequirements != VMA_NULL);
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| VkDeviceSize VmaAllocator_T::CalcPreferredBlockSize(uint32_t memTypeIndex)
 | |
| {
 | |
|     const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
 | |
|     const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
 | |
|     const bool isSmallHeap = heapSize <= VMA_SMALL_HEAP_MAX_SIZE;
 | |
|     return VmaAlignUp(isSmallHeap ? (heapSize / 8) : m_PreferredLargeHeapBlockSize, (VkDeviceSize)32);
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateMemoryOfType(
 | |
|     VmaPool pool,
 | |
|     VkDeviceSize size,
 | |
|     VkDeviceSize alignment,
 | |
|     bool dedicatedPreferred,
 | |
|     VkBuffer dedicatedBuffer,
 | |
|     VkImage dedicatedImage,
 | |
|     VkFlags dedicatedBufferImageUsage,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     uint32_t memTypeIndex,
 | |
|     VmaSuballocationType suballocType,
 | |
|     VmaDedicatedAllocationList& dedicatedAllocations,
 | |
|     VmaBlockVector& blockVector,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations)
 | |
| {
 | |
|     VMA_ASSERT(pAllocations != VMA_NULL);
 | |
|     VMA_DEBUG_LOG_FORMAT("  AllocateMemory: MemoryTypeIndex=%u, AllocationCount=%zu, Size=%llu", memTypeIndex, allocationCount, size);
 | |
| 
 | |
|     VmaAllocationCreateInfo finalCreateInfo = createInfo;
 | |
|     VkResult res = CalcMemTypeParams(
 | |
|         finalCreateInfo,
 | |
|         memTypeIndex,
 | |
|         size,
 | |
|         allocationCount);
 | |
|     if(res != VK_SUCCESS)
 | |
|         return res;
 | |
| 
 | |
|     if((finalCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
 | |
|     {
 | |
|         return AllocateDedicatedMemory(
 | |
|             pool,
 | |
|             size,
 | |
|             suballocType,
 | |
|             dedicatedAllocations,
 | |
|             memTypeIndex,
 | |
|             (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
 | |
|             (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
 | |
|             (finalCreateInfo.flags &
 | |
|                 (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
 | |
|             (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
 | |
|             finalCreateInfo.pUserData,
 | |
|             finalCreateInfo.priority,
 | |
|             dedicatedBuffer,
 | |
|             dedicatedImage,
 | |
|             dedicatedBufferImageUsage,
 | |
|             allocationCount,
 | |
|             pAllocations,
 | |
|             blockVector.GetAllocationNextPtr());
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         const bool canAllocateDedicated =
 | |
|             (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) == 0 &&
 | |
|             (pool == VK_NULL_HANDLE || !blockVector.HasExplicitBlockSize());
 | |
| 
 | |
|         if(canAllocateDedicated)
 | |
|         {
 | |
|             // Heuristics: Allocate dedicated memory if requested size if greater than half of preferred block size.
 | |
|             if(size > blockVector.GetPreferredBlockSize() / 2)
 | |
|             {
 | |
|                 dedicatedPreferred = true;
 | |
|             }
 | |
|             // Protection against creating each allocation as dedicated when we reach or exceed heap size/budget,
 | |
|             // which can quickly deplete maxMemoryAllocationCount: Don't prefer dedicated allocations when above
 | |
|             // 3/4 of the maximum allocation count.
 | |
|             if(m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount < UINT32_MAX / 4 &&
 | |
|                 m_DeviceMemoryCount.load() > m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount * 3 / 4)
 | |
|             {
 | |
|                 dedicatedPreferred = false;
 | |
|             }
 | |
| 
 | |
|             if(dedicatedPreferred)
 | |
|             {
 | |
|                 res = AllocateDedicatedMemory(
 | |
|                     pool,
 | |
|                     size,
 | |
|                     suballocType,
 | |
|                     dedicatedAllocations,
 | |
|                     memTypeIndex,
 | |
|                     (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
 | |
|                     (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
 | |
|                     (finalCreateInfo.flags &
 | |
|                         (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
 | |
|                     (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
 | |
|                     finalCreateInfo.pUserData,
 | |
|                     finalCreateInfo.priority,
 | |
|                     dedicatedBuffer,
 | |
|                     dedicatedImage,
 | |
|                     dedicatedBufferImageUsage,
 | |
|                     allocationCount,
 | |
|                     pAllocations,
 | |
|                     blockVector.GetAllocationNextPtr());
 | |
|                 if(res == VK_SUCCESS)
 | |
|                 {
 | |
|                     // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here.
 | |
|                     VMA_DEBUG_LOG("    Allocated as DedicatedMemory");
 | |
|                     return VK_SUCCESS;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         res = blockVector.Allocate(
 | |
|             size,
 | |
|             alignment,
 | |
|             finalCreateInfo,
 | |
|             suballocType,
 | |
|             allocationCount,
 | |
|             pAllocations);
 | |
|         if(res == VK_SUCCESS)
 | |
|             return VK_SUCCESS;
 | |
| 
 | |
|         // Try dedicated memory.
 | |
|         if(canAllocateDedicated && !dedicatedPreferred)
 | |
|         {
 | |
|             res = AllocateDedicatedMemory(
 | |
|                 pool,
 | |
|                 size,
 | |
|                 suballocType,
 | |
|                 dedicatedAllocations,
 | |
|                 memTypeIndex,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_USER_DATA_COPY_STRING_BIT) != 0,
 | |
|                 (finalCreateInfo.flags &
 | |
|                     (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0,
 | |
|                 (finalCreateInfo.flags & VMA_ALLOCATION_CREATE_CAN_ALIAS_BIT) != 0,
 | |
|                 finalCreateInfo.pUserData,
 | |
|                 finalCreateInfo.priority,
 | |
|                 dedicatedBuffer,
 | |
|                 dedicatedImage,
 | |
|                 dedicatedBufferImageUsage,
 | |
|                 allocationCount,
 | |
|                 pAllocations,
 | |
|                 blockVector.GetAllocationNextPtr());
 | |
|             if(res == VK_SUCCESS)
 | |
|             {
 | |
|                 // Succeeded: AllocateDedicatedMemory function already filled pMemory, nothing more to do here.
 | |
|                 VMA_DEBUG_LOG("    Allocated as DedicatedMemory");
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|         }
 | |
|         // Everything failed: Return error code.
 | |
|         VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
 | |
|         return res;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateDedicatedMemory(
 | |
|     VmaPool pool,
 | |
|     VkDeviceSize size,
 | |
|     VmaSuballocationType suballocType,
 | |
|     VmaDedicatedAllocationList& dedicatedAllocations,
 | |
|     uint32_t memTypeIndex,
 | |
|     bool map,
 | |
|     bool isUserDataString,
 | |
|     bool isMappingAllowed,
 | |
|     bool canAliasMemory,
 | |
|     void* pUserData,
 | |
|     float priority,
 | |
|     VkBuffer dedicatedBuffer,
 | |
|     VkImage dedicatedImage,
 | |
|     VkFlags dedicatedBufferImageUsage,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations,
 | |
|     const void* pNextChain)
 | |
| {
 | |
|     VMA_ASSERT(allocationCount > 0 && pAllocations);
 | |
| 
 | |
|     VkMemoryAllocateInfo allocInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_INFO };
 | |
|     allocInfo.memoryTypeIndex = memTypeIndex;
 | |
|     allocInfo.allocationSize = size;
 | |
|     allocInfo.pNext = pNextChain;
 | |
| 
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     VkMemoryDedicatedAllocateInfoKHR dedicatedAllocInfo = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_ALLOCATE_INFO_KHR };
 | |
|     if(!canAliasMemory)
 | |
|     {
 | |
|         if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|         {
 | |
|             if(dedicatedBuffer != VK_NULL_HANDLE)
 | |
|             {
 | |
|                 VMA_ASSERT(dedicatedImage == VK_NULL_HANDLE);
 | |
|                 dedicatedAllocInfo.buffer = dedicatedBuffer;
 | |
|                 VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
 | |
|             }
 | |
|             else if(dedicatedImage != VK_NULL_HANDLE)
 | |
|             {
 | |
|                 dedicatedAllocInfo.image = dedicatedImage;
 | |
|                 VmaPnextChainPushFront(&allocInfo, &dedicatedAllocInfo);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
| 
 | |
| #if VMA_BUFFER_DEVICE_ADDRESS
 | |
|     VkMemoryAllocateFlagsInfoKHR allocFlagsInfo = { VK_STRUCTURE_TYPE_MEMORY_ALLOCATE_FLAGS_INFO_KHR };
 | |
|     if(m_UseKhrBufferDeviceAddress)
 | |
|     {
 | |
|         bool canContainBufferWithDeviceAddress = true;
 | |
|         if(dedicatedBuffer != VK_NULL_HANDLE)
 | |
|         {
 | |
|             canContainBufferWithDeviceAddress = dedicatedBufferImageUsage == UINT32_MAX || // Usage flags unknown
 | |
|                 (dedicatedBufferImageUsage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_EXT) != 0;
 | |
|         }
 | |
|         else if(dedicatedImage != VK_NULL_HANDLE)
 | |
|         {
 | |
|             canContainBufferWithDeviceAddress = false;
 | |
|         }
 | |
|         if(canContainBufferWithDeviceAddress)
 | |
|         {
 | |
|             allocFlagsInfo.flags = VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT_KHR;
 | |
|             VmaPnextChainPushFront(&allocInfo, &allocFlagsInfo);
 | |
|         }
 | |
|     }
 | |
| #endif // #if VMA_BUFFER_DEVICE_ADDRESS
 | |
| 
 | |
| #if VMA_MEMORY_PRIORITY
 | |
|     VkMemoryPriorityAllocateInfoEXT priorityInfo = { VK_STRUCTURE_TYPE_MEMORY_PRIORITY_ALLOCATE_INFO_EXT };
 | |
|     if(m_UseExtMemoryPriority)
 | |
|     {
 | |
|         VMA_ASSERT(priority >= 0.f && priority <= 1.f);
 | |
|         priorityInfo.priority = priority;
 | |
|         VmaPnextChainPushFront(&allocInfo, &priorityInfo);
 | |
|     }
 | |
| #endif // #if VMA_MEMORY_PRIORITY
 | |
| 
 | |
| #if VMA_EXTERNAL_MEMORY
 | |
|     // Attach VkExportMemoryAllocateInfoKHR if necessary.
 | |
|     VkExportMemoryAllocateInfoKHR exportMemoryAllocInfo = { VK_STRUCTURE_TYPE_EXPORT_MEMORY_ALLOCATE_INFO_KHR };
 | |
|     exportMemoryAllocInfo.handleTypes = GetExternalMemoryHandleTypeFlags(memTypeIndex);
 | |
|     if(exportMemoryAllocInfo.handleTypes != 0)
 | |
|     {
 | |
|         VmaPnextChainPushFront(&allocInfo, &exportMemoryAllocInfo);
 | |
|     }
 | |
| #endif // #if VMA_EXTERNAL_MEMORY
 | |
| 
 | |
|     size_t allocIndex;
 | |
|     VkResult res = VK_SUCCESS;
 | |
|     for(allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | |
|     {
 | |
|         res = AllocateDedicatedMemoryPage(
 | |
|             pool,
 | |
|             size,
 | |
|             suballocType,
 | |
|             memTypeIndex,
 | |
|             allocInfo,
 | |
|             map,
 | |
|             isUserDataString,
 | |
|             isMappingAllowed,
 | |
|             pUserData,
 | |
|             pAllocations + allocIndex);
 | |
|         if(res != VK_SUCCESS)
 | |
|         {
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if(res == VK_SUCCESS)
 | |
|     {
 | |
|         for (allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | |
|         {
 | |
|             dedicatedAllocations.Register(pAllocations[allocIndex]);
 | |
|         }
 | |
|         VMA_DEBUG_LOG_FORMAT("    Allocated DedicatedMemory Count=%zu, MemoryTypeIndex=#%u", allocationCount, memTypeIndex);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Free all already created allocations.
 | |
|         while(allocIndex--)
 | |
|         {
 | |
|             VmaAllocation currAlloc = pAllocations[allocIndex];
 | |
|             VkDeviceMemory hMemory = currAlloc->GetMemory();
 | |
| 
 | |
|             /*
 | |
|             There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
 | |
|             before vkFreeMemory.
 | |
| 
 | |
|             if(currAlloc->GetMappedData() != VMA_NULL)
 | |
|             {
 | |
|                 (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
 | |
|             }
 | |
|             */
 | |
| 
 | |
|             FreeVulkanMemory(memTypeIndex, currAlloc->GetSize(), hMemory);
 | |
|             m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), currAlloc->GetSize());
 | |
|             m_AllocationObjectAllocator.Free(currAlloc);
 | |
|         }
 | |
| 
 | |
|         memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateDedicatedMemoryPage(
 | |
|     VmaPool pool,
 | |
|     VkDeviceSize size,
 | |
|     VmaSuballocationType suballocType,
 | |
|     uint32_t memTypeIndex,
 | |
|     const VkMemoryAllocateInfo& allocInfo,
 | |
|     bool map,
 | |
|     bool isUserDataString,
 | |
|     bool isMappingAllowed,
 | |
|     void* pUserData,
 | |
|     VmaAllocation* pAllocation)
 | |
| {
 | |
|     VkDeviceMemory hMemory = VK_NULL_HANDLE;
 | |
|     VkResult res = AllocateVulkanMemory(&allocInfo, &hMemory);
 | |
|     if(res < 0)
 | |
|     {
 | |
|         VMA_DEBUG_LOG("    vkAllocateMemory FAILED");
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     void* pMappedData = VMA_NULL;
 | |
|     if(map)
 | |
|     {
 | |
|         res = (*m_VulkanFunctions.vkMapMemory)(
 | |
|             m_hDevice,
 | |
|             hMemory,
 | |
|             0,
 | |
|             VK_WHOLE_SIZE,
 | |
|             0,
 | |
|             &pMappedData);
 | |
|         if(res < 0)
 | |
|         {
 | |
|             VMA_DEBUG_LOG("    vkMapMemory FAILED");
 | |
|             FreeVulkanMemory(memTypeIndex, size, hMemory);
 | |
|             return res;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     *pAllocation = m_AllocationObjectAllocator.Allocate(isMappingAllowed);
 | |
|     (*pAllocation)->InitDedicatedAllocation(pool, memTypeIndex, hMemory, suballocType, pMappedData, size);
 | |
|     if (isUserDataString)
 | |
|         (*pAllocation)->SetName(this, (const char*)pUserData);
 | |
|     else
 | |
|         (*pAllocation)->SetUserData(this, pUserData);
 | |
|     m_Budget.AddAllocation(MemoryTypeIndexToHeapIndex(memTypeIndex), size);
 | |
|     if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | |
|     {
 | |
|         FillAllocation(*pAllocation, VMA_ALLOCATION_FILL_PATTERN_CREATED);
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetBufferMemoryRequirements(
 | |
|     VkBuffer hBuffer,
 | |
|     VkMemoryRequirements& memReq,
 | |
|     bool& requiresDedicatedAllocation,
 | |
|     bool& prefersDedicatedAllocation) const
 | |
| {
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VkBufferMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_BUFFER_MEMORY_REQUIREMENTS_INFO_2_KHR };
 | |
|         memReqInfo.buffer = hBuffer;
 | |
| 
 | |
|         VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
 | |
| 
 | |
|         VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
 | |
|         VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
 | |
| 
 | |
|         (*m_VulkanFunctions.vkGetBufferMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
 | |
| 
 | |
|         memReq = memReq2.memoryRequirements;
 | |
|         requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
 | |
|         prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
 | |
|     }
 | |
|     else
 | |
| #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     {
 | |
|         (*m_VulkanFunctions.vkGetBufferMemoryRequirements)(m_hDevice, hBuffer, &memReq);
 | |
|         requiresDedicatedAllocation = false;
 | |
|         prefersDedicatedAllocation  = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetImageMemoryRequirements(
 | |
|     VkImage hImage,
 | |
|     VkMemoryRequirements& memReq,
 | |
|     bool& requiresDedicatedAllocation,
 | |
|     bool& prefersDedicatedAllocation) const
 | |
| {
 | |
| #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     if(m_UseKhrDedicatedAllocation || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0))
 | |
|     {
 | |
|         VkImageMemoryRequirementsInfo2KHR memReqInfo = { VK_STRUCTURE_TYPE_IMAGE_MEMORY_REQUIREMENTS_INFO_2_KHR };
 | |
|         memReqInfo.image = hImage;
 | |
| 
 | |
|         VkMemoryDedicatedRequirementsKHR memDedicatedReq = { VK_STRUCTURE_TYPE_MEMORY_DEDICATED_REQUIREMENTS_KHR };
 | |
| 
 | |
|         VkMemoryRequirements2KHR memReq2 = { VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2_KHR };
 | |
|         VmaPnextChainPushFront(&memReq2, &memDedicatedReq);
 | |
| 
 | |
|         (*m_VulkanFunctions.vkGetImageMemoryRequirements2KHR)(m_hDevice, &memReqInfo, &memReq2);
 | |
| 
 | |
|         memReq = memReq2.memoryRequirements;
 | |
|         requiresDedicatedAllocation = (memDedicatedReq.requiresDedicatedAllocation != VK_FALSE);
 | |
|         prefersDedicatedAllocation  = (memDedicatedReq.prefersDedicatedAllocation  != VK_FALSE);
 | |
|     }
 | |
|     else
 | |
| #endif // #if VMA_DEDICATED_ALLOCATION || VMA_VULKAN_VERSION >= 1001000
 | |
|     {
 | |
|         (*m_VulkanFunctions.vkGetImageMemoryRequirements)(m_hDevice, hImage, &memReq);
 | |
|         requiresDedicatedAllocation = false;
 | |
|         prefersDedicatedAllocation  = false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::FindMemoryTypeIndex(
 | |
|     uint32_t memoryTypeBits,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     VkFlags bufImgUsage,
 | |
|     uint32_t* pMemoryTypeIndex) const
 | |
| {
 | |
|     memoryTypeBits &= GetGlobalMemoryTypeBits();
 | |
| 
 | |
|     if(pAllocationCreateInfo->memoryTypeBits != 0)
 | |
|     {
 | |
|         memoryTypeBits &= pAllocationCreateInfo->memoryTypeBits;
 | |
|     }
 | |
| 
 | |
|     VkMemoryPropertyFlags requiredFlags = 0, preferredFlags = 0, notPreferredFlags = 0;
 | |
|     if(!FindMemoryPreferences(
 | |
|         IsIntegratedGpu(),
 | |
|         *pAllocationCreateInfo,
 | |
|         bufImgUsage,
 | |
|         requiredFlags, preferredFlags, notPreferredFlags))
 | |
|     {
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
| 
 | |
|     *pMemoryTypeIndex = UINT32_MAX;
 | |
|     uint32_t minCost = UINT32_MAX;
 | |
|     for(uint32_t memTypeIndex = 0, memTypeBit = 1;
 | |
|         memTypeIndex < GetMemoryTypeCount();
 | |
|         ++memTypeIndex, memTypeBit <<= 1)
 | |
|     {
 | |
|         // This memory type is acceptable according to memoryTypeBits bitmask.
 | |
|         if((memTypeBit & memoryTypeBits) != 0)
 | |
|         {
 | |
|             const VkMemoryPropertyFlags currFlags =
 | |
|                 m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
 | |
|             // This memory type contains requiredFlags.
 | |
|             if((requiredFlags & ~currFlags) == 0)
 | |
|             {
 | |
|                 // Calculate cost as number of bits from preferredFlags not present in this memory type.
 | |
|                 uint32_t currCost = VMA_COUNT_BITS_SET(preferredFlags & ~currFlags) +
 | |
|                     VMA_COUNT_BITS_SET(currFlags & notPreferredFlags);
 | |
|                 // Remember memory type with lowest cost.
 | |
|                 if(currCost < minCost)
 | |
|                 {
 | |
|                     *pMemoryTypeIndex = memTypeIndex;
 | |
|                     if(currCost == 0)
 | |
|                     {
 | |
|                         return VK_SUCCESS;
 | |
|                     }
 | |
|                     minCost = currCost;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     return (*pMemoryTypeIndex != UINT32_MAX) ? VK_SUCCESS : VK_ERROR_FEATURE_NOT_PRESENT;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::CalcMemTypeParams(
 | |
|     VmaAllocationCreateInfo& inoutCreateInfo,
 | |
|     uint32_t memTypeIndex,
 | |
|     VkDeviceSize size,
 | |
|     size_t allocationCount)
 | |
| {
 | |
|     // If memory type is not HOST_VISIBLE, disable MAPPED.
 | |
|     if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0 &&
 | |
|         (m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) == 0)
 | |
|     {
 | |
|         inoutCreateInfo.flags &= ~VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
|     }
 | |
| 
 | |
|     if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
 | |
|         (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT) != 0)
 | |
|     {
 | |
|         const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memTypeIndex);
 | |
|         VmaBudget heapBudget = {};
 | |
|         GetHeapBudgets(&heapBudget, heapIndex, 1);
 | |
|         if(heapBudget.usage + size * allocationCount > heapBudget.budget)
 | |
|         {
 | |
|             return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|         }
 | |
|     }
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::CalcAllocationParams(
 | |
|     VmaAllocationCreateInfo& inoutCreateInfo,
 | |
|     bool dedicatedRequired,
 | |
|     bool dedicatedPreferred)
 | |
| {
 | |
|     VMA_ASSERT((inoutCreateInfo.flags &
 | |
|         (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) !=
 | |
|         (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT) &&
 | |
|         "Specifying both flags VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT and VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT is incorrect.");
 | |
|     VMA_ASSERT((((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT) == 0 ||
 | |
|         (inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0)) &&
 | |
|         "Specifying VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT requires also VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
 | |
|     if(inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE || inoutCreateInfo.usage == VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
 | |
|     {
 | |
|         if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_MAPPED_BIT) != 0)
 | |
|         {
 | |
|             VMA_ASSERT((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) != 0 &&
 | |
|                 "When using VMA_ALLOCATION_CREATE_MAPPED_BIT and usage = VMA_MEMORY_USAGE_AUTO*, you must also specify VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.");
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // If memory is lazily allocated, it should be always dedicated.
 | |
|     if(dedicatedRequired ||
 | |
|         inoutCreateInfo.usage == VMA_MEMORY_USAGE_GPU_LAZILY_ALLOCATED)
 | |
|     {
 | |
|         inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | |
|     }
 | |
| 
 | |
|     if(inoutCreateInfo.pool != VK_NULL_HANDLE)
 | |
|     {
 | |
|         if(inoutCreateInfo.pool->m_BlockVector.HasExplicitBlockSize() &&
 | |
|             (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0)
 | |
|         {
 | |
|             VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT while current custom pool doesn't support dedicated allocations.");
 | |
|             return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|         }
 | |
|         inoutCreateInfo.priority = inoutCreateInfo.pool->m_BlockVector.GetPriority();
 | |
|     }
 | |
| 
 | |
|     if((inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT) != 0 &&
 | |
|         (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Specifying VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT together with VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT makes no sense.");
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
| 
 | |
|     if(VMA_DEBUG_ALWAYS_DEDICATED_MEMORY &&
 | |
|         (inoutCreateInfo.flags & VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT) != 0)
 | |
|     {
 | |
|         inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | |
|     }
 | |
| 
 | |
|     // Non-auto USAGE values imply HOST_ACCESS flags.
 | |
|     // And so does VMA_MEMORY_USAGE_UNKNOWN because it is used with custom pools.
 | |
|     // Which specific flag is used doesn't matter. They change things only when used with VMA_MEMORY_USAGE_AUTO*.
 | |
|     // Otherwise they just protect from assert on mapping.
 | |
|     if(inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO &&
 | |
|         inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE &&
 | |
|         inoutCreateInfo.usage != VMA_MEMORY_USAGE_AUTO_PREFER_HOST)
 | |
|     {
 | |
|         if((inoutCreateInfo.flags & (VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT | VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT)) == 0)
 | |
|         {
 | |
|             inoutCreateInfo.flags |= VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateMemory(
 | |
|     const VkMemoryRequirements& vkMemReq,
 | |
|     bool requiresDedicatedAllocation,
 | |
|     bool prefersDedicatedAllocation,
 | |
|     VkBuffer dedicatedBuffer,
 | |
|     VkImage dedicatedImage,
 | |
|     VkFlags dedicatedBufferImageUsage,
 | |
|     const VmaAllocationCreateInfo& createInfo,
 | |
|     VmaSuballocationType suballocType,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations)
 | |
| {
 | |
|     memset(pAllocations, 0, sizeof(VmaAllocation) * allocationCount);
 | |
| 
 | |
|     VMA_ASSERT(VmaIsPow2(vkMemReq.alignment));
 | |
| 
 | |
|     if(vkMemReq.size == 0)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     VmaAllocationCreateInfo createInfoFinal = createInfo;
 | |
|     VkResult res = CalcAllocationParams(createInfoFinal, requiresDedicatedAllocation, prefersDedicatedAllocation);
 | |
|     if(res != VK_SUCCESS)
 | |
|         return res;
 | |
| 
 | |
|     if(createInfoFinal.pool != VK_NULL_HANDLE)
 | |
|     {
 | |
|         VmaBlockVector& blockVector = createInfoFinal.pool->m_BlockVector;
 | |
|         return AllocateMemoryOfType(
 | |
|             createInfoFinal.pool,
 | |
|             vkMemReq.size,
 | |
|             vkMemReq.alignment,
 | |
|             prefersDedicatedAllocation,
 | |
|             dedicatedBuffer,
 | |
|             dedicatedImage,
 | |
|             dedicatedBufferImageUsage,
 | |
|             createInfoFinal,
 | |
|             blockVector.GetMemoryTypeIndex(),
 | |
|             suballocType,
 | |
|             createInfoFinal.pool->m_DedicatedAllocations,
 | |
|             blockVector,
 | |
|             allocationCount,
 | |
|             pAllocations);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Bit mask of memory Vulkan types acceptable for this allocation.
 | |
|         uint32_t memoryTypeBits = vkMemReq.memoryTypeBits;
 | |
|         uint32_t memTypeIndex = UINT32_MAX;
 | |
|         res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
 | |
|         // Can't find any single memory type matching requirements. res is VK_ERROR_FEATURE_NOT_PRESENT.
 | |
|         if(res != VK_SUCCESS)
 | |
|             return res;
 | |
|         do
 | |
|         {
 | |
|             VmaBlockVector* blockVector = m_pBlockVectors[memTypeIndex];
 | |
|             VMA_ASSERT(blockVector && "Trying to use unsupported memory type!");
 | |
|             res = AllocateMemoryOfType(
 | |
|                 VK_NULL_HANDLE,
 | |
|                 vkMemReq.size,
 | |
|                 vkMemReq.alignment,
 | |
|                 requiresDedicatedAllocation || prefersDedicatedAllocation,
 | |
|                 dedicatedBuffer,
 | |
|                 dedicatedImage,
 | |
|                 dedicatedBufferImageUsage,
 | |
|                 createInfoFinal,
 | |
|                 memTypeIndex,
 | |
|                 suballocType,
 | |
|                 m_DedicatedAllocations[memTypeIndex],
 | |
|                 *blockVector,
 | |
|                 allocationCount,
 | |
|                 pAllocations);
 | |
|             // Allocation succeeded
 | |
|             if(res == VK_SUCCESS)
 | |
|                 return VK_SUCCESS;
 | |
| 
 | |
|             // Remove old memTypeIndex from list of possibilities.
 | |
|             memoryTypeBits &= ~(1u << memTypeIndex);
 | |
|             // Find alternative memTypeIndex.
 | |
|             res = FindMemoryTypeIndex(memoryTypeBits, &createInfoFinal, dedicatedBufferImageUsage, &memTypeIndex);
 | |
|         } while(res == VK_SUCCESS);
 | |
| 
 | |
|         // No other matching memory type index could be found.
 | |
|         // Not returning res, which is VK_ERROR_FEATURE_NOT_PRESENT, because we already failed to allocate once.
 | |
|         return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::FreeMemory(
 | |
|     size_t allocationCount,
 | |
|     const VmaAllocation* pAllocations)
 | |
| {
 | |
|     VMA_ASSERT(pAllocations);
 | |
| 
 | |
|     for(size_t allocIndex = allocationCount; allocIndex--; )
 | |
|     {
 | |
|         VmaAllocation allocation = pAllocations[allocIndex];
 | |
| 
 | |
|         if(allocation != VK_NULL_HANDLE)
 | |
|         {
 | |
|             if(VMA_DEBUG_INITIALIZE_ALLOCATIONS)
 | |
|             {
 | |
|                 FillAllocation(allocation, VMA_ALLOCATION_FILL_PATTERN_DESTROYED);
 | |
|             }
 | |
| 
 | |
|             allocation->FreeName(this);
 | |
| 
 | |
|             switch(allocation->GetType())
 | |
|             {
 | |
|             case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|                 {
 | |
|                     VmaBlockVector* pBlockVector = VMA_NULL;
 | |
|                     VmaPool hPool = allocation->GetParentPool();
 | |
|                     if(hPool != VK_NULL_HANDLE)
 | |
|                     {
 | |
|                         pBlockVector = &hPool->m_BlockVector;
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | |
|                         pBlockVector = m_pBlockVectors[memTypeIndex];
 | |
|                         VMA_ASSERT(pBlockVector && "Trying to free memory of unsupported type!");
 | |
|                     }
 | |
|                     pBlockVector->Free(allocation);
 | |
|                 }
 | |
|                 break;
 | |
|             case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|                 FreeDedicatedMemory(allocation);
 | |
|                 break;
 | |
|             default:
 | |
|                 VMA_ASSERT(0);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::CalculateStatistics(VmaTotalStatistics* pStats)
 | |
| {
 | |
|     // Initialize.
 | |
|     VmaClearDetailedStatistics(pStats->total);
 | |
|     for(uint32_t i = 0; i < VK_MAX_MEMORY_TYPES; ++i)
 | |
|         VmaClearDetailedStatistics(pStats->memoryType[i]);
 | |
|     for(uint32_t i = 0; i < VK_MAX_MEMORY_HEAPS; ++i)
 | |
|         VmaClearDetailedStatistics(pStats->memoryHeap[i]);
 | |
| 
 | |
|     // Process default pools.
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
 | |
|         if (pBlockVector != VMA_NULL)
 | |
|             pBlockVector->AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
 | |
|     }
 | |
| 
 | |
|     // Process custom pools.
 | |
|     {
 | |
|         VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | |
|         for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
 | |
|         {
 | |
|             VmaBlockVector& blockVector = pool->m_BlockVector;
 | |
|             const uint32_t memTypeIndex = blockVector.GetMemoryTypeIndex();
 | |
|             blockVector.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
 | |
|             pool->m_DedicatedAllocations.AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Process dedicated allocations.
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         m_DedicatedAllocations[memTypeIndex].AddDetailedStatistics(pStats->memoryType[memTypeIndex]);
 | |
|     }
 | |
| 
 | |
|     // Sum from memory types to memory heaps.
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         const uint32_t memHeapIndex = m_MemProps.memoryTypes[memTypeIndex].heapIndex;
 | |
|         VmaAddDetailedStatistics(pStats->memoryHeap[memHeapIndex], pStats->memoryType[memTypeIndex]);
 | |
|     }
 | |
| 
 | |
|     // Sum from memory heaps to total.
 | |
|     for(uint32_t memHeapIndex = 0; memHeapIndex < GetMemoryHeapCount(); ++memHeapIndex)
 | |
|         VmaAddDetailedStatistics(pStats->total, pStats->memoryHeap[memHeapIndex]);
 | |
| 
 | |
|     VMA_ASSERT(pStats->total.statistics.allocationCount == 0 ||
 | |
|         pStats->total.allocationSizeMax >= pStats->total.allocationSizeMin);
 | |
|     VMA_ASSERT(pStats->total.unusedRangeCount == 0 ||
 | |
|         pStats->total.unusedRangeSizeMax >= pStats->total.unusedRangeSizeMin);
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetHeapBudgets(VmaBudget* outBudgets, uint32_t firstHeap, uint32_t heapCount)
 | |
| {
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     if(m_UseExtMemoryBudget)
 | |
|     {
 | |
|         if(m_Budget.m_OperationsSinceBudgetFetch < 30)
 | |
|         {
 | |
|             VmaMutexLockRead lockRead(m_Budget.m_BudgetMutex, m_UseMutex);
 | |
|             for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
 | |
|             {
 | |
|                 const uint32_t heapIndex = firstHeap + i;
 | |
| 
 | |
|                 outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
 | |
|                 outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
 | |
|                 outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | |
|                 outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
 | |
| 
 | |
|                 if(m_Budget.m_VulkanUsage[heapIndex] + outBudgets->statistics.blockBytes > m_Budget.m_BlockBytesAtBudgetFetch[heapIndex])
 | |
|                 {
 | |
|                     outBudgets->usage = m_Budget.m_VulkanUsage[heapIndex] +
 | |
|                         outBudgets->statistics.blockBytes - m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     outBudgets->usage = 0;
 | |
|                 }
 | |
| 
 | |
|                 // Have to take MIN with heap size because explicit HeapSizeLimit is included in it.
 | |
|                 outBudgets->budget = VMA_MIN(
 | |
|                     m_Budget.m_VulkanBudget[heapIndex], m_MemProps.memoryHeaps[heapIndex].size);
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             UpdateVulkanBudget(); // Outside of mutex lock
 | |
|             GetHeapBudgets(outBudgets, firstHeap, heapCount); // Recursion
 | |
|         }
 | |
|     }
 | |
|     else
 | |
| #endif
 | |
|     {
 | |
|         for(uint32_t i = 0; i < heapCount; ++i, ++outBudgets)
 | |
|         {
 | |
|             const uint32_t heapIndex = firstHeap + i;
 | |
| 
 | |
|             outBudgets->statistics.blockCount = m_Budget.m_BlockCount[heapIndex];
 | |
|             outBudgets->statistics.allocationCount = m_Budget.m_AllocationCount[heapIndex];
 | |
|             outBudgets->statistics.blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | |
|             outBudgets->statistics.allocationBytes = m_Budget.m_AllocationBytes[heapIndex];
 | |
| 
 | |
|             outBudgets->usage = outBudgets->statistics.blockBytes;
 | |
|             outBudgets->budget = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetAllocationInfo(VmaAllocation hAllocation, VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     pAllocationInfo->memoryType = hAllocation->GetMemoryTypeIndex();
 | |
|     pAllocationInfo->deviceMemory = hAllocation->GetMemory();
 | |
|     pAllocationInfo->offset = hAllocation->GetOffset();
 | |
|     pAllocationInfo->size = hAllocation->GetSize();
 | |
|     pAllocationInfo->pMappedData = hAllocation->GetMappedData();
 | |
|     pAllocationInfo->pUserData = hAllocation->GetUserData();
 | |
|     pAllocationInfo->pName = hAllocation->GetName();
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::CreatePool(const VmaPoolCreateInfo* pCreateInfo, VmaPool* pPool)
 | |
| {
 | |
|     VMA_DEBUG_LOG_FORMAT("  CreatePool: MemoryTypeIndex=%u, flags=%u", pCreateInfo->memoryTypeIndex, pCreateInfo->flags);
 | |
| 
 | |
|     VmaPoolCreateInfo newCreateInfo = *pCreateInfo;
 | |
| 
 | |
|     // Protection against uninitialized new structure member. If garbage data are left there, this pointer dereference would crash.
 | |
|     if(pCreateInfo->pMemoryAllocateNext)
 | |
|     {
 | |
|         VMA_ASSERT(((const VkBaseInStructure*)pCreateInfo->pMemoryAllocateNext)->sType != 0);
 | |
|     }
 | |
| 
 | |
|     if(newCreateInfo.maxBlockCount == 0)
 | |
|     {
 | |
|         newCreateInfo.maxBlockCount = SIZE_MAX;
 | |
|     }
 | |
|     if(newCreateInfo.minBlockCount > newCreateInfo.maxBlockCount)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
|     // Memory type index out of range or forbidden.
 | |
|     if(pCreateInfo->memoryTypeIndex >= GetMemoryTypeCount() ||
 | |
|         ((1u << pCreateInfo->memoryTypeIndex) & m_GlobalMemoryTypeBits) == 0)
 | |
|     {
 | |
|         return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
|     if(newCreateInfo.minAllocationAlignment > 0)
 | |
|     {
 | |
|         VMA_ASSERT(VmaIsPow2(newCreateInfo.minAllocationAlignment));
 | |
|     }
 | |
| 
 | |
|     const VkDeviceSize preferredBlockSize = CalcPreferredBlockSize(newCreateInfo.memoryTypeIndex);
 | |
| 
 | |
|     *pPool = vma_new(this, VmaPool_T)(this, newCreateInfo, preferredBlockSize);
 | |
| 
 | |
|     VkResult res = (*pPool)->m_BlockVector.CreateMinBlocks();
 | |
|     if(res != VK_SUCCESS)
 | |
|     {
 | |
|         vma_delete(this, *pPool);
 | |
|         *pPool = VMA_NULL;
 | |
|         return res;
 | |
|     }
 | |
| 
 | |
|     // Add to m_Pools.
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
 | |
|         (*pPool)->SetId(m_NextPoolId++);
 | |
|         m_Pools.PushBack(*pPool);
 | |
|     }
 | |
| 
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::DestroyPool(VmaPool pool)
 | |
| {
 | |
|     // Remove from m_Pools.
 | |
|     {
 | |
|         VmaMutexLockWrite lock(m_PoolsMutex, m_UseMutex);
 | |
|         m_Pools.Remove(pool);
 | |
|     }
 | |
| 
 | |
|     vma_delete(this, pool);
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::GetPoolStatistics(VmaPool pool, VmaStatistics* pPoolStats)
 | |
| {
 | |
|     VmaClearStatistics(*pPoolStats);
 | |
|     pool->m_BlockVector.AddStatistics(*pPoolStats);
 | |
|     pool->m_DedicatedAllocations.AddStatistics(*pPoolStats);
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::CalculatePoolStatistics(VmaPool pool, VmaDetailedStatistics* pPoolStats)
 | |
| {
 | |
|     VmaClearDetailedStatistics(*pPoolStats);
 | |
|     pool->m_BlockVector.AddDetailedStatistics(*pPoolStats);
 | |
|     pool->m_DedicatedAllocations.AddDetailedStatistics(*pPoolStats);
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::SetCurrentFrameIndex(uint32_t frameIndex)
 | |
| {
 | |
|     m_CurrentFrameIndex.store(frameIndex);
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
|     if(m_UseExtMemoryBudget)
 | |
|     {
 | |
|         UpdateVulkanBudget();
 | |
|     }
 | |
| #endif // #if VMA_MEMORY_BUDGET
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::CheckPoolCorruption(VmaPool hPool)
 | |
| {
 | |
|     return hPool->m_BlockVector.CheckCorruption();
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::CheckCorruption(uint32_t memoryTypeBits)
 | |
| {
 | |
|     VkResult finalRes = VK_ERROR_FEATURE_NOT_PRESENT;
 | |
| 
 | |
|     // Process default pools.
 | |
|     for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|     {
 | |
|         VmaBlockVector* const pBlockVector = m_pBlockVectors[memTypeIndex];
 | |
|         if(pBlockVector != VMA_NULL)
 | |
|         {
 | |
|             VkResult localRes = pBlockVector->CheckCorruption();
 | |
|             switch(localRes)
 | |
|             {
 | |
|             case VK_ERROR_FEATURE_NOT_PRESENT:
 | |
|                 break;
 | |
|             case VK_SUCCESS:
 | |
|                 finalRes = VK_SUCCESS;
 | |
|                 break;
 | |
|             default:
 | |
|                 return localRes;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Process custom pools.
 | |
|     {
 | |
|         VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | |
|         for(VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
 | |
|         {
 | |
|             if(((1u << pool->m_BlockVector.GetMemoryTypeIndex()) & memoryTypeBits) != 0)
 | |
|             {
 | |
|                 VkResult localRes = pool->m_BlockVector.CheckCorruption();
 | |
|                 switch(localRes)
 | |
|                 {
 | |
|                 case VK_ERROR_FEATURE_NOT_PRESENT:
 | |
|                     break;
 | |
|                 case VK_SUCCESS:
 | |
|                     finalRes = VK_SUCCESS;
 | |
|                     break;
 | |
|                 default:
 | |
|                     return localRes;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return finalRes;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::AllocateVulkanMemory(const VkMemoryAllocateInfo* pAllocateInfo, VkDeviceMemory* pMemory)
 | |
| {
 | |
|     AtomicTransactionalIncrement<VMA_ATOMIC_UINT32> deviceMemoryCountIncrement;
 | |
|     const uint64_t prevDeviceMemoryCount = deviceMemoryCountIncrement.Increment(&m_DeviceMemoryCount);
 | |
| #if VMA_DEBUG_DONT_EXCEED_MAX_MEMORY_ALLOCATION_COUNT
 | |
|     if(prevDeviceMemoryCount >= m_PhysicalDeviceProperties.limits.maxMemoryAllocationCount)
 | |
|     {
 | |
|         return VK_ERROR_TOO_MANY_OBJECTS;
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(pAllocateInfo->memoryTypeIndex);
 | |
| 
 | |
|     // HeapSizeLimit is in effect for this heap.
 | |
|     if((m_HeapSizeLimitMask & (1u << heapIndex)) != 0)
 | |
|     {
 | |
|         const VkDeviceSize heapSize = m_MemProps.memoryHeaps[heapIndex].size;
 | |
|         VkDeviceSize blockBytes = m_Budget.m_BlockBytes[heapIndex];
 | |
|         for(;;)
 | |
|         {
 | |
|             const VkDeviceSize blockBytesAfterAllocation = blockBytes + pAllocateInfo->allocationSize;
 | |
|             if(blockBytesAfterAllocation > heapSize)
 | |
|             {
 | |
|                 return VK_ERROR_OUT_OF_DEVICE_MEMORY;
 | |
|             }
 | |
|             if(m_Budget.m_BlockBytes[heapIndex].compare_exchange_strong(blockBytes, blockBytesAfterAllocation))
 | |
|             {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_Budget.m_BlockBytes[heapIndex] += pAllocateInfo->allocationSize;
 | |
|     }
 | |
|     ++m_Budget.m_BlockCount[heapIndex];
 | |
| 
 | |
|     // VULKAN CALL vkAllocateMemory.
 | |
|     VkResult res = (*m_VulkanFunctions.vkAllocateMemory)(m_hDevice, pAllocateInfo, GetAllocationCallbacks(), pMemory);
 | |
| 
 | |
|     if(res == VK_SUCCESS)
 | |
|     {
 | |
| #if VMA_MEMORY_BUDGET
 | |
|         ++m_Budget.m_OperationsSinceBudgetFetch;
 | |
| #endif
 | |
| 
 | |
|         // Informative callback.
 | |
|         if(m_DeviceMemoryCallbacks.pfnAllocate != VMA_NULL)
 | |
|         {
 | |
|             (*m_DeviceMemoryCallbacks.pfnAllocate)(this, pAllocateInfo->memoryTypeIndex, *pMemory, pAllocateInfo->allocationSize, m_DeviceMemoryCallbacks.pUserData);
 | |
|         }
 | |
| 
 | |
|         deviceMemoryCountIncrement.Commit();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         --m_Budget.m_BlockCount[heapIndex];
 | |
|         m_Budget.m_BlockBytes[heapIndex] -= pAllocateInfo->allocationSize;
 | |
|     }
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::FreeVulkanMemory(uint32_t memoryType, VkDeviceSize size, VkDeviceMemory hMemory)
 | |
| {
 | |
|     // Informative callback.
 | |
|     if(m_DeviceMemoryCallbacks.pfnFree != VMA_NULL)
 | |
|     {
 | |
|         (*m_DeviceMemoryCallbacks.pfnFree)(this, memoryType, hMemory, size, m_DeviceMemoryCallbacks.pUserData);
 | |
|     }
 | |
| 
 | |
|     // VULKAN CALL vkFreeMemory.
 | |
|     (*m_VulkanFunctions.vkFreeMemory)(m_hDevice, hMemory, GetAllocationCallbacks());
 | |
| 
 | |
|     const uint32_t heapIndex = MemoryTypeIndexToHeapIndex(memoryType);
 | |
|     --m_Budget.m_BlockCount[heapIndex];
 | |
|     m_Budget.m_BlockBytes[heapIndex] -= size;
 | |
| 
 | |
|     --m_DeviceMemoryCount;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::BindVulkanBuffer(
 | |
|     VkDeviceMemory memory,
 | |
|     VkDeviceSize memoryOffset,
 | |
|     VkBuffer buffer,
 | |
|     const void* pNext)
 | |
| {
 | |
|     if(pNext != VMA_NULL)
 | |
|     {
 | |
| #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | |
|         if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
 | |
|             m_VulkanFunctions.vkBindBufferMemory2KHR != VMA_NULL)
 | |
|         {
 | |
|             VkBindBufferMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_BUFFER_MEMORY_INFO_KHR };
 | |
|             bindBufferMemoryInfo.pNext = pNext;
 | |
|             bindBufferMemoryInfo.buffer = buffer;
 | |
|             bindBufferMemoryInfo.memory = memory;
 | |
|             bindBufferMemoryInfo.memoryOffset = memoryOffset;
 | |
|             return (*m_VulkanFunctions.vkBindBufferMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
 | |
|         }
 | |
|         else
 | |
| #endif // #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | |
|         {
 | |
|             return VK_ERROR_EXTENSION_NOT_PRESENT;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return (*m_VulkanFunctions.vkBindBufferMemory)(m_hDevice, buffer, memory, memoryOffset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::BindVulkanImage(
 | |
|     VkDeviceMemory memory,
 | |
|     VkDeviceSize memoryOffset,
 | |
|     VkImage image,
 | |
|     const void* pNext)
 | |
| {
 | |
|     if(pNext != VMA_NULL)
 | |
|     {
 | |
| #if VMA_VULKAN_VERSION >= 1001000 || VMA_BIND_MEMORY2
 | |
|         if((m_UseKhrBindMemory2 || m_VulkanApiVersion >= VK_MAKE_VERSION(1, 1, 0)) &&
 | |
|             m_VulkanFunctions.vkBindImageMemory2KHR != VMA_NULL)
 | |
|         {
 | |
|             VkBindImageMemoryInfoKHR bindBufferMemoryInfo = { VK_STRUCTURE_TYPE_BIND_IMAGE_MEMORY_INFO_KHR };
 | |
|             bindBufferMemoryInfo.pNext = pNext;
 | |
|             bindBufferMemoryInfo.image = image;
 | |
|             bindBufferMemoryInfo.memory = memory;
 | |
|             bindBufferMemoryInfo.memoryOffset = memoryOffset;
 | |
|             return (*m_VulkanFunctions.vkBindImageMemory2KHR)(m_hDevice, 1, &bindBufferMemoryInfo);
 | |
|         }
 | |
|         else
 | |
| #endif // #if VMA_BIND_MEMORY2
 | |
|         {
 | |
|             return VK_ERROR_EXTENSION_NOT_PRESENT;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return (*m_VulkanFunctions.vkBindImageMemory)(m_hDevice, image, memory, memoryOffset);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::Map(VmaAllocation hAllocation, void** ppData)
 | |
| {
 | |
|     switch(hAllocation->GetType())
 | |
|     {
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | |
|             char *pBytes = VMA_NULL;
 | |
|             VkResult res = pBlock->Map(this, 1, (void**)&pBytes);
 | |
|             if(res == VK_SUCCESS)
 | |
|             {
 | |
|                 *ppData = pBytes + (ptrdiff_t)hAllocation->GetOffset();
 | |
|                 hAllocation->BlockAllocMap();
 | |
|             }
 | |
|             return res;
 | |
|         }
 | |
|         VMA_FALLTHROUGH; // Fallthrough
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|         return hAllocation->DedicatedAllocMap(this, ppData);
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|         return VK_ERROR_MEMORY_MAP_FAILED;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::Unmap(VmaAllocation hAllocation)
 | |
| {
 | |
|     switch(hAllocation->GetType())
 | |
|     {
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|         {
 | |
|             VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | |
|             hAllocation->BlockAllocUnmap();
 | |
|             pBlock->Unmap(this, 1);
 | |
|         }
 | |
|         break;
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|         hAllocation->DedicatedAllocUnmap(this);
 | |
|         break;
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::BindBufferMemory(
 | |
|     VmaAllocation hAllocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkBuffer hBuffer,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VkResult res = VK_ERROR_UNKNOWN;
 | |
|     switch(hAllocation->GetType())
 | |
|     {
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|         res = BindVulkanBuffer(hAllocation->GetMemory(), allocationLocalOffset, hBuffer, pNext);
 | |
|         break;
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* const pBlock = hAllocation->GetBlock();
 | |
|         VMA_ASSERT(pBlock && "Binding buffer to allocation that doesn't belong to any block.");
 | |
|         res = pBlock->BindBufferMemory(this, hAllocation, allocationLocalOffset, hBuffer, pNext);
 | |
|         break;
 | |
|     }
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::BindImageMemory(
 | |
|     VmaAllocation hAllocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkImage hImage,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VkResult res = VK_ERROR_UNKNOWN;
 | |
|     switch(hAllocation->GetType())
 | |
|     {
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|         res = BindVulkanImage(hAllocation->GetMemory(), allocationLocalOffset, hImage, pNext);
 | |
|         break;
 | |
|     case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|     {
 | |
|         VmaDeviceMemoryBlock* pBlock = hAllocation->GetBlock();
 | |
|         VMA_ASSERT(pBlock && "Binding image to allocation that doesn't belong to any block.");
 | |
|         res = pBlock->BindImageMemory(this, hAllocation, allocationLocalOffset, hImage, pNext);
 | |
|         break;
 | |
|     }
 | |
|     default:
 | |
|         VMA_ASSERT(0);
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::FlushOrInvalidateAllocation(
 | |
|     VmaAllocation hAllocation,
 | |
|     VkDeviceSize offset, VkDeviceSize size,
 | |
|     VMA_CACHE_OPERATION op)
 | |
| {
 | |
|     VkResult res = VK_SUCCESS;
 | |
| 
 | |
|     VkMappedMemoryRange memRange = {};
 | |
|     if(GetFlushOrInvalidateRange(hAllocation, offset, size, memRange))
 | |
|     {
 | |
|         switch(op)
 | |
|         {
 | |
|         case VMA_CACHE_FLUSH:
 | |
|             res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, 1, &memRange);
 | |
|             break;
 | |
|         case VMA_CACHE_INVALIDATE:
 | |
|             res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, 1, &memRange);
 | |
|             break;
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
|     }
 | |
|     // else: Just ignore this call.
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VkResult VmaAllocator_T::FlushOrInvalidateAllocations(
 | |
|     uint32_t allocationCount,
 | |
|     const VmaAllocation* allocations,
 | |
|     const VkDeviceSize* offsets, const VkDeviceSize* sizes,
 | |
|     VMA_CACHE_OPERATION op)
 | |
| {
 | |
|     typedef VmaStlAllocator<VkMappedMemoryRange> RangeAllocator;
 | |
|     typedef VmaSmallVector<VkMappedMemoryRange, RangeAllocator, 16> RangeVector;
 | |
|     RangeVector ranges = RangeVector(RangeAllocator(GetAllocationCallbacks()));
 | |
| 
 | |
|     for(uint32_t allocIndex = 0; allocIndex < allocationCount; ++allocIndex)
 | |
|     {
 | |
|         const VmaAllocation alloc = allocations[allocIndex];
 | |
|         const VkDeviceSize offset = offsets != VMA_NULL ? offsets[allocIndex] : 0;
 | |
|         const VkDeviceSize size = sizes != VMA_NULL ? sizes[allocIndex] : VK_WHOLE_SIZE;
 | |
|         VkMappedMemoryRange newRange;
 | |
|         if(GetFlushOrInvalidateRange(alloc, offset, size, newRange))
 | |
|         {
 | |
|             ranges.push_back(newRange);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     VkResult res = VK_SUCCESS;
 | |
|     if(!ranges.empty())
 | |
|     {
 | |
|         switch(op)
 | |
|         {
 | |
|         case VMA_CACHE_FLUSH:
 | |
|             res = (*GetVulkanFunctions().vkFlushMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
 | |
|             break;
 | |
|         case VMA_CACHE_INVALIDATE:
 | |
|             res = (*GetVulkanFunctions().vkInvalidateMappedMemoryRanges)(m_hDevice, (uint32_t)ranges.size(), ranges.data());
 | |
|             break;
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
|     }
 | |
|     // else: Just ignore this call.
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| void VmaAllocator_T::FreeDedicatedMemory(const VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocation && allocation->GetType() == VmaAllocation_T::ALLOCATION_TYPE_DEDICATED);
 | |
| 
 | |
|     const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | |
|     VmaPool parentPool = allocation->GetParentPool();
 | |
|     if(parentPool == VK_NULL_HANDLE)
 | |
|     {
 | |
|         // Default pool
 | |
|         m_DedicatedAllocations[memTypeIndex].Unregister(allocation);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // Custom pool
 | |
|         parentPool->m_DedicatedAllocations.Unregister(allocation);
 | |
|     }
 | |
| 
 | |
|     VkDeviceMemory hMemory = allocation->GetMemory();
 | |
| 
 | |
|     /*
 | |
|     There is no need to call this, because Vulkan spec allows to skip vkUnmapMemory
 | |
|     before vkFreeMemory.
 | |
| 
 | |
|     if(allocation->GetMappedData() != VMA_NULL)
 | |
|     {
 | |
|         (*m_VulkanFunctions.vkUnmapMemory)(m_hDevice, hMemory);
 | |
|     }
 | |
|     */
 | |
| 
 | |
|     FreeVulkanMemory(memTypeIndex, allocation->GetSize(), hMemory);
 | |
| 
 | |
|     m_Budget.RemoveAllocation(MemoryTypeIndexToHeapIndex(allocation->GetMemoryTypeIndex()), allocation->GetSize());
 | |
|     m_AllocationObjectAllocator.Free(allocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG_FORMAT("    Freed DedicatedMemory MemoryTypeIndex=%u", memTypeIndex);
 | |
| }
 | |
| 
 | |
| uint32_t VmaAllocator_T::CalculateGpuDefragmentationMemoryTypeBits() const
 | |
| {
 | |
|     VkBufferCreateInfo dummyBufCreateInfo;
 | |
|     VmaFillGpuDefragmentationBufferCreateInfo(dummyBufCreateInfo);
 | |
| 
 | |
|     uint32_t memoryTypeBits = 0;
 | |
| 
 | |
|     // Create buffer.
 | |
|     VkBuffer buf = VK_NULL_HANDLE;
 | |
|     VkResult res = (*GetVulkanFunctions().vkCreateBuffer)(
 | |
|         m_hDevice, &dummyBufCreateInfo, GetAllocationCallbacks(), &buf);
 | |
|     if(res == VK_SUCCESS)
 | |
|     {
 | |
|         // Query for supported memory types.
 | |
|         VkMemoryRequirements memReq;
 | |
|         (*GetVulkanFunctions().vkGetBufferMemoryRequirements)(m_hDevice, buf, &memReq);
 | |
|         memoryTypeBits = memReq.memoryTypeBits;
 | |
| 
 | |
|         // Destroy buffer.
 | |
|         (*GetVulkanFunctions().vkDestroyBuffer)(m_hDevice, buf, GetAllocationCallbacks());
 | |
|     }
 | |
| 
 | |
|     return memoryTypeBits;
 | |
| }
 | |
| 
 | |
| uint32_t VmaAllocator_T::CalculateGlobalMemoryTypeBits() const
 | |
| {
 | |
|     // Make sure memory information is already fetched.
 | |
|     VMA_ASSERT(GetMemoryTypeCount() > 0);
 | |
| 
 | |
|     uint32_t memoryTypeBits = UINT32_MAX;
 | |
| 
 | |
|     if(!m_UseAmdDeviceCoherentMemory)
 | |
|     {
 | |
|         // Exclude memory types that have VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD.
 | |
|         for(uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|         {
 | |
|             if((m_MemProps.memoryTypes[memTypeIndex].propertyFlags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY) != 0)
 | |
|             {
 | |
|                 memoryTypeBits &= ~(1u << memTypeIndex);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return memoryTypeBits;
 | |
| }
 | |
| 
 | |
| bool VmaAllocator_T::GetFlushOrInvalidateRange(
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize offset, VkDeviceSize size,
 | |
|     VkMappedMemoryRange& outRange) const
 | |
| {
 | |
|     const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | |
|     if(size > 0 && IsMemoryTypeNonCoherent(memTypeIndex))
 | |
|     {
 | |
|         const VkDeviceSize nonCoherentAtomSize = m_PhysicalDeviceProperties.limits.nonCoherentAtomSize;
 | |
|         const VkDeviceSize allocationSize = allocation->GetSize();
 | |
|         VMA_ASSERT(offset <= allocationSize);
 | |
| 
 | |
|         outRange.sType = VK_STRUCTURE_TYPE_MAPPED_MEMORY_RANGE;
 | |
|         outRange.pNext = VMA_NULL;
 | |
|         outRange.memory = allocation->GetMemory();
 | |
| 
 | |
|         switch(allocation->GetType())
 | |
|         {
 | |
|         case VmaAllocation_T::ALLOCATION_TYPE_DEDICATED:
 | |
|             outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
 | |
|             if(size == VK_WHOLE_SIZE)
 | |
|             {
 | |
|                 outRange.size = allocationSize - outRange.offset;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 VMA_ASSERT(offset + size <= allocationSize);
 | |
|                 outRange.size = VMA_MIN(
 | |
|                     VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize),
 | |
|                     allocationSize - outRange.offset);
 | |
|             }
 | |
|             break;
 | |
|         case VmaAllocation_T::ALLOCATION_TYPE_BLOCK:
 | |
|         {
 | |
|             // 1. Still within this allocation.
 | |
|             outRange.offset = VmaAlignDown(offset, nonCoherentAtomSize);
 | |
|             if(size == VK_WHOLE_SIZE)
 | |
|             {
 | |
|                 size = allocationSize - offset;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 VMA_ASSERT(offset + size <= allocationSize);
 | |
|             }
 | |
|             outRange.size = VmaAlignUp(size + (offset - outRange.offset), nonCoherentAtomSize);
 | |
| 
 | |
|             // 2. Adjust to whole block.
 | |
|             const VkDeviceSize allocationOffset = allocation->GetOffset();
 | |
|             VMA_ASSERT(allocationOffset % nonCoherentAtomSize == 0);
 | |
|             const VkDeviceSize blockSize = allocation->GetBlock()->m_pMetadata->GetSize();
 | |
|             outRange.offset += allocationOffset;
 | |
|             outRange.size = VMA_MIN(outRange.size, blockSize - outRange.offset);
 | |
| 
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             VMA_ASSERT(0);
 | |
|         }
 | |
|         return true;
 | |
|     }
 | |
|     return false;
 | |
| }
 | |
| 
 | |
| #if VMA_MEMORY_BUDGET
 | |
| void VmaAllocator_T::UpdateVulkanBudget()
 | |
| {
 | |
|     VMA_ASSERT(m_UseExtMemoryBudget);
 | |
| 
 | |
|     VkPhysicalDeviceMemoryProperties2KHR memProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_PROPERTIES_2_KHR };
 | |
| 
 | |
|     VkPhysicalDeviceMemoryBudgetPropertiesEXT budgetProps = { VK_STRUCTURE_TYPE_PHYSICAL_DEVICE_MEMORY_BUDGET_PROPERTIES_EXT };
 | |
|     VmaPnextChainPushFront(&memProps, &budgetProps);
 | |
| 
 | |
|     GetVulkanFunctions().vkGetPhysicalDeviceMemoryProperties2KHR(m_PhysicalDevice, &memProps);
 | |
| 
 | |
|     {
 | |
|         VmaMutexLockWrite lockWrite(m_Budget.m_BudgetMutex, m_UseMutex);
 | |
| 
 | |
|         for(uint32_t heapIndex = 0; heapIndex < GetMemoryHeapCount(); ++heapIndex)
 | |
|         {
 | |
|             m_Budget.m_VulkanUsage[heapIndex] = budgetProps.heapUsage[heapIndex];
 | |
|             m_Budget.m_VulkanBudget[heapIndex] = budgetProps.heapBudget[heapIndex];
 | |
|             m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] = m_Budget.m_BlockBytes[heapIndex].load();
 | |
| 
 | |
|             // Some bugged drivers return the budget incorrectly, e.g. 0 or much bigger than heap size.
 | |
|             if(m_Budget.m_VulkanBudget[heapIndex] == 0)
 | |
|             {
 | |
|                 m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size * 8 / 10; // 80% heuristics.
 | |
|             }
 | |
|             else if(m_Budget.m_VulkanBudget[heapIndex] > m_MemProps.memoryHeaps[heapIndex].size)
 | |
|             {
 | |
|                 m_Budget.m_VulkanBudget[heapIndex] = m_MemProps.memoryHeaps[heapIndex].size;
 | |
|             }
 | |
|             if(m_Budget.m_VulkanUsage[heapIndex] == 0 && m_Budget.m_BlockBytesAtBudgetFetch[heapIndex] > 0)
 | |
|             {
 | |
|                 m_Budget.m_VulkanUsage[heapIndex] = m_Budget.m_BlockBytesAtBudgetFetch[heapIndex];
 | |
|             }
 | |
|         }
 | |
|         m_Budget.m_OperationsSinceBudgetFetch = 0;
 | |
|     }
 | |
| }
 | |
| #endif // VMA_MEMORY_BUDGET
 | |
| 
 | |
| void VmaAllocator_T::FillAllocation(const VmaAllocation hAllocation, uint8_t pattern)
 | |
| {
 | |
|     if(VMA_DEBUG_INITIALIZE_ALLOCATIONS &&
 | |
|         hAllocation->IsMappingAllowed() &&
 | |
|         (m_MemProps.memoryTypes[hAllocation->GetMemoryTypeIndex()].propertyFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT) != 0)
 | |
|     {
 | |
|         void* pData = VMA_NULL;
 | |
|         VkResult res = Map(hAllocation, &pData);
 | |
|         if(res == VK_SUCCESS)
 | |
|         {
 | |
|             memset(pData, (int)pattern, (size_t)hAllocation->GetSize());
 | |
|             FlushOrInvalidateAllocation(hAllocation, 0, VK_WHOLE_SIZE, VMA_CACHE_FLUSH);
 | |
|             Unmap(hAllocation);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             VMA_ASSERT(0 && "VMA_DEBUG_INITIALIZE_ALLOCATIONS is enabled, but couldn't map memory to fill allocation.");
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| uint32_t VmaAllocator_T::GetGpuDefragmentationMemoryTypeBits()
 | |
| {
 | |
|     uint32_t memoryTypeBits = m_GpuDefragmentationMemoryTypeBits.load();
 | |
|     if(memoryTypeBits == UINT32_MAX)
 | |
|     {
 | |
|         memoryTypeBits = CalculateGpuDefragmentationMemoryTypeBits();
 | |
|         m_GpuDefragmentationMemoryTypeBits.store(memoryTypeBits);
 | |
|     }
 | |
|     return memoryTypeBits;
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| void VmaAllocator_T::PrintDetailedMap(VmaJsonWriter& json)
 | |
| {
 | |
|     json.WriteString("DefaultPools");
 | |
|     json.BeginObject();
 | |
|     {
 | |
|         for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|         {
 | |
|             VmaBlockVector* pBlockVector = m_pBlockVectors[memTypeIndex];
 | |
|             VmaDedicatedAllocationList& dedicatedAllocList = m_DedicatedAllocations[memTypeIndex];
 | |
|             if (pBlockVector != VMA_NULL)
 | |
|             {
 | |
|                 json.BeginString("Type ");
 | |
|                 json.ContinueString(memTypeIndex);
 | |
|                 json.EndString();
 | |
|                 json.BeginObject();
 | |
|                 {
 | |
|                     json.WriteString("PreferredBlockSize");
 | |
|                     json.WriteNumber(pBlockVector->GetPreferredBlockSize());
 | |
| 
 | |
|                     json.WriteString("Blocks");
 | |
|                     pBlockVector->PrintDetailedMap(json);
 | |
| 
 | |
|                     json.WriteString("DedicatedAllocations");
 | |
|                     dedicatedAllocList.BuildStatsString(json);
 | |
|                 }
 | |
|                 json.EndObject();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     json.EndObject();
 | |
| 
 | |
|     json.WriteString("CustomPools");
 | |
|     json.BeginObject();
 | |
|     {
 | |
|         VmaMutexLockRead lock(m_PoolsMutex, m_UseMutex);
 | |
|         if (!m_Pools.IsEmpty())
 | |
|         {
 | |
|             for (uint32_t memTypeIndex = 0; memTypeIndex < GetMemoryTypeCount(); ++memTypeIndex)
 | |
|             {
 | |
|                 bool displayType = true;
 | |
|                 size_t index = 0;
 | |
|                 for (VmaPool pool = m_Pools.Front(); pool != VMA_NULL; pool = m_Pools.GetNext(pool))
 | |
|                 {
 | |
|                     VmaBlockVector& blockVector = pool->m_BlockVector;
 | |
|                     if (blockVector.GetMemoryTypeIndex() == memTypeIndex)
 | |
|                     {
 | |
|                         if (displayType)
 | |
|                         {
 | |
|                             json.BeginString("Type ");
 | |
|                             json.ContinueString(memTypeIndex);
 | |
|                             json.EndString();
 | |
|                             json.BeginArray();
 | |
|                             displayType = false;
 | |
|                         }
 | |
| 
 | |
|                         json.BeginObject();
 | |
|                         {
 | |
|                             json.WriteString("Name");
 | |
|                             json.BeginString();
 | |
|                             json.ContinueString((uint64_t)index++);
 | |
|                             if (pool->GetName())
 | |
|                             {
 | |
|                                 json.ContinueString(" - ");
 | |
|                                 json.ContinueString(pool->GetName());
 | |
|                             }
 | |
|                             json.EndString();
 | |
| 
 | |
|                             json.WriteString("PreferredBlockSize");
 | |
|                             json.WriteNumber(blockVector.GetPreferredBlockSize());
 | |
| 
 | |
|                             json.WriteString("Blocks");
 | |
|                             blockVector.PrintDetailedMap(json);
 | |
| 
 | |
|                             json.WriteString("DedicatedAllocations");
 | |
|                             pool->m_DedicatedAllocations.BuildStatsString(json);
 | |
|                         }
 | |
|                         json.EndObject();
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 if (!displayType)
 | |
|                     json.EndArray();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     json.EndObject();
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| #endif // _VMA_ALLOCATOR_T_FUNCTIONS
 | |
| 
 | |
| 
 | |
| #ifndef _VMA_PUBLIC_INTERFACE
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAllocator(
 | |
|     const VmaAllocatorCreateInfo* pCreateInfo,
 | |
|     VmaAllocator* pAllocator)
 | |
| {
 | |
|     VMA_ASSERT(pCreateInfo && pAllocator);
 | |
|     VMA_ASSERT(pCreateInfo->vulkanApiVersion == 0 ||
 | |
|         (VK_VERSION_MAJOR(pCreateInfo->vulkanApiVersion) == 1 && VK_VERSION_MINOR(pCreateInfo->vulkanApiVersion) <= 3));
 | |
|     VMA_DEBUG_LOG("vmaCreateAllocator");
 | |
|     *pAllocator = vma_new(pCreateInfo->pAllocationCallbacks, VmaAllocator_T)(pCreateInfo);
 | |
|     VkResult result = (*pAllocator)->Init(pCreateInfo);
 | |
|     if(result < 0)
 | |
|     {
 | |
|         vma_delete(pCreateInfo->pAllocationCallbacks, *pAllocator);
 | |
|         *pAllocator = VK_NULL_HANDLE;
 | |
|     }
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyAllocator(
 | |
|     VmaAllocator allocator)
 | |
| {
 | |
|     if(allocator != VK_NULL_HANDLE)
 | |
|     {
 | |
|         VMA_DEBUG_LOG("vmaDestroyAllocator");
 | |
|         VkAllocationCallbacks allocationCallbacks = allocator->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
 | |
|         vma_delete(&allocationCallbacks, allocator);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocatorInfo(VmaAllocator allocator, VmaAllocatorInfo* pAllocatorInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pAllocatorInfo);
 | |
|     pAllocatorInfo->instance = allocator->m_hInstance;
 | |
|     pAllocatorInfo->physicalDevice = allocator->GetPhysicalDevice();
 | |
|     pAllocatorInfo->device = allocator->m_hDevice;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPhysicalDeviceProperties(
 | |
|     VmaAllocator allocator,
 | |
|     const VkPhysicalDeviceProperties **ppPhysicalDeviceProperties)
 | |
| {
 | |
|     VMA_ASSERT(allocator && ppPhysicalDeviceProperties);
 | |
|     *ppPhysicalDeviceProperties = &allocator->m_PhysicalDeviceProperties;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryProperties(
 | |
|     VmaAllocator allocator,
 | |
|     const VkPhysicalDeviceMemoryProperties** ppPhysicalDeviceMemoryProperties)
 | |
| {
 | |
|     VMA_ASSERT(allocator && ppPhysicalDeviceMemoryProperties);
 | |
|     *ppPhysicalDeviceMemoryProperties = &allocator->m_MemProps;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetMemoryTypeProperties(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t memoryTypeIndex,
 | |
|     VkMemoryPropertyFlags* pFlags)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pFlags);
 | |
|     VMA_ASSERT(memoryTypeIndex < allocator->GetMemoryTypeCount());
 | |
|     *pFlags = allocator->m_MemProps.memoryTypes[memoryTypeIndex].propertyFlags;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetCurrentFrameIndex(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t frameIndex)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->SetCurrentFrameIndex(frameIndex);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCalculateStatistics(
 | |
|     VmaAllocator allocator,
 | |
|     VmaTotalStatistics* pStats)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pStats);
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
|     allocator->CalculateStatistics(pStats);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetHeapBudgets(
 | |
|     VmaAllocator allocator,
 | |
|     VmaBudget* pBudgets)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pBudgets);
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
|     allocator->GetHeapBudgets(pBudgets, 0, allocator->GetMemoryHeapCount());
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaBuildStatsString(
 | |
|     VmaAllocator allocator,
 | |
|     char** ppStatsString,
 | |
|     VkBool32 detailedMap)
 | |
| {
 | |
|     VMA_ASSERT(allocator && ppStatsString);
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VmaStringBuilder sb(allocator->GetAllocationCallbacks());
 | |
|     {
 | |
|         VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
 | |
|         allocator->GetHeapBudgets(budgets, 0, allocator->GetMemoryHeapCount());
 | |
| 
 | |
|         VmaTotalStatistics stats;
 | |
|         allocator->CalculateStatistics(&stats);
 | |
| 
 | |
|         VmaJsonWriter json(allocator->GetAllocationCallbacks(), sb);
 | |
|         json.BeginObject();
 | |
|         {
 | |
|             json.WriteString("General");
 | |
|             json.BeginObject();
 | |
|             {
 | |
|                 const VkPhysicalDeviceProperties& deviceProperties = allocator->m_PhysicalDeviceProperties;
 | |
|                 const VkPhysicalDeviceMemoryProperties& memoryProperties = allocator->m_MemProps;
 | |
| 
 | |
|                 json.WriteString("API");
 | |
|                 json.WriteString("Vulkan");
 | |
| 
 | |
|                 json.WriteString("apiVersion");
 | |
|                 json.BeginString();
 | |
|                 json.ContinueString(VK_VERSION_MAJOR(deviceProperties.apiVersion));
 | |
|                 json.ContinueString(".");
 | |
|                 json.ContinueString(VK_VERSION_MINOR(deviceProperties.apiVersion));
 | |
|                 json.ContinueString(".");
 | |
|                 json.ContinueString(VK_VERSION_PATCH(deviceProperties.apiVersion));
 | |
|                 json.EndString();
 | |
| 
 | |
|                 json.WriteString("GPU");
 | |
|                 json.WriteString(deviceProperties.deviceName);
 | |
|                 json.WriteString("deviceType");
 | |
|                 json.WriteNumber(static_cast<uint32_t>(deviceProperties.deviceType));
 | |
| 
 | |
|                 json.WriteString("maxMemoryAllocationCount");
 | |
|                 json.WriteNumber(deviceProperties.limits.maxMemoryAllocationCount);
 | |
|                 json.WriteString("bufferImageGranularity");
 | |
|                 json.WriteNumber(deviceProperties.limits.bufferImageGranularity);
 | |
|                 json.WriteString("nonCoherentAtomSize");
 | |
|                 json.WriteNumber(deviceProperties.limits.nonCoherentAtomSize);
 | |
| 
 | |
|                 json.WriteString("memoryHeapCount");
 | |
|                 json.WriteNumber(memoryProperties.memoryHeapCount);
 | |
|                 json.WriteString("memoryTypeCount");
 | |
|                 json.WriteNumber(memoryProperties.memoryTypeCount);
 | |
|             }
 | |
|             json.EndObject();
 | |
|         }
 | |
|         {
 | |
|             json.WriteString("Total");
 | |
|             VmaPrintDetailedStatistics(json, stats.total);
 | |
|         }
 | |
|         {
 | |
|             json.WriteString("MemoryInfo");
 | |
|             json.BeginObject();
 | |
|             {
 | |
|                 for (uint32_t heapIndex = 0; heapIndex < allocator->GetMemoryHeapCount(); ++heapIndex)
 | |
|                 {
 | |
|                     json.BeginString("Heap ");
 | |
|                     json.ContinueString(heapIndex);
 | |
|                     json.EndString();
 | |
|                     json.BeginObject();
 | |
|                     {
 | |
|                         const VkMemoryHeap& heapInfo = allocator->m_MemProps.memoryHeaps[heapIndex];
 | |
|                         json.WriteString("Flags");
 | |
|                         json.BeginArray(true);
 | |
|                         {
 | |
|                             if (heapInfo.flags & VK_MEMORY_HEAP_DEVICE_LOCAL_BIT)
 | |
|                                 json.WriteString("DEVICE_LOCAL");
 | |
|                         #if VMA_VULKAN_VERSION >= 1001000
 | |
|                             if (heapInfo.flags & VK_MEMORY_HEAP_MULTI_INSTANCE_BIT)
 | |
|                                 json.WriteString("MULTI_INSTANCE");
 | |
|                         #endif
 | |
| 
 | |
|                             VkMemoryHeapFlags flags = heapInfo.flags &
 | |
|                                 ~(VK_MEMORY_HEAP_DEVICE_LOCAL_BIT
 | |
|                         #if VMA_VULKAN_VERSION >= 1001000
 | |
|                                     | VK_MEMORY_HEAP_MULTI_INSTANCE_BIT
 | |
|                         #endif
 | |
|                                     );
 | |
|                             if (flags != 0)
 | |
|                                 json.WriteNumber(flags);
 | |
|                         }
 | |
|                         json.EndArray();
 | |
| 
 | |
|                         json.WriteString("Size");
 | |
|                         json.WriteNumber(heapInfo.size);
 | |
| 
 | |
|                         json.WriteString("Budget");
 | |
|                         json.BeginObject();
 | |
|                         {
 | |
|                             json.WriteString("BudgetBytes");
 | |
|                             json.WriteNumber(budgets[heapIndex].budget);
 | |
|                             json.WriteString("UsageBytes");
 | |
|                             json.WriteNumber(budgets[heapIndex].usage);
 | |
|                         }
 | |
|                         json.EndObject();
 | |
| 
 | |
|                         json.WriteString("Stats");
 | |
|                         VmaPrintDetailedStatistics(json, stats.memoryHeap[heapIndex]);
 | |
| 
 | |
|                         json.WriteString("MemoryPools");
 | |
|                         json.BeginObject();
 | |
|                         {
 | |
|                             for (uint32_t typeIndex = 0; typeIndex < allocator->GetMemoryTypeCount(); ++typeIndex)
 | |
|                             {
 | |
|                                 if (allocator->MemoryTypeIndexToHeapIndex(typeIndex) == heapIndex)
 | |
|                                 {
 | |
|                                     json.BeginString("Type ");
 | |
|                                     json.ContinueString(typeIndex);
 | |
|                                     json.EndString();
 | |
|                                     json.BeginObject();
 | |
|                                     {
 | |
|                                         json.WriteString("Flags");
 | |
|                                         json.BeginArray(true);
 | |
|                                         {
 | |
|                                             VkMemoryPropertyFlags flags = allocator->m_MemProps.memoryTypes[typeIndex].propertyFlags;
 | |
|                                             if (flags & VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT)
 | |
|                                                 json.WriteString("DEVICE_LOCAL");
 | |
|                                             if (flags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
 | |
|                                                 json.WriteString("HOST_VISIBLE");
 | |
|                                             if (flags & VK_MEMORY_PROPERTY_HOST_COHERENT_BIT)
 | |
|                                                 json.WriteString("HOST_COHERENT");
 | |
|                                             if (flags & VK_MEMORY_PROPERTY_HOST_CACHED_BIT)
 | |
|                                                 json.WriteString("HOST_CACHED");
 | |
|                                             if (flags & VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT)
 | |
|                                                 json.WriteString("LAZILY_ALLOCATED");
 | |
|                                         #if VMA_VULKAN_VERSION >= 1001000
 | |
|                                             if (flags & VK_MEMORY_PROPERTY_PROTECTED_BIT)
 | |
|                                                 json.WriteString("PROTECTED");
 | |
|                                         #endif
 | |
|                                         #if VK_AMD_device_coherent_memory
 | |
|                                             if (flags & VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY)
 | |
|                                                 json.WriteString("DEVICE_COHERENT_AMD");
 | |
|                                             if (flags & VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY)
 | |
|                                                 json.WriteString("DEVICE_UNCACHED_AMD");
 | |
|                                         #endif
 | |
| 
 | |
|                                             flags &= ~(VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT
 | |
|                                         #if VMA_VULKAN_VERSION >= 1001000
 | |
|                                                 | VK_MEMORY_PROPERTY_LAZILY_ALLOCATED_BIT
 | |
|                                         #endif
 | |
|                                         #if VK_AMD_device_coherent_memory
 | |
|                                                 | VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD_COPY
 | |
|                                                 | VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD_COPY
 | |
|                                         #endif
 | |
|                                                 | VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT
 | |
|                                                 | VK_MEMORY_PROPERTY_HOST_COHERENT_BIT
 | |
|                                                 | VK_MEMORY_PROPERTY_HOST_CACHED_BIT);
 | |
|                                             if (flags != 0)
 | |
|                                                 json.WriteNumber(flags);
 | |
|                                         }
 | |
|                                         json.EndArray();
 | |
| 
 | |
|                                         json.WriteString("Stats");
 | |
|                                         VmaPrintDetailedStatistics(json, stats.memoryType[typeIndex]);
 | |
|                                     }
 | |
|                                     json.EndObject();
 | |
|                                 }
 | |
|                             }
 | |
| 
 | |
|                         }
 | |
|                         json.EndObject();
 | |
|                     }
 | |
|                     json.EndObject();
 | |
|                 }
 | |
|             }
 | |
|             json.EndObject();
 | |
|         }
 | |
| 
 | |
|         if (detailedMap == VK_TRUE)
 | |
|             allocator->PrintDetailedMap(json);
 | |
| 
 | |
|         json.EndObject();
 | |
|     }
 | |
| 
 | |
|     *ppStatsString = VmaCreateStringCopy(allocator->GetAllocationCallbacks(), sb.GetData(), sb.GetLength());
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeStatsString(
 | |
|     VmaAllocator allocator,
 | |
|     char* pStatsString)
 | |
| {
 | |
|     if(pStatsString != VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(allocator);
 | |
|         VmaFreeString(allocator->GetAllocationCallbacks(), pStatsString);
 | |
|     }
 | |
| }
 | |
| 
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| /*
 | |
| This function is not protected by any mutex because it just reads immutable data.
 | |
| */
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndex(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t memoryTypeBits,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex)
 | |
| {
 | |
|     VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | |
|     VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | |
| 
 | |
|     return allocator->FindMemoryTypeIndex(memoryTypeBits, pAllocationCreateInfo, UINT32_MAX, pMemoryTypeIndex);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForBufferInfo(
 | |
|     VmaAllocator allocator,
 | |
|     const VkBufferCreateInfo* pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex)
 | |
| {
 | |
|     VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | |
|     VMA_ASSERT(pBufferCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | |
| 
 | |
|     const VkDevice hDev = allocator->m_hDevice;
 | |
|     const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
 | |
|     VkResult res;
 | |
| 
 | |
| #if VMA_VULKAN_VERSION >= 1003000
 | |
|     if(funcs->vkGetDeviceBufferMemoryRequirements)
 | |
|     {
 | |
|         // Can query straight from VkBufferCreateInfo :)
 | |
|         VkDeviceBufferMemoryRequirements devBufMemReq = {VK_STRUCTURE_TYPE_DEVICE_BUFFER_MEMORY_REQUIREMENTS};
 | |
|         devBufMemReq.pCreateInfo = pBufferCreateInfo;
 | |
| 
 | |
|         VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
 | |
|         (*funcs->vkGetDeviceBufferMemoryRequirements)(hDev, &devBufMemReq, &memReq);
 | |
| 
 | |
|         res = allocator->FindMemoryTypeIndex(
 | |
|             memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex);
 | |
|     }
 | |
|     else
 | |
| #endif // #if VMA_VULKAN_VERSION >= 1003000
 | |
|     {
 | |
|         // Must create a dummy buffer to query :(
 | |
|         VkBuffer hBuffer = VK_NULL_HANDLE;
 | |
|         res = funcs->vkCreateBuffer(
 | |
|             hDev, pBufferCreateInfo, allocator->GetAllocationCallbacks(), &hBuffer);
 | |
|         if(res == VK_SUCCESS)
 | |
|         {
 | |
|             VkMemoryRequirements memReq = {};
 | |
|             funcs->vkGetBufferMemoryRequirements(hDev, hBuffer, &memReq);
 | |
| 
 | |
|             res = allocator->FindMemoryTypeIndex(
 | |
|                 memReq.memoryTypeBits, pAllocationCreateInfo, pBufferCreateInfo->usage, pMemoryTypeIndex);
 | |
| 
 | |
|             funcs->vkDestroyBuffer(
 | |
|                 hDev, hBuffer, allocator->GetAllocationCallbacks());
 | |
|         }
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFindMemoryTypeIndexForImageInfo(
 | |
|     VmaAllocator allocator,
 | |
|     const VkImageCreateInfo* pImageCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     uint32_t* pMemoryTypeIndex)
 | |
| {
 | |
|     VMA_ASSERT(allocator != VK_NULL_HANDLE);
 | |
|     VMA_ASSERT(pImageCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pAllocationCreateInfo != VMA_NULL);
 | |
|     VMA_ASSERT(pMemoryTypeIndex != VMA_NULL);
 | |
| 
 | |
|     const VkDevice hDev = allocator->m_hDevice;
 | |
|     const VmaVulkanFunctions* funcs = &allocator->GetVulkanFunctions();
 | |
|     VkResult res;
 | |
| 
 | |
| #if VMA_VULKAN_VERSION >= 1003000
 | |
|     if(funcs->vkGetDeviceImageMemoryRequirements)
 | |
|     {
 | |
|         // Can query straight from VkImageCreateInfo :)
 | |
|         VkDeviceImageMemoryRequirements devImgMemReq = {VK_STRUCTURE_TYPE_DEVICE_IMAGE_MEMORY_REQUIREMENTS};
 | |
|         devImgMemReq.pCreateInfo = pImageCreateInfo;
 | |
|         VMA_ASSERT(pImageCreateInfo->tiling != VK_IMAGE_TILING_DRM_FORMAT_MODIFIER_EXT_COPY && (pImageCreateInfo->flags & VK_IMAGE_CREATE_DISJOINT_BIT_COPY) == 0 &&
 | |
|             "Cannot use this VkImageCreateInfo with vmaFindMemoryTypeIndexForImageInfo as I don't know what to pass as VkDeviceImageMemoryRequirements::planeAspect.");
 | |
| 
 | |
|         VkMemoryRequirements2 memReq = {VK_STRUCTURE_TYPE_MEMORY_REQUIREMENTS_2};
 | |
|         (*funcs->vkGetDeviceImageMemoryRequirements)(hDev, &devImgMemReq, &memReq);
 | |
| 
 | |
|         res = allocator->FindMemoryTypeIndex(
 | |
|             memReq.memoryRequirements.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex);
 | |
|     }
 | |
|     else
 | |
| #endif // #if VMA_VULKAN_VERSION >= 1003000
 | |
|     {
 | |
|         // Must create a dummy image to query :(
 | |
|         VkImage hImage = VK_NULL_HANDLE;
 | |
|         res = funcs->vkCreateImage(
 | |
|             hDev, pImageCreateInfo, allocator->GetAllocationCallbacks(), &hImage);
 | |
|         if(res == VK_SUCCESS)
 | |
|         {
 | |
|             VkMemoryRequirements memReq = {};
 | |
|             funcs->vkGetImageMemoryRequirements(hDev, hImage, &memReq);
 | |
| 
 | |
|             res = allocator->FindMemoryTypeIndex(
 | |
|                 memReq.memoryTypeBits, pAllocationCreateInfo, pImageCreateInfo->usage, pMemoryTypeIndex);
 | |
| 
 | |
|             funcs->vkDestroyImage(
 | |
|                 hDev, hImage, allocator->GetAllocationCallbacks());
 | |
|         }
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreatePool(
 | |
|     VmaAllocator allocator,
 | |
|     const VmaPoolCreateInfo* pCreateInfo,
 | |
|     VmaPool* pPool)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pCreateInfo && pPool);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCreatePool");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->CreatePool(pCreateInfo, pPool);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyPool(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     if(pool == VK_NULL_HANDLE)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaDestroyPool");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->DestroyPool(pool);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolStatistics(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     VmaStatistics* pPoolStats)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool && pPoolStats);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->GetPoolStatistics(pool, pPoolStats);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCalculatePoolStatistics(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     VmaDetailedStatistics* pPoolStats)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool && pPoolStats);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->CalculatePoolStatistics(pool, pPoolStats);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckPoolCorruption(VmaAllocator allocator, VmaPool pool)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCheckPoolCorruption");
 | |
| 
 | |
|     return allocator->CheckPoolCorruption(pool);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetPoolName(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     const char** ppName)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool && ppName);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaGetPoolName");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     *ppName = pool->GetName();
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetPoolName(
 | |
|     VmaAllocator allocator,
 | |
|     VmaPool pool,
 | |
|     const char* pName)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pool);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaSetPoolName");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     pool->SetName(pName);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemory(
 | |
|     VmaAllocator allocator,
 | |
|     const VkMemoryRequirements* pVkMemoryRequirements,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaAllocateMemory");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VkResult result = allocator->AllocateMemory(
 | |
|         *pVkMemoryRequirements,
 | |
|         false, // requiresDedicatedAllocation
 | |
|         false, // prefersDedicatedAllocation
 | |
|         VK_NULL_HANDLE, // dedicatedBuffer
 | |
|         VK_NULL_HANDLE, // dedicatedImage
 | |
|         UINT32_MAX, // dedicatedBufferImageUsage
 | |
|         *pCreateInfo,
 | |
|         VMA_SUBALLOCATION_TYPE_UNKNOWN,
 | |
|         1, // allocationCount
 | |
|         pAllocation);
 | |
| 
 | |
|     if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
 | |
|     {
 | |
|         allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryPages(
 | |
|     VmaAllocator allocator,
 | |
|     const VkMemoryRequirements* pVkMemoryRequirements,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     size_t allocationCount,
 | |
|     VmaAllocation* pAllocations,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     if(allocationCount == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(allocator && pVkMemoryRequirements && pCreateInfo && pAllocations);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaAllocateMemoryPages");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VkResult result = allocator->AllocateMemory(
 | |
|         *pVkMemoryRequirements,
 | |
|         false, // requiresDedicatedAllocation
 | |
|         false, // prefersDedicatedAllocation
 | |
|         VK_NULL_HANDLE, // dedicatedBuffer
 | |
|         VK_NULL_HANDLE, // dedicatedImage
 | |
|         UINT32_MAX, // dedicatedBufferImageUsage
 | |
|         *pCreateInfo,
 | |
|         VMA_SUBALLOCATION_TYPE_UNKNOWN,
 | |
|         allocationCount,
 | |
|         pAllocations);
 | |
| 
 | |
|     if(pAllocationInfo != VMA_NULL && result == VK_SUCCESS)
 | |
|     {
 | |
|         for(size_t i = 0; i < allocationCount; ++i)
 | |
|         {
 | |
|             allocator->GetAllocationInfo(pAllocations[i], pAllocationInfo + i);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     VkBuffer buffer,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && buffer != VK_NULL_HANDLE && pCreateInfo && pAllocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaAllocateMemoryForBuffer");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VkMemoryRequirements vkMemReq = {};
 | |
|     bool requiresDedicatedAllocation = false;
 | |
|     bool prefersDedicatedAllocation = false;
 | |
|     allocator->GetBufferMemoryRequirements(buffer, vkMemReq,
 | |
|         requiresDedicatedAllocation,
 | |
|         prefersDedicatedAllocation);
 | |
| 
 | |
|     VkResult result = allocator->AllocateMemory(
 | |
|         vkMemReq,
 | |
|         requiresDedicatedAllocation,
 | |
|         prefersDedicatedAllocation,
 | |
|         buffer, // dedicatedBuffer
 | |
|         VK_NULL_HANDLE, // dedicatedImage
 | |
|         UINT32_MAX, // dedicatedBufferImageUsage
 | |
|         *pCreateInfo,
 | |
|         VMA_SUBALLOCATION_TYPE_BUFFER,
 | |
|         1, // allocationCount
 | |
|         pAllocation);
 | |
| 
 | |
|     if(pAllocationInfo && result == VK_SUCCESS)
 | |
|     {
 | |
|         allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaAllocateMemoryForImage(
 | |
|     VmaAllocator allocator,
 | |
|     VkImage image,
 | |
|     const VmaAllocationCreateInfo* pCreateInfo,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && image != VK_NULL_HANDLE && pCreateInfo && pAllocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaAllocateMemoryForImage");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     VkMemoryRequirements vkMemReq = {};
 | |
|     bool requiresDedicatedAllocation = false;
 | |
|     bool prefersDedicatedAllocation  = false;
 | |
|     allocator->GetImageMemoryRequirements(image, vkMemReq,
 | |
|         requiresDedicatedAllocation, prefersDedicatedAllocation);
 | |
| 
 | |
|     VkResult result = allocator->AllocateMemory(
 | |
|         vkMemReq,
 | |
|         requiresDedicatedAllocation,
 | |
|         prefersDedicatedAllocation,
 | |
|         VK_NULL_HANDLE, // dedicatedBuffer
 | |
|         image, // dedicatedImage
 | |
|         UINT32_MAX, // dedicatedBufferImageUsage
 | |
|         *pCreateInfo,
 | |
|         VMA_SUBALLOCATION_TYPE_IMAGE_UNKNOWN,
 | |
|         1, // allocationCount
 | |
|         pAllocation);
 | |
| 
 | |
|     if(pAllocationInfo && result == VK_SUCCESS)
 | |
|     {
 | |
|         allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|     }
 | |
| 
 | |
|     return result;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     if(allocation == VK_NULL_HANDLE)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaFreeMemory");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->FreeMemory(
 | |
|         1, // allocationCount
 | |
|         &allocation);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeMemoryPages(
 | |
|     VmaAllocator allocator,
 | |
|     size_t allocationCount,
 | |
|     const VmaAllocation* pAllocations)
 | |
| {
 | |
|     if(allocationCount == 0)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaFreeMemoryPages");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->FreeMemory(allocationCount, pAllocations);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationInfo(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && pAllocationInfo);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->GetAllocationInfo(allocation, pAllocationInfo);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationUserData(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     void* pUserData)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocation->SetUserData(allocator, pUserData);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetAllocationName(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     const char* VMA_NULLABLE pName)
 | |
| {
 | |
|     allocation->SetName(allocator, pName);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetAllocationMemoryProperties(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkMemoryPropertyFlags* VMA_NOT_NULL pFlags)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && pFlags);
 | |
|     const uint32_t memTypeIndex = allocation->GetMemoryTypeIndex();
 | |
|     *pFlags = allocator->m_MemProps.memoryTypes[memTypeIndex].propertyFlags;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaMapMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     void** ppData)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && ppData);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->Map(allocation, ppData);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaUnmapMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     allocator->Unmap(allocation);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize offset,
 | |
|     VkDeviceSize size)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaFlushAllocation");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_FLUSH);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize offset,
 | |
|     VkDeviceSize size)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaInvalidateAllocation");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     const VkResult res = allocator->FlushOrInvalidateAllocation(allocation, offset, size, VMA_CACHE_INVALIDATE);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaFlushAllocations(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t allocationCount,
 | |
|     const VmaAllocation* allocations,
 | |
|     const VkDeviceSize* offsets,
 | |
|     const VkDeviceSize* sizes)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     if(allocationCount == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(allocations);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaFlushAllocations");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_FLUSH);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaInvalidateAllocations(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t allocationCount,
 | |
|     const VmaAllocation* allocations,
 | |
|     const VkDeviceSize* offsets,
 | |
|     const VkDeviceSize* sizes)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     if(allocationCount == 0)
 | |
|     {
 | |
|         return VK_SUCCESS;
 | |
|     }
 | |
| 
 | |
|     VMA_ASSERT(allocations);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaInvalidateAllocations");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     const VkResult res = allocator->FlushOrInvalidateAllocations(allocationCount, allocations, offsets, sizes, VMA_CACHE_INVALIDATE);
 | |
| 
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCheckCorruption(
 | |
|     VmaAllocator allocator,
 | |
|     uint32_t memoryTypeBits)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCheckCorruption");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->CheckCorruption(memoryTypeBits);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentation(
 | |
|     VmaAllocator allocator,
 | |
|     const VmaDefragmentationInfo* pInfo,
 | |
|     VmaDefragmentationContext* pContext)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pInfo && pContext);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBeginDefragmentation");
 | |
| 
 | |
|     if (pInfo->pool != VMA_NULL)
 | |
|     {
 | |
|         // Check if run on supported algorithms
 | |
|         if (pInfo->pool->m_BlockVector.GetAlgorithm() & VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT)
 | |
|             return VK_ERROR_FEATURE_NOT_PRESENT;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     *pContext = vma_new(allocator, VmaDefragmentationContext_T)(allocator, *pInfo);
 | |
|     return VK_SUCCESS;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaEndDefragmentation(
 | |
|     VmaAllocator allocator,
 | |
|     VmaDefragmentationContext context,
 | |
|     VmaDefragmentationStats* pStats)
 | |
| {
 | |
|     VMA_ASSERT(allocator && context);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaEndDefragmentation");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     if (pStats)
 | |
|         context->GetStats(*pStats);
 | |
|     vma_delete(allocator, context);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBeginDefragmentationPass(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaDefragmentationContext VMA_NOT_NULL context,
 | |
|     VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
 | |
| {
 | |
|     VMA_ASSERT(context && pPassInfo);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBeginDefragmentationPass");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return context->DefragmentPassBegin(*pPassInfo);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaEndDefragmentationPass(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaDefragmentationContext VMA_NOT_NULL context,
 | |
|     VmaDefragmentationPassMoveInfo* VMA_NOT_NULL pPassInfo)
 | |
| {
 | |
|     VMA_ASSERT(context && pPassInfo);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaEndDefragmentationPass");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return context->DefragmentPassEnd(*pPassInfo);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkBuffer buffer)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && buffer);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBindBufferMemory");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->BindBufferMemory(allocation, 0, buffer, VMA_NULL);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindBufferMemory2(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkBuffer buffer,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && buffer);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBindBufferMemory2");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->BindBufferMemory(allocation, allocationLocalOffset, buffer, pNext);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkImage image)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && image);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBindImageMemory");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     return allocator->BindImageMemory(allocation, 0, image, VMA_NULL);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaBindImageMemory2(
 | |
|     VmaAllocator allocator,
 | |
|     VmaAllocation allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     VkImage image,
 | |
|     const void* pNext)
 | |
| {
 | |
|     VMA_ASSERT(allocator && allocation && image);
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaBindImageMemory2");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|         return allocator->BindImageMemory(allocation, allocationLocalOffset, image, pNext);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     const VkBufferCreateInfo* pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     VkBuffer* pBuffer,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && pBuffer && pAllocation);
 | |
| 
 | |
|     if(pBufferCreateInfo->size == 0)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
|     if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
 | |
|         !allocator->m_UseKhrBufferDeviceAddress)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCreateBuffer");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     *pBuffer = VK_NULL_HANDLE;
 | |
|     *pAllocation = VK_NULL_HANDLE;
 | |
| 
 | |
|     // 1. Create VkBuffer.
 | |
|     VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
 | |
|         allocator->m_hDevice,
 | |
|         pBufferCreateInfo,
 | |
|         allocator->GetAllocationCallbacks(),
 | |
|         pBuffer);
 | |
|     if(res >= 0)
 | |
|     {
 | |
|         // 2. vkGetBufferMemoryRequirements.
 | |
|         VkMemoryRequirements vkMemReq = {};
 | |
|         bool requiresDedicatedAllocation = false;
 | |
|         bool prefersDedicatedAllocation  = false;
 | |
|         allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
 | |
|             requiresDedicatedAllocation, prefersDedicatedAllocation);
 | |
| 
 | |
|         // 3. Allocate memory using allocator.
 | |
|         res = allocator->AllocateMemory(
 | |
|             vkMemReq,
 | |
|             requiresDedicatedAllocation,
 | |
|             prefersDedicatedAllocation,
 | |
|             *pBuffer, // dedicatedBuffer
 | |
|             VK_NULL_HANDLE, // dedicatedImage
 | |
|             pBufferCreateInfo->usage, // dedicatedBufferImageUsage
 | |
|             *pAllocationCreateInfo,
 | |
|             VMA_SUBALLOCATION_TYPE_BUFFER,
 | |
|             1, // allocationCount
 | |
|             pAllocation);
 | |
| 
 | |
|         if(res >= 0)
 | |
|         {
 | |
|             // 3. Bind buffer with memory.
 | |
|             if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
 | |
|             {
 | |
|                 res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
 | |
|             }
 | |
|             if(res >= 0)
 | |
|             {
 | |
|                 // All steps succeeded.
 | |
|                 #if VMA_STATS_STRING_ENABLED
 | |
|                     (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
 | |
|                 #endif
 | |
|                 if(pAllocationInfo != VMA_NULL)
 | |
|                 {
 | |
|                     allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|                 }
 | |
| 
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|             allocator->FreeMemory(
 | |
|                 1, // allocationCount
 | |
|                 pAllocation);
 | |
|             *pAllocation = VK_NULL_HANDLE;
 | |
|             (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | |
|             *pBuffer = VK_NULL_HANDLE;
 | |
|             return res;
 | |
|         }
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | |
|         *pBuffer = VK_NULL_HANDLE;
 | |
|         return res;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateBufferWithAlignment(
 | |
|     VmaAllocator allocator,
 | |
|     const VkBufferCreateInfo* pBufferCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     VkDeviceSize minAlignment,
 | |
|     VkBuffer* pBuffer,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pBufferCreateInfo && pAllocationCreateInfo && VmaIsPow2(minAlignment) && pBuffer && pAllocation);
 | |
| 
 | |
|     if(pBufferCreateInfo->size == 0)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
|     if((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
 | |
|         !allocator->m_UseKhrBufferDeviceAddress)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCreateBufferWithAlignment");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     *pBuffer = VK_NULL_HANDLE;
 | |
|     *pAllocation = VK_NULL_HANDLE;
 | |
| 
 | |
|     // 1. Create VkBuffer.
 | |
|     VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
 | |
|         allocator->m_hDevice,
 | |
|         pBufferCreateInfo,
 | |
|         allocator->GetAllocationCallbacks(),
 | |
|         pBuffer);
 | |
|     if(res >= 0)
 | |
|     {
 | |
|         // 2. vkGetBufferMemoryRequirements.
 | |
|         VkMemoryRequirements vkMemReq = {};
 | |
|         bool requiresDedicatedAllocation = false;
 | |
|         bool prefersDedicatedAllocation  = false;
 | |
|         allocator->GetBufferMemoryRequirements(*pBuffer, vkMemReq,
 | |
|             requiresDedicatedAllocation, prefersDedicatedAllocation);
 | |
| 
 | |
|         // 2a. Include minAlignment
 | |
|         vkMemReq.alignment = VMA_MAX(vkMemReq.alignment, minAlignment);
 | |
| 
 | |
|         // 3. Allocate memory using allocator.
 | |
|         res = allocator->AllocateMemory(
 | |
|             vkMemReq,
 | |
|             requiresDedicatedAllocation,
 | |
|             prefersDedicatedAllocation,
 | |
|             *pBuffer, // dedicatedBuffer
 | |
|             VK_NULL_HANDLE, // dedicatedImage
 | |
|             pBufferCreateInfo->usage, // dedicatedBufferImageUsage
 | |
|             *pAllocationCreateInfo,
 | |
|             VMA_SUBALLOCATION_TYPE_BUFFER,
 | |
|             1, // allocationCount
 | |
|             pAllocation);
 | |
| 
 | |
|         if(res >= 0)
 | |
|         {
 | |
|             // 3. Bind buffer with memory.
 | |
|             if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
 | |
|             {
 | |
|                 res = allocator->BindBufferMemory(*pAllocation, 0, *pBuffer, VMA_NULL);
 | |
|             }
 | |
|             if(res >= 0)
 | |
|             {
 | |
|                 // All steps succeeded.
 | |
|                 #if VMA_STATS_STRING_ENABLED
 | |
|                     (*pAllocation)->InitBufferImageUsage(pBufferCreateInfo->usage);
 | |
|                 #endif
 | |
|                 if(pAllocationInfo != VMA_NULL)
 | |
|                 {
 | |
|                     allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|                 }
 | |
| 
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|             allocator->FreeMemory(
 | |
|                 1, // allocationCount
 | |
|                 pAllocation);
 | |
|             *pAllocation = VK_NULL_HANDLE;
 | |
|             (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | |
|             *pBuffer = VK_NULL_HANDLE;
 | |
|             return res;
 | |
|         }
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | |
|         *pBuffer = VK_NULL_HANDLE;
 | |
|         return res;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | |
|     VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
 | |
| {
 | |
|     return vmaCreateAliasingBuffer2(allocator, allocation, 0, pBufferCreateInfo, pBuffer);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingBuffer2(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     const VkBufferCreateInfo* VMA_NOT_NULL pBufferCreateInfo,
 | |
|     VkBuffer VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pBuffer)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pBufferCreateInfo && pBuffer && allocation);
 | |
|     VMA_ASSERT(allocationLocalOffset + pBufferCreateInfo->size <= allocation->GetSize());
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCreateAliasingBuffer2");
 | |
| 
 | |
|     *pBuffer = VK_NULL_HANDLE;
 | |
| 
 | |
|     if (pBufferCreateInfo->size == 0)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
|     if ((pBufferCreateInfo->usage & VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT_COPY) != 0 &&
 | |
|         !allocator->m_UseKhrBufferDeviceAddress)
 | |
|     {
 | |
|         VMA_ASSERT(0 && "Creating a buffer with VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT is not valid if VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT was not used.");
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     // 1. Create VkBuffer.
 | |
|     VkResult res = (*allocator->GetVulkanFunctions().vkCreateBuffer)(
 | |
|         allocator->m_hDevice,
 | |
|         pBufferCreateInfo,
 | |
|         allocator->GetAllocationCallbacks(),
 | |
|         pBuffer);
 | |
|     if (res >= 0)
 | |
|     {
 | |
|         // 2. Bind buffer with memory.
 | |
|         res = allocator->BindBufferMemory(allocation, allocationLocalOffset, *pBuffer, VMA_NULL);
 | |
|         if (res >= 0)
 | |
|         {
 | |
|             return VK_SUCCESS;
 | |
|         }
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, *pBuffer, allocator->GetAllocationCallbacks());
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyBuffer(
 | |
|     VmaAllocator allocator,
 | |
|     VkBuffer buffer,
 | |
|     VmaAllocation allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     if(buffer == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaDestroyBuffer");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     if(buffer != VK_NULL_HANDLE)
 | |
|     {
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyBuffer)(allocator->m_hDevice, buffer, allocator->GetAllocationCallbacks());
 | |
|     }
 | |
| 
 | |
|     if(allocation != VK_NULL_HANDLE)
 | |
|     {
 | |
|         allocator->FreeMemory(
 | |
|             1, // allocationCount
 | |
|             &allocation);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateImage(
 | |
|     VmaAllocator allocator,
 | |
|     const VkImageCreateInfo* pImageCreateInfo,
 | |
|     const VmaAllocationCreateInfo* pAllocationCreateInfo,
 | |
|     VkImage* pImage,
 | |
|     VmaAllocation* pAllocation,
 | |
|     VmaAllocationInfo* pAllocationInfo)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pImageCreateInfo && pAllocationCreateInfo && pImage && pAllocation);
 | |
| 
 | |
|     if(pImageCreateInfo->extent.width == 0 ||
 | |
|         pImageCreateInfo->extent.height == 0 ||
 | |
|         pImageCreateInfo->extent.depth == 0 ||
 | |
|         pImageCreateInfo->mipLevels == 0 ||
 | |
|         pImageCreateInfo->arrayLayers == 0)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCreateImage");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     *pImage = VK_NULL_HANDLE;
 | |
|     *pAllocation = VK_NULL_HANDLE;
 | |
| 
 | |
|     // 1. Create VkImage.
 | |
|     VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
 | |
|         allocator->m_hDevice,
 | |
|         pImageCreateInfo,
 | |
|         allocator->GetAllocationCallbacks(),
 | |
|         pImage);
 | |
|     if(res >= 0)
 | |
|     {
 | |
|         VmaSuballocationType suballocType = pImageCreateInfo->tiling == VK_IMAGE_TILING_OPTIMAL ?
 | |
|             VMA_SUBALLOCATION_TYPE_IMAGE_OPTIMAL :
 | |
|             VMA_SUBALLOCATION_TYPE_IMAGE_LINEAR;
 | |
| 
 | |
|         // 2. Allocate memory using allocator.
 | |
|         VkMemoryRequirements vkMemReq = {};
 | |
|         bool requiresDedicatedAllocation = false;
 | |
|         bool prefersDedicatedAllocation  = false;
 | |
|         allocator->GetImageMemoryRequirements(*pImage, vkMemReq,
 | |
|             requiresDedicatedAllocation, prefersDedicatedAllocation);
 | |
| 
 | |
|         res = allocator->AllocateMemory(
 | |
|             vkMemReq,
 | |
|             requiresDedicatedAllocation,
 | |
|             prefersDedicatedAllocation,
 | |
|             VK_NULL_HANDLE, // dedicatedBuffer
 | |
|             *pImage, // dedicatedImage
 | |
|             pImageCreateInfo->usage, // dedicatedBufferImageUsage
 | |
|             *pAllocationCreateInfo,
 | |
|             suballocType,
 | |
|             1, // allocationCount
 | |
|             pAllocation);
 | |
| 
 | |
|         if(res >= 0)
 | |
|         {
 | |
|             // 3. Bind image with memory.
 | |
|             if((pAllocationCreateInfo->flags & VMA_ALLOCATION_CREATE_DONT_BIND_BIT) == 0)
 | |
|             {
 | |
|                 res = allocator->BindImageMemory(*pAllocation, 0, *pImage, VMA_NULL);
 | |
|             }
 | |
|             if(res >= 0)
 | |
|             {
 | |
|                 // All steps succeeded.
 | |
|                 #if VMA_STATS_STRING_ENABLED
 | |
|                     (*pAllocation)->InitBufferImageUsage(pImageCreateInfo->usage);
 | |
|                 #endif
 | |
|                 if(pAllocationInfo != VMA_NULL)
 | |
|                 {
 | |
|                     allocator->GetAllocationInfo(*pAllocation, pAllocationInfo);
 | |
|                 }
 | |
| 
 | |
|                 return VK_SUCCESS;
 | |
|             }
 | |
|             allocator->FreeMemory(
 | |
|                 1, // allocationCount
 | |
|                 pAllocation);
 | |
|             *pAllocation = VK_NULL_HANDLE;
 | |
|             (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
 | |
|             *pImage = VK_NULL_HANDLE;
 | |
|             return res;
 | |
|         }
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
 | |
|         *pImage = VK_NULL_HANDLE;
 | |
|         return res;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | |
|     VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
 | |
| {
 | |
|     return vmaCreateAliasingImage2(allocator, allocation, 0, pImageCreateInfo, pImage);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateAliasingImage2(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VmaAllocation VMA_NOT_NULL allocation,
 | |
|     VkDeviceSize allocationLocalOffset,
 | |
|     const VkImageCreateInfo* VMA_NOT_NULL pImageCreateInfo,
 | |
|     VkImage VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pImage)
 | |
| {
 | |
|     VMA_ASSERT(allocator && pImageCreateInfo && pImage && allocation);
 | |
| 
 | |
|     *pImage = VK_NULL_HANDLE;
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaCreateImage2");
 | |
| 
 | |
|     if (pImageCreateInfo->extent.width == 0 ||
 | |
|         pImageCreateInfo->extent.height == 0 ||
 | |
|         pImageCreateInfo->extent.depth == 0 ||
 | |
|         pImageCreateInfo->mipLevels == 0 ||
 | |
|         pImageCreateInfo->arrayLayers == 0)
 | |
|     {
 | |
|         return VK_ERROR_INITIALIZATION_FAILED;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     // 1. Create VkImage.
 | |
|     VkResult res = (*allocator->GetVulkanFunctions().vkCreateImage)(
 | |
|         allocator->m_hDevice,
 | |
|         pImageCreateInfo,
 | |
|         allocator->GetAllocationCallbacks(),
 | |
|         pImage);
 | |
|     if (res >= 0)
 | |
|     {
 | |
|         // 2. Bind image with memory.
 | |
|         res = allocator->BindImageMemory(allocation, allocationLocalOffset, *pImage, VMA_NULL);
 | |
|         if (res >= 0)
 | |
|         {
 | |
|             return VK_SUCCESS;
 | |
|         }
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, *pImage, allocator->GetAllocationCallbacks());
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyImage(
 | |
|     VmaAllocator VMA_NOT_NULL allocator,
 | |
|     VkImage VMA_NULLABLE_NON_DISPATCHABLE image,
 | |
|     VmaAllocation VMA_NULLABLE allocation)
 | |
| {
 | |
|     VMA_ASSERT(allocator);
 | |
| 
 | |
|     if(image == VK_NULL_HANDLE && allocation == VK_NULL_HANDLE)
 | |
|     {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     VMA_DEBUG_LOG("vmaDestroyImage");
 | |
| 
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK
 | |
| 
 | |
|     if(image != VK_NULL_HANDLE)
 | |
|     {
 | |
|         (*allocator->GetVulkanFunctions().vkDestroyImage)(allocator->m_hDevice, image, allocator->GetAllocationCallbacks());
 | |
|     }
 | |
|     if(allocation != VK_NULL_HANDLE)
 | |
|     {
 | |
|         allocator->FreeMemory(
 | |
|             1, // allocationCount
 | |
|             &allocation);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaCreateVirtualBlock(
 | |
|     const VmaVirtualBlockCreateInfo* VMA_NOT_NULL pCreateInfo,
 | |
|     VmaVirtualBlock VMA_NULLABLE * VMA_NOT_NULL pVirtualBlock)
 | |
| {
 | |
|     VMA_ASSERT(pCreateInfo && pVirtualBlock);
 | |
|     VMA_ASSERT(pCreateInfo->size > 0);
 | |
|     VMA_DEBUG_LOG("vmaCreateVirtualBlock");
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     *pVirtualBlock = vma_new(pCreateInfo->pAllocationCallbacks, VmaVirtualBlock_T)(*pCreateInfo);
 | |
|     VkResult res = (*pVirtualBlock)->Init();
 | |
|     if(res < 0)
 | |
|     {
 | |
|         vma_delete(pCreateInfo->pAllocationCallbacks, *pVirtualBlock);
 | |
|         *pVirtualBlock = VK_NULL_HANDLE;
 | |
|     }
 | |
|     return res;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaDestroyVirtualBlock(VmaVirtualBlock VMA_NULLABLE virtualBlock)
 | |
| {
 | |
|     if(virtualBlock != VK_NULL_HANDLE)
 | |
|     {
 | |
|         VMA_DEBUG_LOG("vmaDestroyVirtualBlock");
 | |
|         VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|         VkAllocationCallbacks allocationCallbacks = virtualBlock->m_AllocationCallbacks; // Have to copy the callbacks when destroying.
 | |
|         vma_delete(&allocationCallbacks, virtualBlock);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkBool32 VMA_CALL_POST vmaIsVirtualBlockEmpty(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
 | |
| {
 | |
|     VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | |
|     VMA_DEBUG_LOG("vmaIsVirtualBlockEmpty");
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     return virtualBlock->IsEmpty() ? VK_TRUE : VK_FALSE;
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualAllocationInfo(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, VmaVirtualAllocationInfo* VMA_NOT_NULL pVirtualAllocInfo)
 | |
| {
 | |
|     VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pVirtualAllocInfo != VMA_NULL);
 | |
|     VMA_DEBUG_LOG("vmaGetVirtualAllocationInfo");
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     virtualBlock->GetAllocationInfo(allocation, *pVirtualAllocInfo);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE VkResult VMA_CALL_POST vmaVirtualAllocate(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     const VmaVirtualAllocationCreateInfo* VMA_NOT_NULL pCreateInfo, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE* VMA_NOT_NULL pAllocation,
 | |
|     VkDeviceSize* VMA_NULLABLE pOffset)
 | |
| {
 | |
|     VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pCreateInfo != VMA_NULL && pAllocation != VMA_NULL);
 | |
|     VMA_DEBUG_LOG("vmaVirtualAllocate");
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     return virtualBlock->Allocate(*pCreateInfo, *pAllocation, pOffset);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaVirtualFree(VmaVirtualBlock VMA_NOT_NULL virtualBlock, VmaVirtualAllocation VMA_NULLABLE_NON_DISPATCHABLE allocation)
 | |
| {
 | |
|     if(allocation != VK_NULL_HANDLE)
 | |
|     {
 | |
|         VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | |
|         VMA_DEBUG_LOG("vmaVirtualFree");
 | |
|         VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|         virtualBlock->Free(allocation);
 | |
|     }
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaClearVirtualBlock(VmaVirtualBlock VMA_NOT_NULL virtualBlock)
 | |
| {
 | |
|     VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | |
|     VMA_DEBUG_LOG("vmaClearVirtualBlock");
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     virtualBlock->Clear();
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaSetVirtualAllocationUserData(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaVirtualAllocation VMA_NOT_NULL_NON_DISPATCHABLE allocation, void* VMA_NULLABLE pUserData)
 | |
| {
 | |
|     VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | |
|     VMA_DEBUG_LOG("vmaSetVirtualAllocationUserData");
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     virtualBlock->SetAllocationUserData(allocation, pUserData);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaGetVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaStatistics* VMA_NOT_NULL pStats)
 | |
| {
 | |
|     VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
 | |
|     VMA_DEBUG_LOG("vmaGetVirtualBlockStatistics");
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     virtualBlock->GetStatistics(*pStats);
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaCalculateVirtualBlockStatistics(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     VmaDetailedStatistics* VMA_NOT_NULL pStats)
 | |
| {
 | |
|     VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && pStats != VMA_NULL);
 | |
|     VMA_DEBUG_LOG("vmaCalculateVirtualBlockStatistics");
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     virtualBlock->CalculateDetailedStatistics(*pStats);
 | |
| }
 | |
| 
 | |
| #if VMA_STATS_STRING_ENABLED
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaBuildVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     char* VMA_NULLABLE * VMA_NOT_NULL ppStatsString, VkBool32 detailedMap)
 | |
| {
 | |
|     VMA_ASSERT(virtualBlock != VK_NULL_HANDLE && ppStatsString != VMA_NULL);
 | |
|     VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|     const VkAllocationCallbacks* allocationCallbacks = virtualBlock->GetAllocationCallbacks();
 | |
|     VmaStringBuilder sb(allocationCallbacks);
 | |
|     virtualBlock->BuildStatsString(detailedMap != VK_FALSE, sb);
 | |
|     *ppStatsString = VmaCreateStringCopy(allocationCallbacks, sb.GetData(), sb.GetLength());
 | |
| }
 | |
| 
 | |
| VMA_CALL_PRE void VMA_CALL_POST vmaFreeVirtualBlockStatsString(VmaVirtualBlock VMA_NOT_NULL virtualBlock,
 | |
|     char* VMA_NULLABLE pStatsString)
 | |
| {
 | |
|     if(pStatsString != VMA_NULL)
 | |
|     {
 | |
|         VMA_ASSERT(virtualBlock != VK_NULL_HANDLE);
 | |
|         VMA_DEBUG_GLOBAL_MUTEX_LOCK;
 | |
|         VmaFreeString(virtualBlock->GetAllocationCallbacks(), pStatsString);
 | |
|     }
 | |
| }
 | |
| #endif // VMA_STATS_STRING_ENABLED
 | |
| #endif // _VMA_PUBLIC_INTERFACE
 | |
| #endif // VMA_IMPLEMENTATION
 | |
| 
 | |
| /**
 | |
| \page quick_start Quick start
 | |
| 
 | |
| \section quick_start_project_setup Project setup
 | |
| 
 | |
| Vulkan Memory Allocator comes in form of a "stb-style" single header file.
 | |
| You don't need to build it as a separate library project.
 | |
| You can add this file directly to your project and submit it to code repository next to your other source files.
 | |
| 
 | |
| "Single header" doesn't mean that everything is contained in C/C++ declarations,
 | |
| like it tends to be in case of inline functions or C++ templates.
 | |
| It means that implementation is bundled with interface in a single file and needs to be extracted using preprocessor macro.
 | |
| If you don't do it properly, you will get linker errors.
 | |
| 
 | |
| To do it properly:
 | |
| 
 | |
| -# Include "vk_mem_alloc.h" file in each CPP file where you want to use the library.
 | |
|    This includes declarations of all members of the library.
 | |
| -# In exactly one CPP file define following macro before this include.
 | |
|    It enables also internal definitions.
 | |
| 
 | |
| \code
 | |
| #define VMA_IMPLEMENTATION
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| It may be a good idea to create dedicated CPP file just for this purpose.
 | |
| 
 | |
| This library includes header `<vulkan/vulkan.h>`, which in turn
 | |
| includes `<windows.h>` on Windows. If you need some specific macros defined
 | |
| before including these headers (like `WIN32_LEAN_AND_MEAN` or
 | |
| `WINVER` for Windows, `VK_USE_PLATFORM_WIN32_KHR` for Vulkan), you must define
 | |
| them before every `#include` of this library.
 | |
| 
 | |
| This library is written in C++, but has C-compatible interface.
 | |
| Thus you can include and use vk_mem_alloc.h in C or C++ code, but full
 | |
| implementation with `VMA_IMPLEMENTATION` macro must be compiled as C++, NOT as C.
 | |
| Some features of C++14 are used. STL containers, RTTI, or C++ exceptions are not used.
 | |
| 
 | |
| 
 | |
| \section quick_start_initialization Initialization
 | |
| 
 | |
| At program startup:
 | |
| 
 | |
| -# Initialize Vulkan to have `VkPhysicalDevice`, `VkDevice` and `VkInstance` object.
 | |
| -# Fill VmaAllocatorCreateInfo structure and create #VmaAllocator object by
 | |
|    calling vmaCreateAllocator().
 | |
| 
 | |
| Only members `physicalDevice`, `device`, `instance` are required.
 | |
| However, you should inform the library which Vulkan version do you use by setting
 | |
| VmaAllocatorCreateInfo::vulkanApiVersion and which extensions did you enable
 | |
| by setting VmaAllocatorCreateInfo::flags (like #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT for VK_KHR_buffer_device_address).
 | |
| Otherwise, VMA would use only features of Vulkan 1.0 core with no extensions.
 | |
| 
 | |
| \subsection quick_start_initialization_selecting_vulkan_version Selecting Vulkan version
 | |
| 
 | |
| VMA supports Vulkan version down to 1.0, for backward compatibility.
 | |
| If you want to use higher version, you need to inform the library about it.
 | |
| This is a two-step process.
 | |
| 
 | |
| <b>Step 1: Compile time.</b> By default, VMA compiles with code supporting the highest
 | |
| Vulkan version found in the included `<vulkan/vulkan.h>` that is also supported by the library.
 | |
| If this is OK, you don't need to do anything.
 | |
| However, if you want to compile VMA as if only some lower Vulkan version was available,
 | |
| define macro `VMA_VULKAN_VERSION` before every `#include "vk_mem_alloc.h"`.
 | |
| It should have decimal numeric value in form of ABBBCCC, where A = major, BBB = minor, CCC = patch Vulkan version.
 | |
| For example, to compile against Vulkan 1.2:
 | |
| 
 | |
| \code
 | |
| #define VMA_VULKAN_VERSION 1002000 // Vulkan 1.2
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| <b>Step 2: Runtime.</b> Even when compiled with higher Vulkan version available,
 | |
| VMA can use only features of a lower version, which is configurable during creation of the #VmaAllocator object.
 | |
| By default, only Vulkan 1.0 is used.
 | |
| To initialize the allocator with support for higher Vulkan version, you need to set member
 | |
| VmaAllocatorCreateInfo::vulkanApiVersion to an appropriate value, e.g. using constants like `VK_API_VERSION_1_2`.
 | |
| See code sample below.
 | |
| 
 | |
| \subsection quick_start_initialization_importing_vulkan_functions Importing Vulkan functions
 | |
| 
 | |
| You may need to configure importing Vulkan functions. There are 3 ways to do this:
 | |
| 
 | |
| -# **If you link with Vulkan static library** (e.g. "vulkan-1.lib" on Windows):
 | |
|    - You don't need to do anything.
 | |
|    - VMA will use these, as macro `VMA_STATIC_VULKAN_FUNCTIONS` is defined to 1 by default.
 | |
| -# **If you want VMA to fetch pointers to Vulkan functions dynamically** using `vkGetInstanceProcAddr`,
 | |
|    `vkGetDeviceProcAddr` (this is the option presented in the example below):
 | |
|    - Define `VMA_STATIC_VULKAN_FUNCTIONS` to 0, `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 1.
 | |
|    - Provide pointers to these two functions via VmaVulkanFunctions::vkGetInstanceProcAddr,
 | |
|      VmaVulkanFunctions::vkGetDeviceProcAddr.
 | |
|    - The library will fetch pointers to all other functions it needs internally.
 | |
| -# **If you fetch pointers to all Vulkan functions in a custom way**, e.g. using some loader like
 | |
|    [Volk](https://github.com/zeux/volk):
 | |
|    - Define `VMA_STATIC_VULKAN_FUNCTIONS` and `VMA_DYNAMIC_VULKAN_FUNCTIONS` to 0.
 | |
|    - Pass these pointers via structure #VmaVulkanFunctions.
 | |
| 
 | |
| Example for case 2:
 | |
| 
 | |
| \code
 | |
| #define VMA_STATIC_VULKAN_FUNCTIONS 0
 | |
| #define VMA_DYNAMIC_VULKAN_FUNCTIONS 1
 | |
| #include "vk_mem_alloc.h"
 | |
| 
 | |
| ...
 | |
| 
 | |
| VmaVulkanFunctions vulkanFunctions = {};
 | |
| vulkanFunctions.vkGetInstanceProcAddr = &vkGetInstanceProcAddr;
 | |
| vulkanFunctions.vkGetDeviceProcAddr = &vkGetDeviceProcAddr;
 | |
| 
 | |
| VmaAllocatorCreateInfo allocatorCreateInfo = {};
 | |
| allocatorCreateInfo.vulkanApiVersion = VK_API_VERSION_1_2;
 | |
| allocatorCreateInfo.physicalDevice = physicalDevice;
 | |
| allocatorCreateInfo.device = device;
 | |
| allocatorCreateInfo.instance = instance;
 | |
| allocatorCreateInfo.pVulkanFunctions = &vulkanFunctions;
 | |
| 
 | |
| VmaAllocator allocator;
 | |
| vmaCreateAllocator(&allocatorCreateInfo, &allocator);
 | |
| \endcode
 | |
| 
 | |
| 
 | |
| \section quick_start_resource_allocation Resource allocation
 | |
| 
 | |
| When you want to create a buffer or image:
 | |
| 
 | |
| -# Fill `VkBufferCreateInfo` / `VkImageCreateInfo` structure.
 | |
| -# Fill VmaAllocationCreateInfo structure.
 | |
| -# Call vmaCreateBuffer() / vmaCreateImage() to get `VkBuffer`/`VkImage` with memory
 | |
|    already allocated and bound to it, plus #VmaAllocation objects that represents its underlying memory.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufferInfo.size = 65536;
 | |
| bufferInfo.usage = VK_BUFFER_USAGE_VERTEX_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocInfo = {};
 | |
| allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| Don't forget to destroy your objects when no longer needed:
 | |
| 
 | |
| \code
 | |
| vmaDestroyBuffer(allocator, buffer, allocation);
 | |
| vmaDestroyAllocator(allocator);
 | |
| \endcode
 | |
| 
 | |
| 
 | |
| \page choosing_memory_type Choosing memory type
 | |
| 
 | |
| Physical devices in Vulkan support various combinations of memory heaps and
 | |
| types. Help with choosing correct and optimal memory type for your specific
 | |
| resource is one of the key features of this library. You can use it by filling
 | |
| appropriate members of VmaAllocationCreateInfo structure, as described below.
 | |
| You can also combine multiple methods.
 | |
| 
 | |
| -# If you just want to find memory type index that meets your requirements, you
 | |
|    can use function: vmaFindMemoryTypeIndexForBufferInfo(),
 | |
|    vmaFindMemoryTypeIndexForImageInfo(), vmaFindMemoryTypeIndex().
 | |
| -# If you want to allocate a region of device memory without association with any
 | |
|    specific image or buffer, you can use function vmaAllocateMemory(). Usage of
 | |
|    this function is not recommended and usually not needed.
 | |
|    vmaAllocateMemoryPages() function is also provided for creating multiple allocations at once,
 | |
|    which may be useful for sparse binding.
 | |
| -# If you already have a buffer or an image created, you want to allocate memory
 | |
|    for it and then you will bind it yourself, you can use function
 | |
|    vmaAllocateMemoryForBuffer(), vmaAllocateMemoryForImage().
 | |
|    For binding you should use functions: vmaBindBufferMemory(), vmaBindImageMemory()
 | |
|    or their extended versions: vmaBindBufferMemory2(), vmaBindImageMemory2().
 | |
| -# **This is the easiest and recommended way to use this library:**
 | |
|    If you want to create a buffer or an image, allocate memory for it and bind
 | |
|    them together, all in one call, you can use function vmaCreateBuffer(),
 | |
|    vmaCreateImage().
 | |
| 
 | |
| When using 3. or 4., the library internally queries Vulkan for memory types
 | |
| supported for that buffer or image (function `vkGetBufferMemoryRequirements()`)
 | |
| and uses only one of these types.
 | |
| 
 | |
| If no memory type can be found that meets all the requirements, these functions
 | |
| return `VK_ERROR_FEATURE_NOT_PRESENT`.
 | |
| 
 | |
| You can leave VmaAllocationCreateInfo structure completely filled with zeros.
 | |
| It means no requirements are specified for memory type.
 | |
| It is valid, although not very useful.
 | |
| 
 | |
| \section choosing_memory_type_usage Usage
 | |
| 
 | |
| The easiest way to specify memory requirements is to fill member
 | |
| VmaAllocationCreateInfo::usage using one of the values of enum #VmaMemoryUsage.
 | |
| It defines high level, common usage types.
 | |
| Since version 3 of the library, it is recommended to use #VMA_MEMORY_USAGE_AUTO to let it select best memory type for your resource automatically.
 | |
| 
 | |
| For example, if you want to create a uniform buffer that will be filled using
 | |
| transfer only once or infrequently and then used for rendering every frame as a uniform buffer, you can
 | |
| do it using following code. The buffer will most likely end up in a memory type with
 | |
| `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT` to be fast to access by the GPU device.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufferInfo.size = 65536;
 | |
| bufferInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocInfo = {};
 | |
| allocInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| If you have a preference for putting the resource in GPU (device) memory or CPU (host) memory
 | |
| on systems with discrete graphics card that have the memories separate, you can use
 | |
| #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST.
 | |
| 
 | |
| When using `VMA_MEMORY_USAGE_AUTO*` while you want to map the allocated memory,
 | |
| you also need to specify one of the host access flags:
 | |
| #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
 | |
| This will help the library decide about preferred memory type to ensure it has `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
 | |
| so you can map it.
 | |
| 
 | |
| For example, a staging buffer that will be filled via mapped pointer and then
 | |
| used as a source of transfer to the buffer described previously can be created like this.
 | |
| It will likely end up in a memory type that is `HOST_VISIBLE` and `HOST_COHERENT`
 | |
| but not `HOST_CACHED` (meaning uncached, write-combined) and not `DEVICE_LOCAL` (meaning system RAM).
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo stagingBufferInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| stagingBufferInfo.size = 65536;
 | |
| stagingBufferInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo stagingAllocInfo = {};
 | |
| stagingAllocInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| stagingAllocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT;
 | |
| 
 | |
| VkBuffer stagingBuffer;
 | |
| VmaAllocation stagingAllocation;
 | |
| vmaCreateBuffer(allocator, &stagingBufferInfo, &stagingAllocInfo, &stagingBuffer, &stagingAllocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| For more examples of creating different kinds of resources, see chapter \ref usage_patterns.
 | |
| 
 | |
| Usage values `VMA_MEMORY_USAGE_AUTO*` are legal to use only when the library knows
 | |
| about the resource being created by having `VkBufferCreateInfo` / `VkImageCreateInfo` passed,
 | |
| so they work with functions like: vmaCreateBuffer(), vmaCreateImage(), vmaFindMemoryTypeIndexForBufferInfo() etc.
 | |
| If you allocate raw memory using function vmaAllocateMemory(), you have to use other means of selecting
 | |
| memory type, as described below.
 | |
| 
 | |
| \note
 | |
| Old usage values (`VMA_MEMORY_USAGE_GPU_ONLY`, `VMA_MEMORY_USAGE_CPU_ONLY`,
 | |
| `VMA_MEMORY_USAGE_CPU_TO_GPU`, `VMA_MEMORY_USAGE_GPU_TO_CPU`, `VMA_MEMORY_USAGE_CPU_COPY`)
 | |
| are still available and work same way as in previous versions of the library
 | |
| for backward compatibility, but they are not recommended.
 | |
| 
 | |
| \section choosing_memory_type_required_preferred_flags Required and preferred flags
 | |
| 
 | |
| You can specify more detailed requirements by filling members
 | |
| VmaAllocationCreateInfo::requiredFlags and VmaAllocationCreateInfo::preferredFlags
 | |
| with a combination of bits from enum `VkMemoryPropertyFlags`. For example,
 | |
| if you want to create a buffer that will be persistently mapped on host (so it
 | |
| must be `HOST_VISIBLE`) and preferably will also be `HOST_COHERENT` and `HOST_CACHED`,
 | |
| use following code:
 | |
| 
 | |
| \code
 | |
| VmaAllocationCreateInfo allocInfo = {};
 | |
| allocInfo.requiredFlags = VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT;
 | |
| allocInfo.preferredFlags = VK_MEMORY_PROPERTY_HOST_COHERENT_BIT | VK_MEMORY_PROPERTY_HOST_CACHED_BIT;
 | |
| allocInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT | VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| A memory type is chosen that has all the required flags and as many preferred
 | |
| flags set as possible.
 | |
| 
 | |
| Value passed in VmaAllocationCreateInfo::usage is internally converted to a set of required and preferred flags,
 | |
| plus some extra "magic" (heuristics).
 | |
| 
 | |
| \section choosing_memory_type_explicit_memory_types Explicit memory types
 | |
| 
 | |
| If you inspected memory types available on the physical device and you have
 | |
| a preference for memory types that you want to use, you can fill member
 | |
| VmaAllocationCreateInfo::memoryTypeBits. It is a bit mask, where each bit set
 | |
| means that a memory type with that index is allowed to be used for the
 | |
| allocation. Special value 0, just like `UINT32_MAX`, means there are no
 | |
| restrictions to memory type index.
 | |
| 
 | |
| Please note that this member is NOT just a memory type index.
 | |
| Still you can use it to choose just one, specific memory type.
 | |
| For example, if you already determined that your buffer should be created in
 | |
| memory type 2, use following code:
 | |
| 
 | |
| \code
 | |
| uint32_t memoryTypeIndex = 2;
 | |
| 
 | |
| VmaAllocationCreateInfo allocInfo = {};
 | |
| allocInfo.memoryTypeBits = 1u << memoryTypeIndex;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufferInfo, &allocInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| 
 | |
| \section choosing_memory_type_custom_memory_pools Custom memory pools
 | |
| 
 | |
| If you allocate from custom memory pool, all the ways of specifying memory
 | |
| requirements described above are not applicable and the aforementioned members
 | |
| of VmaAllocationCreateInfo structure are ignored. Memory type is selected
 | |
| explicitly when creating the pool and then used to make all the allocations from
 | |
| that pool. For further details, see \ref custom_memory_pools.
 | |
| 
 | |
| \section choosing_memory_type_dedicated_allocations Dedicated allocations
 | |
| 
 | |
| Memory for allocations is reserved out of larger block of `VkDeviceMemory`
 | |
| allocated from Vulkan internally. That is the main feature of this whole library.
 | |
| You can still request a separate memory block to be created for an allocation,
 | |
| just like you would do in a trivial solution without using any allocator.
 | |
| In that case, a buffer or image is always bound to that memory at offset 0.
 | |
| This is called a "dedicated allocation".
 | |
| You can explicitly request it by using flag #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
| The library can also internally decide to use dedicated allocation in some cases, e.g.:
 | |
| 
 | |
| - When the size of the allocation is large.
 | |
| - When [VK_KHR_dedicated_allocation](@ref vk_khr_dedicated_allocation) extension is enabled
 | |
|   and it reports that dedicated allocation is required or recommended for the resource.
 | |
| - When allocation of next big memory block fails due to not enough device memory,
 | |
|   but allocation with the exact requested size succeeds.
 | |
| 
 | |
| 
 | |
| \page memory_mapping Memory mapping
 | |
| 
 | |
| To "map memory" in Vulkan means to obtain a CPU pointer to `VkDeviceMemory`,
 | |
| to be able to read from it or write to it in CPU code.
 | |
| Mapping is possible only of memory allocated from a memory type that has
 | |
| `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT` flag.
 | |
| Functions `vkMapMemory()`, `vkUnmapMemory()` are designed for this purpose.
 | |
| You can use them directly with memory allocated by this library,
 | |
| but it is not recommended because of following issue:
 | |
| Mapping the same `VkDeviceMemory` block multiple times is illegal - only one mapping at a time is allowed.
 | |
| This includes mapping disjoint regions. Mapping is not reference-counted internally by Vulkan.
 | |
| Because of this, Vulkan Memory Allocator provides following facilities:
 | |
| 
 | |
| \note If you want to be able to map an allocation, you need to specify one of the flags
 | |
| #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT
 | |
| in VmaAllocationCreateInfo::flags. These flags are required for an allocation to be mappable
 | |
| when using #VMA_MEMORY_USAGE_AUTO or other `VMA_MEMORY_USAGE_AUTO*` enum values.
 | |
| For other usage values they are ignored and every such allocation made in `HOST_VISIBLE` memory type is mappable,
 | |
| but they can still be used for consistency.
 | |
| 
 | |
| \section memory_mapping_mapping_functions Mapping functions
 | |
| 
 | |
| The library provides following functions for mapping of a specific #VmaAllocation: vmaMapMemory(), vmaUnmapMemory().
 | |
| They are safer and more convenient to use than standard Vulkan functions.
 | |
| You can map an allocation multiple times simultaneously - mapping is reference-counted internally.
 | |
| You can also map different allocations simultaneously regardless of whether they use the same `VkDeviceMemory` block.
 | |
| The way it is implemented is that the library always maps entire memory block, not just region of the allocation.
 | |
| For further details, see description of vmaMapMemory() function.
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| // Having these objects initialized:
 | |
| struct ConstantBuffer
 | |
| {
 | |
|     ...
 | |
| };
 | |
| ConstantBuffer constantBufferData = ...
 | |
| 
 | |
| VmaAllocator allocator = ...
 | |
| VkBuffer constantBuffer = ...
 | |
| VmaAllocation constantBufferAllocation = ...
 | |
| 
 | |
| // You can map and fill your buffer using following code:
 | |
| 
 | |
| void* mappedData;
 | |
| vmaMapMemory(allocator, constantBufferAllocation, &mappedData);
 | |
| memcpy(mappedData, &constantBufferData, sizeof(constantBufferData));
 | |
| vmaUnmapMemory(allocator, constantBufferAllocation);
 | |
| \endcode
 | |
| 
 | |
| When mapping, you may see a warning from Vulkan validation layer similar to this one:
 | |
| 
 | |
| <i>Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.</i>
 | |
| 
 | |
| It happens because the library maps entire `VkDeviceMemory` block, where different
 | |
| types of images and buffers may end up together, especially on GPUs with unified memory like Intel.
 | |
| You can safely ignore it if you are sure you access only memory of the intended
 | |
| object that you wanted to map.
 | |
| 
 | |
| 
 | |
| \section memory_mapping_persistently_mapped_memory Persistently mapped memory
 | |
| 
 | |
| Keeping your memory persistently mapped is generally OK in Vulkan.
 | |
| You don't need to unmap it before using its data on the GPU.
 | |
| The library provides a special feature designed for that:
 | |
| Allocations made with #VMA_ALLOCATION_CREATE_MAPPED_BIT flag set in
 | |
| VmaAllocationCreateInfo::flags stay mapped all the time,
 | |
| so you can just access CPU pointer to it any time
 | |
| without a need to call any "map" or "unmap" function.
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = sizeof(ConstantBuffer);
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
 | |
|     VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | |
| 
 | |
| // Buffer is already mapped. You can access its memory.
 | |
| memcpy(allocInfo.pMappedData, &constantBufferData, sizeof(constantBufferData));
 | |
| \endcode
 | |
| 
 | |
| \note #VMA_ALLOCATION_CREATE_MAPPED_BIT by itself doesn't guarantee that the allocation will end up
 | |
| in a mappable memory type.
 | |
| For this, you need to also specify #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT or
 | |
| #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
 | |
| #VMA_ALLOCATION_CREATE_MAPPED_BIT only guarantees that if the memory is `HOST_VISIBLE`, the allocation will be mapped on creation.
 | |
| For an example of how to make use of this fact, see section \ref usage_patterns_advanced_data_uploading.
 | |
| 
 | |
| \section memory_mapping_cache_control Cache flush and invalidate
 | |
| 
 | |
| Memory in Vulkan doesn't need to be unmapped before using it on GPU,
 | |
| but unless a memory types has `VK_MEMORY_PROPERTY_HOST_COHERENT_BIT` flag set,
 | |
| you need to manually **invalidate** cache before reading of mapped pointer
 | |
| and **flush** cache after writing to mapped pointer.
 | |
| Map/unmap operations don't do that automatically.
 | |
| Vulkan provides following functions for this purpose `vkFlushMappedMemoryRanges()`,
 | |
| `vkInvalidateMappedMemoryRanges()`, but this library provides more convenient
 | |
| functions that refer to given allocation object: vmaFlushAllocation(),
 | |
| vmaInvalidateAllocation(),
 | |
| or multiple objects at once: vmaFlushAllocations(), vmaInvalidateAllocations().
 | |
| 
 | |
| Regions of memory specified for flush/invalidate must be aligned to
 | |
| `VkPhysicalDeviceLimits::nonCoherentAtomSize`. This is automatically ensured by the library.
 | |
| In any memory type that is `HOST_VISIBLE` but not `HOST_COHERENT`, all allocations
 | |
| within blocks are aligned to this value, so their offsets are always multiply of
 | |
| `nonCoherentAtomSize` and two different allocations never share same "line" of this size.
 | |
| 
 | |
| Also, Windows drivers from all 3 PC GPU vendors (AMD, Intel, NVIDIA)
 | |
| currently provide `HOST_COHERENT` flag on all memory types that are
 | |
| `HOST_VISIBLE`, so on PC you may not need to bother.
 | |
| 
 | |
| 
 | |
| \page staying_within_budget Staying within budget
 | |
| 
 | |
| When developing a graphics-intensive game or program, it is important to avoid allocating
 | |
| more GPU memory than it is physically available. When the memory is over-committed,
 | |
| various bad things can happen, depending on the specific GPU, graphics driver, and
 | |
| operating system:
 | |
| 
 | |
| - It may just work without any problems.
 | |
| - The application may slow down because some memory blocks are moved to system RAM
 | |
|   and the GPU has to access them through PCI Express bus.
 | |
| - A new allocation may take very long time to complete, even few seconds, and possibly
 | |
|   freeze entire system.
 | |
| - The new allocation may fail with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
| - It may even result in GPU crash (TDR), observed as `VK_ERROR_DEVICE_LOST`
 | |
|   returned somewhere later.
 | |
| 
 | |
| \section staying_within_budget_querying_for_budget Querying for budget
 | |
| 
 | |
| To query for current memory usage and available budget, use function vmaGetHeapBudgets().
 | |
| Returned structure #VmaBudget contains quantities expressed in bytes, per Vulkan memory heap.
 | |
| 
 | |
| Please note that this function returns different information and works faster than
 | |
| vmaCalculateStatistics(). vmaGetHeapBudgets() can be called every frame or even before every
 | |
| allocation, while vmaCalculateStatistics() is intended to be used rarely,
 | |
| only to obtain statistical information, e.g. for debugging purposes.
 | |
| 
 | |
| It is recommended to use <b>VK_EXT_memory_budget</b> device extension to obtain information
 | |
| about the budget from Vulkan device. VMA is able to use this extension automatically.
 | |
| When not enabled, the allocator behaves same way, but then it estimates current usage
 | |
| and available budget based on its internal information and Vulkan memory heap sizes,
 | |
| which may be less precise. In order to use this extension:
 | |
| 
 | |
| 1. Make sure extensions VK_EXT_memory_budget and VK_KHR_get_physical_device_properties2
 | |
|    required by it are available and enable them. Please note that the first is a device
 | |
|    extension and the second is instance extension!
 | |
| 2. Use flag #VMA_ALLOCATOR_CREATE_EXT_MEMORY_BUDGET_BIT when creating #VmaAllocator object.
 | |
| 3. Make sure to call vmaSetCurrentFrameIndex() every frame. Budget is queried from
 | |
|    Vulkan inside of it to avoid overhead of querying it with every allocation.
 | |
| 
 | |
| \section staying_within_budget_controlling_memory_usage Controlling memory usage
 | |
| 
 | |
| There are many ways in which you can try to stay within the budget.
 | |
| 
 | |
| First, when making new allocation requires allocating a new memory block, the library
 | |
| tries not to exceed the budget automatically. If a block with default recommended size
 | |
| (e.g. 256 MB) would go over budget, a smaller block is allocated, possibly even
 | |
| dedicated memory for just this resource.
 | |
| 
 | |
| If the size of the requested resource plus current memory usage is more than the
 | |
| budget, by default the library still tries to create it, leaving it to the Vulkan
 | |
| implementation whether the allocation succeeds or fails. You can change this behavior
 | |
| by using #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag. With it, the allocation is
 | |
| not made if it would exceed the budget or if the budget is already exceeded.
 | |
| VMA then tries to make the allocation from the next eligible Vulkan memory type.
 | |
| The all of them fail, the call then fails with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
| Example usage pattern may be to pass the #VMA_ALLOCATION_CREATE_WITHIN_BUDGET_BIT flag
 | |
| when creating resources that are not essential for the application (e.g. the texture
 | |
| of a specific object) and not to pass it when creating critically important resources
 | |
| (e.g. render targets).
 | |
| 
 | |
| On AMD graphics cards there is a custom vendor extension available: <b>VK_AMD_memory_overallocation_behavior</b>
 | |
| that allows to control the behavior of the Vulkan implementation in out-of-memory cases -
 | |
| whether it should fail with an error code or still allow the allocation.
 | |
| Usage of this extension involves only passing extra structure on Vulkan device creation,
 | |
| so it is out of scope of this library.
 | |
| 
 | |
| Finally, you can also use #VMA_ALLOCATION_CREATE_NEVER_ALLOCATE_BIT flag to make sure
 | |
| a new allocation is created only when it fits inside one of the existing memory blocks.
 | |
| If it would require to allocate a new block, if fails instead with `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
| This also ensures that the function call is very fast because it never goes to Vulkan
 | |
| to obtain a new block.
 | |
| 
 | |
| \note Creating \ref custom_memory_pools with VmaPoolCreateInfo::minBlockCount
 | |
| set to more than 0 will currently try to allocate memory blocks without checking whether they
 | |
| fit within budget.
 | |
| 
 | |
| 
 | |
| \page resource_aliasing Resource aliasing (overlap)
 | |
| 
 | |
| New explicit graphics APIs (Vulkan and Direct3D 12), thanks to manual memory
 | |
| management, give an opportunity to alias (overlap) multiple resources in the
 | |
| same region of memory - a feature not available in the old APIs (Direct3D 11, OpenGL).
 | |
| It can be useful to save video memory, but it must be used with caution.
 | |
| 
 | |
| For example, if you know the flow of your whole render frame in advance, you
 | |
| are going to use some intermediate textures or buffers only during a small range of render passes,
 | |
| and you know these ranges don't overlap in time, you can bind these resources to
 | |
| the same place in memory, even if they have completely different parameters (width, height, format etc.).
 | |
| 
 | |
| 
 | |
| 
 | |
| Such scenario is possible using VMA, but you need to create your images manually.
 | |
| Then you need to calculate parameters of an allocation to be made using formula:
 | |
| 
 | |
| - allocation size = max(size of each image)
 | |
| - allocation alignment = max(alignment of each image)
 | |
| - allocation memoryTypeBits = bitwise AND(memoryTypeBits of each image)
 | |
| 
 | |
| Following example shows two different images bound to the same place in memory,
 | |
| allocated to fit largest of them.
 | |
| 
 | |
| \code
 | |
| // A 512x512 texture to be sampled.
 | |
| VkImageCreateInfo img1CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | |
| img1CreateInfo.imageType = VK_IMAGE_TYPE_2D;
 | |
| img1CreateInfo.extent.width = 512;
 | |
| img1CreateInfo.extent.height = 512;
 | |
| img1CreateInfo.extent.depth = 1;
 | |
| img1CreateInfo.mipLevels = 10;
 | |
| img1CreateInfo.arrayLayers = 1;
 | |
| img1CreateInfo.format = VK_FORMAT_R8G8B8A8_SRGB;
 | |
| img1CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 | |
| img1CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
 | |
| img1CreateInfo.usage = VK_IMAGE_USAGE_TRANSFER_DST_BIT | VK_IMAGE_USAGE_SAMPLED_BIT;
 | |
| img1CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 | |
| 
 | |
| // A full screen texture to be used as color attachment.
 | |
| VkImageCreateInfo img2CreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | |
| img2CreateInfo.imageType = VK_IMAGE_TYPE_2D;
 | |
| img2CreateInfo.extent.width = 1920;
 | |
| img2CreateInfo.extent.height = 1080;
 | |
| img2CreateInfo.extent.depth = 1;
 | |
| img2CreateInfo.mipLevels = 1;
 | |
| img2CreateInfo.arrayLayers = 1;
 | |
| img2CreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
 | |
| img2CreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 | |
| img2CreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
 | |
| img2CreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
 | |
| img2CreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 | |
| 
 | |
| VkImage img1;
 | |
| res = vkCreateImage(device, &img1CreateInfo, nullptr, &img1);
 | |
| VkImage img2;
 | |
| res = vkCreateImage(device, &img2CreateInfo, nullptr, &img2);
 | |
| 
 | |
| VkMemoryRequirements img1MemReq;
 | |
| vkGetImageMemoryRequirements(device, img1, &img1MemReq);
 | |
| VkMemoryRequirements img2MemReq;
 | |
| vkGetImageMemoryRequirements(device, img2, &img2MemReq);
 | |
| 
 | |
| VkMemoryRequirements finalMemReq = {};
 | |
| finalMemReq.size = std::max(img1MemReq.size, img2MemReq.size);
 | |
| finalMemReq.alignment = std::max(img1MemReq.alignment, img2MemReq.alignment);
 | |
| finalMemReq.memoryTypeBits = img1MemReq.memoryTypeBits & img2MemReq.memoryTypeBits;
 | |
| // Validate if(finalMemReq.memoryTypeBits != 0)
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.preferredFlags = VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT;
 | |
| 
 | |
| VmaAllocation alloc;
 | |
| res = vmaAllocateMemory(allocator, &finalMemReq, &allocCreateInfo, &alloc, nullptr);
 | |
| 
 | |
| res = vmaBindImageMemory(allocator, alloc, img1);
 | |
| res = vmaBindImageMemory(allocator, alloc, img2);
 | |
| 
 | |
| // You can use img1, img2 here, but not at the same time!
 | |
| 
 | |
| vmaFreeMemory(allocator, alloc);
 | |
| vkDestroyImage(allocator, img2, nullptr);
 | |
| vkDestroyImage(allocator, img1, nullptr);
 | |
| \endcode
 | |
| 
 | |
| VMA also provides convenience functions that create a buffer or image and bind it to memory
 | |
| represented by an existing #VmaAllocation:
 | |
| vmaCreateAliasingBuffer(), vmaCreateAliasingBuffer2(),
 | |
| vmaCreateAliasingImage(), vmaCreateAliasingImage2().
 | |
| Versions with "2" offer additional parameter `allocationLocalOffset`.
 | |
| 
 | |
| Remember that using resources that alias in memory requires proper synchronization.
 | |
| You need to issue a memory barrier to make sure commands that use `img1` and `img2`
 | |
| don't overlap on GPU timeline.
 | |
| You also need to treat a resource after aliasing as uninitialized - containing garbage data.
 | |
| For example, if you use `img1` and then want to use `img2`, you need to issue
 | |
| an image memory barrier for `img2` with `oldLayout` = `VK_IMAGE_LAYOUT_UNDEFINED`.
 | |
| 
 | |
| Additional considerations:
 | |
| 
 | |
| - Vulkan also allows to interpret contents of memory between aliasing resources consistently in some cases.
 | |
| See chapter 11.8. "Memory Aliasing" of Vulkan specification or `VK_IMAGE_CREATE_ALIAS_BIT` flag.
 | |
| - You can create more complex layout where different images and buffers are bound
 | |
| at different offsets inside one large allocation. For example, one can imagine
 | |
| a big texture used in some render passes, aliasing with a set of many small buffers
 | |
| used between in some further passes. To bind a resource at non-zero offset in an allocation,
 | |
| use vmaBindBufferMemory2() / vmaBindImageMemory2().
 | |
| - Before allocating memory for the resources you want to alias, check `memoryTypeBits`
 | |
| returned in memory requirements of each resource to make sure the bits overlap.
 | |
| Some GPUs may expose multiple memory types suitable e.g. only for buffers or
 | |
| images with `COLOR_ATTACHMENT` usage, so the sets of memory types supported by your
 | |
| resources may be disjoint. Aliasing them is not possible in that case.
 | |
| 
 | |
| 
 | |
| \page custom_memory_pools Custom memory pools
 | |
| 
 | |
| A memory pool contains a number of `VkDeviceMemory` blocks.
 | |
| The library automatically creates and manages default pool for each memory type available on the device.
 | |
| Default memory pool automatically grows in size.
 | |
| Size of allocated blocks is also variable and managed automatically.
 | |
| 
 | |
| You can create custom pool and allocate memory out of it.
 | |
| It can be useful if you want to:
 | |
| 
 | |
| - Keep certain kind of allocations separate from others.
 | |
| - Enforce particular, fixed size of Vulkan memory blocks.
 | |
| - Limit maximum amount of Vulkan memory allocated for that pool.
 | |
| - Reserve minimum or fixed amount of Vulkan memory always preallocated for that pool.
 | |
| - Use extra parameters for a set of your allocations that are available in #VmaPoolCreateInfo but not in
 | |
|   #VmaAllocationCreateInfo - e.g., custom minimum alignment, custom `pNext` chain.
 | |
| - Perform defragmentation on a specific subset of your allocations.
 | |
| 
 | |
| To use custom memory pools:
 | |
| 
 | |
| -# Fill VmaPoolCreateInfo structure.
 | |
| -# Call vmaCreatePool() to obtain #VmaPool handle.
 | |
| -# When making an allocation, set VmaAllocationCreateInfo::pool to this handle.
 | |
|    You don't need to specify any other parameters of this structure, like `usage`.
 | |
| 
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| // Find memoryTypeIndex for the pool.
 | |
| VkBufferCreateInfo sampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| sampleBufCreateInfo.size = 0x10000; // Doesn't matter.
 | |
| sampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo sampleAllocCreateInfo = {};
 | |
| sampleAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| 
 | |
| uint32_t memTypeIndex;
 | |
| VkResult res = vmaFindMemoryTypeIndexForBufferInfo(allocator,
 | |
|     &sampleBufCreateInfo, &sampleAllocCreateInfo, &memTypeIndex);
 | |
| // Check res...
 | |
| 
 | |
| // Create a pool that can have at most 2 blocks, 128 MiB each.
 | |
| VmaPoolCreateInfo poolCreateInfo = {};
 | |
| poolCreateInfo.memoryTypeIndex = memTypeIndex;
 | |
| poolCreateInfo.blockSize = 128ull * 1024 * 1024;
 | |
| poolCreateInfo.maxBlockCount = 2;
 | |
| 
 | |
| VmaPool pool;
 | |
| res = vmaCreatePool(allocator, &poolCreateInfo, &pool);
 | |
| // Check res...
 | |
| 
 | |
| // Allocate a buffer out of it.
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = 1024;
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.pool = pool;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| res = vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, nullptr);
 | |
| // Check res...
 | |
| \endcode
 | |
| 
 | |
| You have to free all allocations made from this pool before destroying it.
 | |
| 
 | |
| \code
 | |
| vmaDestroyBuffer(allocator, buf, alloc);
 | |
| vmaDestroyPool(allocator, pool);
 | |
| \endcode
 | |
| 
 | |
| New versions of this library support creating dedicated allocations in custom pools.
 | |
| It is supported only when VmaPoolCreateInfo::blockSize = 0.
 | |
| To use this feature, set VmaAllocationCreateInfo::pool to the pointer to your custom pool and
 | |
| VmaAllocationCreateInfo::flags to #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
| 
 | |
| \note Excessive use of custom pools is a common mistake when using this library.
 | |
| Custom pools may be useful for special purposes - when you want to
 | |
| keep certain type of resources separate e.g. to reserve minimum amount of memory
 | |
| for them or limit maximum amount of memory they can occupy. For most
 | |
| resources this is not needed and so it is not recommended to create #VmaPool
 | |
| objects and allocations out of them. Allocating from the default pool is sufficient.
 | |
| 
 | |
| 
 | |
| \section custom_memory_pools_MemTypeIndex Choosing memory type index
 | |
| 
 | |
| When creating a pool, you must explicitly specify memory type index.
 | |
| To find the one suitable for your buffers or images, you can use helper functions
 | |
| vmaFindMemoryTypeIndexForBufferInfo(), vmaFindMemoryTypeIndexForImageInfo().
 | |
| You need to provide structures with example parameters of buffers or images
 | |
| that you are going to create in that pool.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo exampleBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| exampleBufCreateInfo.size = 1024; // Doesn't matter
 | |
| exampleBufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| 
 | |
| uint32_t memTypeIndex;
 | |
| vmaFindMemoryTypeIndexForBufferInfo(allocator, &exampleBufCreateInfo, &allocCreateInfo, &memTypeIndex);
 | |
| 
 | |
| VmaPoolCreateInfo poolCreateInfo = {};
 | |
| poolCreateInfo.memoryTypeIndex = memTypeIndex;
 | |
| // ...
 | |
| \endcode
 | |
| 
 | |
| When creating buffers/images allocated in that pool, provide following parameters:
 | |
| 
 | |
| - `VkBufferCreateInfo`: Prefer to pass same parameters as above.
 | |
|   Otherwise you risk creating resources in a memory type that is not suitable for them, which may result in undefined behavior.
 | |
|   Using different `VK_BUFFER_USAGE_` flags may work, but you shouldn't create images in a pool intended for buffers
 | |
|   or the other way around.
 | |
| - VmaAllocationCreateInfo: You don't need to pass same parameters. Fill only `pool` member.
 | |
|   Other members are ignored anyway.
 | |
| 
 | |
| \section linear_algorithm Linear allocation algorithm
 | |
| 
 | |
| Each Vulkan memory block managed by this library has accompanying metadata that
 | |
| keeps track of used and unused regions. By default, the metadata structure and
 | |
| algorithm tries to find best place for new allocations among free regions to
 | |
| optimize memory usage. This way you can allocate and free objects in any order.
 | |
| 
 | |
| 
 | |
| 
 | |
| Sometimes there is a need to use simpler, linear allocation algorithm. You can
 | |
| create custom pool that uses such algorithm by adding flag
 | |
| #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT to VmaPoolCreateInfo::flags while creating
 | |
| #VmaPool object. Then an alternative metadata management is used. It always
 | |
| creates new allocations after last one and doesn't reuse free regions after
 | |
| allocations freed in the middle. It results in better allocation performance and
 | |
| less memory consumed by metadata.
 | |
| 
 | |
| 
 | |
| 
 | |
| With this one flag, you can create a custom pool that can be used in many ways:
 | |
| free-at-once, stack, double stack, and ring buffer. See below for details.
 | |
| You don't need to specify explicitly which of these options you are going to use - it is detected automatically.
 | |
| 
 | |
| \subsection linear_algorithm_free_at_once Free-at-once
 | |
| 
 | |
| In a pool that uses linear algorithm, you still need to free all the allocations
 | |
| individually, e.g. by using vmaFreeMemory() or vmaDestroyBuffer(). You can free
 | |
| them in any order. New allocations are always made after last one - free space
 | |
| in the middle is not reused. However, when you release all the allocation and
 | |
| the pool becomes empty, allocation starts from the beginning again. This way you
 | |
| can use linear algorithm to speed up creation of allocations that you are going
 | |
| to release all at once.
 | |
| 
 | |
| 
 | |
| 
 | |
| This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
 | |
| value that allows multiple memory blocks.
 | |
| 
 | |
| \subsection linear_algorithm_stack Stack
 | |
| 
 | |
| When you free an allocation that was created last, its space can be reused.
 | |
| Thanks to this, if you always release allocations in the order opposite to their
 | |
| creation (LIFO - Last In First Out), you can achieve behavior of a stack.
 | |
| 
 | |
| 
 | |
| 
 | |
| This mode is also available for pools created with VmaPoolCreateInfo::maxBlockCount
 | |
| value that allows multiple memory blocks.
 | |
| 
 | |
| \subsection linear_algorithm_double_stack Double stack
 | |
| 
 | |
| The space reserved by a custom pool with linear algorithm may be used by two
 | |
| stacks:
 | |
| 
 | |
| - First, default one, growing up from offset 0.
 | |
| - Second, "upper" one, growing down from the end towards lower offsets.
 | |
| 
 | |
| To make allocation from the upper stack, add flag #VMA_ALLOCATION_CREATE_UPPER_ADDRESS_BIT
 | |
| to VmaAllocationCreateInfo::flags.
 | |
| 
 | |
| 
 | |
| 
 | |
| Double stack is available only in pools with one memory block -
 | |
| VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
 | |
| 
 | |
| When the two stacks' ends meet so there is not enough space between them for a
 | |
| new allocation, such allocation fails with usual
 | |
| `VK_ERROR_OUT_OF_DEVICE_MEMORY` error.
 | |
| 
 | |
| \subsection linear_algorithm_ring_buffer Ring buffer
 | |
| 
 | |
| When you free some allocations from the beginning and there is not enough free space
 | |
| for a new one at the end of a pool, allocator's "cursor" wraps around to the
 | |
| beginning and starts allocation there. Thanks to this, if you always release
 | |
| allocations in the same order as you created them (FIFO - First In First Out),
 | |
| you can achieve behavior of a ring buffer / queue.
 | |
| 
 | |
| 
 | |
| 
 | |
| Ring buffer is available only in pools with one memory block -
 | |
| VmaPoolCreateInfo::maxBlockCount must be 1. Otherwise behavior is undefined.
 | |
| 
 | |
| \note \ref defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
 | |
| 
 | |
| 
 | |
| \page defragmentation Defragmentation
 | |
| 
 | |
| Interleaved allocations and deallocations of many objects of varying size can
 | |
| cause fragmentation over time, which can lead to a situation where the library is unable
 | |
| to find a continuous range of free memory for a new allocation despite there is
 | |
| enough free space, just scattered across many small free ranges between existing
 | |
| allocations.
 | |
| 
 | |
| To mitigate this problem, you can use defragmentation feature.
 | |
| It doesn't happen automatically though and needs your cooperation,
 | |
| because VMA is a low level library that only allocates memory.
 | |
| It cannot recreate buffers and images in a new place as it doesn't remember the contents of `VkBufferCreateInfo` / `VkImageCreateInfo` structures.
 | |
| It cannot copy their contents as it doesn't record any commands to a command buffer.
 | |
| 
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| VmaDefragmentationInfo defragInfo = {};
 | |
| defragInfo.pool = myPool;
 | |
| defragInfo.flags = VMA_DEFRAGMENTATION_FLAG_ALGORITHM_FAST_BIT;
 | |
| 
 | |
| VmaDefragmentationContext defragCtx;
 | |
| VkResult res = vmaBeginDefragmentation(allocator, &defragInfo, &defragCtx);
 | |
| // Check res...
 | |
| 
 | |
| for(;;)
 | |
| {
 | |
|     VmaDefragmentationPassMoveInfo pass;
 | |
|     res = vmaBeginDefragmentationPass(allocator, defragCtx, &pass);
 | |
|     if(res == VK_SUCCESS)
 | |
|         break;
 | |
|     else if(res != VK_INCOMPLETE)
 | |
|         // Handle error...
 | |
| 
 | |
|     for(uint32_t i = 0; i < pass.moveCount; ++i)
 | |
|     {
 | |
|         // Inspect pass.pMoves[i].srcAllocation, identify what buffer/image it represents.
 | |
|         VmaAllocationInfo allocInfo;
 | |
|         vmaGetAllocationInfo(allocator, pass.pMoves[i].srcAllocation, &allocInfo);
 | |
|         MyEngineResourceData* resData = (MyEngineResourceData*)allocInfo.pUserData;
 | |
| 
 | |
|         // Recreate and bind this buffer/image at: pass.pMoves[i].dstMemory, pass.pMoves[i].dstOffset.
 | |
|         VkImageCreateInfo imgCreateInfo = ...
 | |
|         VkImage newImg;
 | |
|         res = vkCreateImage(device, &imgCreateInfo, nullptr, &newImg);
 | |
|         // Check res...
 | |
|         res = vmaBindImageMemory(allocator, pass.pMoves[i].dstTmpAllocation, newImg);
 | |
|         // Check res...
 | |
| 
 | |
|         // Issue a vkCmdCopyBuffer/vkCmdCopyImage to copy its content to the new place.
 | |
|         vkCmdCopyImage(cmdBuf, resData->img, ..., newImg, ...);
 | |
|     }
 | |
| 
 | |
|     // Make sure the copy commands finished executing.
 | |
|     vkWaitForFences(...);
 | |
| 
 | |
|     // Destroy old buffers/images bound with pass.pMoves[i].srcAllocation.
 | |
|     for(uint32_t i = 0; i < pass.moveCount; ++i)
 | |
|     {
 | |
|         // ...
 | |
|         vkDestroyImage(device, resData->img, nullptr);
 | |
|     }
 | |
| 
 | |
|     // Update appropriate descriptors to point to the new places...
 | |
| 
 | |
|     res = vmaEndDefragmentationPass(allocator, defragCtx, &pass);
 | |
|     if(res == VK_SUCCESS)
 | |
|         break;
 | |
|     else if(res != VK_INCOMPLETE)
 | |
|         // Handle error...
 | |
| }
 | |
| 
 | |
| vmaEndDefragmentation(allocator, defragCtx, nullptr);
 | |
| \endcode
 | |
| 
 | |
| Although functions like vmaCreateBuffer(), vmaCreateImage(), vmaDestroyBuffer(), vmaDestroyImage()
 | |
| create/destroy an allocation and a buffer/image at once, these are just a shortcut for
 | |
| creating the resource, allocating memory, and binding them together.
 | |
| Defragmentation works on memory allocations only. You must handle the rest manually.
 | |
| Defragmentation is an iterative process that should repreat "passes" as long as related functions
 | |
| return `VK_INCOMPLETE` not `VK_SUCCESS`.
 | |
| In each pass:
 | |
| 
 | |
| 1. vmaBeginDefragmentationPass() function call:
 | |
|    - Calculates and returns the list of allocations to be moved in this pass.
 | |
|      Note this can be a time-consuming process.
 | |
|    - Reserves destination memory for them by creating temporary destination allocations
 | |
|      that you can query for their `VkDeviceMemory` + offset using vmaGetAllocationInfo().
 | |
| 2. Inside the pass, **you should**:
 | |
|    - Inspect the returned list of allocations to be moved.
 | |
|    - Create new buffers/images and bind them at the returned destination temporary allocations.
 | |
|    - Copy data from source to destination resources if necessary.
 | |
|    - Destroy the source buffers/images, but NOT their allocations.
 | |
| 3. vmaEndDefragmentationPass() function call:
 | |
|    - Frees the source memory reserved for the allocations that are moved.
 | |
|    - Modifies source #VmaAllocation objects that are moved to point to the destination reserved memory.
 | |
|    - Frees `VkDeviceMemory` blocks that became empty.
 | |
| 
 | |
| Unlike in previous iterations of the defragmentation API, there is no list of "movable" allocations passed as a parameter.
 | |
| Defragmentation algorithm tries to move all suitable allocations.
 | |
| You can, however, refuse to move some of them inside a defragmentation pass, by setting
 | |
| `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
 | |
| This is not recommended and may result in suboptimal packing of the allocations after defragmentation.
 | |
| If you cannot ensure any allocation can be moved, it is better to keep movable allocations separate in a custom pool.
 | |
| 
 | |
| Inside a pass, for each allocation that should be moved:
 | |
| 
 | |
| - You should copy its data from the source to the destination place by calling e.g. `vkCmdCopyBuffer()`, `vkCmdCopyImage()`.
 | |
|   - You need to make sure these commands finished executing before destroying the source buffers/images and before calling vmaEndDefragmentationPass().
 | |
| - If a resource doesn't contain any meaningful data, e.g. it is a transient color attachment image to be cleared,
 | |
|   filled, and used temporarily in each rendering frame, you can just recreate this image
 | |
|   without copying its data.
 | |
| - If the resource is in `HOST_VISIBLE` and `HOST_CACHED` memory, you can copy its data on the CPU
 | |
|   using `memcpy()`.
 | |
| - If you cannot move the allocation, you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_IGNORE.
 | |
|   This will cancel the move.
 | |
|   - vmaEndDefragmentationPass() will then free the destination memory
 | |
|     not the source memory of the allocation, leaving it unchanged.
 | |
| - If you decide the allocation is unimportant and can be destroyed instead of moved (e.g. it wasn't used for long time),
 | |
|   you can set `pass.pMoves[i].operation` to #VMA_DEFRAGMENTATION_MOVE_OPERATION_DESTROY.
 | |
|   - vmaEndDefragmentationPass() will then free both source and destination memory, and will destroy the source #VmaAllocation object.
 | |
| 
 | |
| You can defragment a specific custom pool by setting VmaDefragmentationInfo::pool
 | |
| (like in the example above) or all the default pools by setting this member to null.
 | |
| 
 | |
| Defragmentation is always performed in each pool separately.
 | |
| Allocations are never moved between different Vulkan memory types.
 | |
| The size of the destination memory reserved for a moved allocation is the same as the original one.
 | |
| Alignment of an allocation as it was determined using `vkGetBufferMemoryRequirements()` etc. is also respected after defragmentation.
 | |
| Buffers/images should be recreated with the same `VkBufferCreateInfo` / `VkImageCreateInfo` parameters as the original ones.
 | |
| 
 | |
| You can perform the defragmentation incrementally to limit the number of allocations and bytes to be moved
 | |
| in each pass, e.g. to call it in sync with render frames and not to experience too big hitches.
 | |
| See members: VmaDefragmentationInfo::maxBytesPerPass, VmaDefragmentationInfo::maxAllocationsPerPass.
 | |
| 
 | |
| It is also safe to perform the defragmentation asynchronously to render frames and other Vulkan and VMA
 | |
| usage, possibly from multiple threads, with the exception that allocations
 | |
| returned in VmaDefragmentationPassMoveInfo::pMoves shouldn't be destroyed until the defragmentation pass is ended.
 | |
| 
 | |
| <b>Mapping</b> is preserved on allocations that are moved during defragmentation.
 | |
| Whether through #VMA_ALLOCATION_CREATE_MAPPED_BIT or vmaMapMemory(), the allocations
 | |
| are mapped at their new place. Of course, pointer to the mapped data changes, so it needs to be queried
 | |
| using VmaAllocationInfo::pMappedData.
 | |
| 
 | |
| \note Defragmentation is not supported in custom pools created with #VMA_POOL_CREATE_LINEAR_ALGORITHM_BIT.
 | |
| 
 | |
| 
 | |
| \page statistics Statistics
 | |
| 
 | |
| This library contains several functions that return information about its internal state,
 | |
| especially the amount of memory allocated from Vulkan.
 | |
| 
 | |
| \section statistics_numeric_statistics Numeric statistics
 | |
| 
 | |
| If you need to obtain basic statistics about memory usage per heap, together with current budget,
 | |
| you can call function vmaGetHeapBudgets() and inspect structure #VmaBudget.
 | |
| This is useful to keep track of memory usage and stay within budget
 | |
| (see also \ref staying_within_budget).
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| uint32_t heapIndex = ...
 | |
| 
 | |
| VmaBudget budgets[VK_MAX_MEMORY_HEAPS];
 | |
| vmaGetHeapBudgets(allocator, budgets);
 | |
| 
 | |
| printf("My heap currently has %u allocations taking %llu B,\n",
 | |
|     budgets[heapIndex].statistics.allocationCount,
 | |
|     budgets[heapIndex].statistics.allocationBytes);
 | |
| printf("allocated out of %u Vulkan device memory blocks taking %llu B,\n",
 | |
|     budgets[heapIndex].statistics.blockCount,
 | |
|     budgets[heapIndex].statistics.blockBytes);
 | |
| printf("Vulkan reports total usage %llu B with budget %llu B.\n",
 | |
|     budgets[heapIndex].usage,
 | |
|     budgets[heapIndex].budget);
 | |
| \endcode
 | |
| 
 | |
| You can query for more detailed statistics per memory heap, type, and totals,
 | |
| including minimum and maximum allocation size and unused range size,
 | |
| by calling function vmaCalculateStatistics() and inspecting structure #VmaTotalStatistics.
 | |
| This function is slower though, as it has to traverse all the internal data structures,
 | |
| so it should be used only for debugging purposes.
 | |
| 
 | |
| You can query for statistics of a custom pool using function vmaGetPoolStatistics()
 | |
| or vmaCalculatePoolStatistics().
 | |
| 
 | |
| You can query for information about a specific allocation using function vmaGetAllocationInfo().
 | |
| It fill structure #VmaAllocationInfo.
 | |
| 
 | |
| \section statistics_json_dump JSON dump
 | |
| 
 | |
| You can dump internal state of the allocator to a string in JSON format using function vmaBuildStatsString().
 | |
| The result is guaranteed to be correct JSON.
 | |
| It uses ANSI encoding.
 | |
| Any strings provided by user (see [Allocation names](@ref allocation_names))
 | |
| are copied as-is and properly escaped for JSON, so if they use UTF-8, ISO-8859-2 or any other encoding,
 | |
| this JSON string can be treated as using this encoding.
 | |
| It must be freed using function vmaFreeStatsString().
 | |
| 
 | |
| The format of this JSON string is not part of official documentation of the library,
 | |
| but it will not change in backward-incompatible way without increasing library major version number
 | |
| and appropriate mention in changelog.
 | |
| 
 | |
| The JSON string contains all the data that can be obtained using vmaCalculateStatistics().
 | |
| It can also contain detailed map of allocated memory blocks and their regions -
 | |
| free and occupied by allocations.
 | |
| This allows e.g. to visualize the memory or assess fragmentation.
 | |
| 
 | |
| 
 | |
| \page allocation_annotation Allocation names and user data
 | |
| 
 | |
| \section allocation_user_data Allocation user data
 | |
| 
 | |
| You can annotate allocations with your own information, e.g. for debugging purposes.
 | |
| To do that, fill VmaAllocationCreateInfo::pUserData field when creating
 | |
| an allocation. It is an opaque `void*` pointer. You can use it e.g. as a pointer,
 | |
| some handle, index, key, ordinal number or any other value that would associate
 | |
| the allocation with your custom metadata.
 | |
| It is useful to identify appropriate data structures in your engine given #VmaAllocation,
 | |
| e.g. when doing \ref defragmentation.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufCreateInfo = ...
 | |
| 
 | |
| MyBufferMetadata* pMetadata = CreateBufferMetadata();
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| allocCreateInfo.pUserData = pMetadata;
 | |
| 
 | |
| VkBuffer buffer;
 | |
| VmaAllocation allocation;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buffer, &allocation, nullptr);
 | |
| \endcode
 | |
| 
 | |
| The pointer may be later retrieved as VmaAllocationInfo::pUserData:
 | |
| 
 | |
| \code
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaGetAllocationInfo(allocator, allocation, &allocInfo);
 | |
| MyBufferMetadata* pMetadata = (MyBufferMetadata*)allocInfo.pUserData;
 | |
| \endcode
 | |
| 
 | |
| It can also be changed using function vmaSetAllocationUserData().
 | |
| 
 | |
| Values of (non-zero) allocations' `pUserData` are printed in JSON report created by
 | |
| vmaBuildStatsString() in hexadecimal form.
 | |
| 
 | |
| \section allocation_names Allocation names
 | |
| 
 | |
| An allocation can also carry a null-terminated string, giving a name to the allocation.
 | |
| To set it, call vmaSetAllocationName().
 | |
| The library creates internal copy of the string, so the pointer you pass doesn't need
 | |
| to be valid for whole lifetime of the allocation. You can free it after the call.
 | |
| 
 | |
| \code
 | |
| std::string imageName = "Texture: ";
 | |
| imageName += fileName;
 | |
| vmaSetAllocationName(allocator, allocation, imageName.c_str());
 | |
| \endcode
 | |
| 
 | |
| The string can be later retrieved by inspecting VmaAllocationInfo::pName.
 | |
| It is also printed in JSON report created by vmaBuildStatsString().
 | |
| 
 | |
| \note Setting string name to VMA allocation doesn't automatically set it to the Vulkan buffer or image created with it.
 | |
| You must do it manually using an extension like VK_EXT_debug_utils, which is independent of this library.
 | |
| 
 | |
| 
 | |
| \page virtual_allocator Virtual allocator
 | |
| 
 | |
| As an extra feature, the core allocation algorithm of the library is exposed through a simple and convenient API of "virtual allocator".
 | |
| It doesn't allocate any real GPU memory. It just keeps track of used and free regions of a "virtual block".
 | |
| You can use it to allocate your own memory or other objects, even completely unrelated to Vulkan.
 | |
| A common use case is sub-allocation of pieces of one large GPU buffer.
 | |
| 
 | |
| \section virtual_allocator_creating_virtual_block Creating virtual block
 | |
| 
 | |
| To use this functionality, there is no main "allocator" object.
 | |
| You don't need to have #VmaAllocator object created.
 | |
| All you need to do is to create a separate #VmaVirtualBlock object for each block of memory you want to be managed by the allocator:
 | |
| 
 | |
| -# Fill in #VmaVirtualBlockCreateInfo structure.
 | |
| -# Call vmaCreateVirtualBlock(). Get new #VmaVirtualBlock object.
 | |
| 
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| VmaVirtualBlockCreateInfo blockCreateInfo = {};
 | |
| blockCreateInfo.size = 1048576; // 1 MB
 | |
| 
 | |
| VmaVirtualBlock block;
 | |
| VkResult res = vmaCreateVirtualBlock(&blockCreateInfo, &block);
 | |
| \endcode
 | |
| 
 | |
| \section virtual_allocator_making_virtual_allocations Making virtual allocations
 | |
| 
 | |
| #VmaVirtualBlock object contains internal data structure that keeps track of free and occupied regions
 | |
| using the same code as the main Vulkan memory allocator.
 | |
| Similarly to #VmaAllocation for standard GPU allocations, there is #VmaVirtualAllocation type
 | |
| that represents an opaque handle to an allocation within the virtual block.
 | |
| 
 | |
| In order to make such allocation:
 | |
| 
 | |
| -# Fill in #VmaVirtualAllocationCreateInfo structure.
 | |
| -# Call vmaVirtualAllocate(). Get new #VmaVirtualAllocation object that represents the allocation.
 | |
|    You can also receive `VkDeviceSize offset` that was assigned to the allocation.
 | |
| 
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| VmaVirtualAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.size = 4096; // 4 KB
 | |
| 
 | |
| VmaVirtualAllocation alloc;
 | |
| VkDeviceSize offset;
 | |
| res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, &offset);
 | |
| if(res == VK_SUCCESS)
 | |
| {
 | |
|     // Use the 4 KB of your memory starting at offset.
 | |
| }
 | |
| else
 | |
| {
 | |
|     // Allocation failed - no space for it could be found. Handle this error!
 | |
| }
 | |
| \endcode
 | |
| 
 | |
| \section virtual_allocator_deallocation Deallocation
 | |
| 
 | |
| When no longer needed, an allocation can be freed by calling vmaVirtualFree().
 | |
| You can only pass to this function an allocation that was previously returned by vmaVirtualAllocate()
 | |
| called for the same #VmaVirtualBlock.
 | |
| 
 | |
| When whole block is no longer needed, the block object can be released by calling vmaDestroyVirtualBlock().
 | |
| All allocations must be freed before the block is destroyed, which is checked internally by an assert.
 | |
| However, if you don't want to call vmaVirtualFree() for each allocation, you can use vmaClearVirtualBlock() to free them all at once -
 | |
| a feature not available in normal Vulkan memory allocator. Example:
 | |
| 
 | |
| \code
 | |
| vmaVirtualFree(block, alloc);
 | |
| vmaDestroyVirtualBlock(block);
 | |
| \endcode
 | |
| 
 | |
| \section virtual_allocator_allocation_parameters Allocation parameters
 | |
| 
 | |
| You can attach a custom pointer to each allocation by using vmaSetVirtualAllocationUserData().
 | |
| Its default value is null.
 | |
| It can be used to store any data that needs to be associated with that allocation - e.g. an index, a handle, or a pointer to some
 | |
| larger data structure containing more information. Example:
 | |
| 
 | |
| \code
 | |
| struct CustomAllocData
 | |
| {
 | |
|     std::string m_AllocName;
 | |
| };
 | |
| CustomAllocData* allocData = new CustomAllocData();
 | |
| allocData->m_AllocName = "My allocation 1";
 | |
| vmaSetVirtualAllocationUserData(block, alloc, allocData);
 | |
| \endcode
 | |
| 
 | |
| The pointer can later be fetched, along with allocation offset and size, by passing the allocation handle to function
 | |
| vmaGetVirtualAllocationInfo() and inspecting returned structure #VmaVirtualAllocationInfo.
 | |
| If you allocated a new object to be used as the custom pointer, don't forget to delete that object before freeing the allocation!
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| VmaVirtualAllocationInfo allocInfo;
 | |
| vmaGetVirtualAllocationInfo(block, alloc, &allocInfo);
 | |
| delete (CustomAllocData*)allocInfo.pUserData;
 | |
| 
 | |
| vmaVirtualFree(block, alloc);
 | |
| \endcode
 | |
| 
 | |
| \section virtual_allocator_alignment_and_units Alignment and units
 | |
| 
 | |
| It feels natural to express sizes and offsets in bytes.
 | |
| If an offset of an allocation needs to be aligned to a multiply of some number (e.g. 4 bytes), you can fill optional member
 | |
| VmaVirtualAllocationCreateInfo::alignment to request it. Example:
 | |
| 
 | |
| \code
 | |
| VmaVirtualAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.size = 4096; // 4 KB
 | |
| allocCreateInfo.alignment = 4; // Returned offset must be a multiply of 4 B
 | |
| 
 | |
| VmaVirtualAllocation alloc;
 | |
| res = vmaVirtualAllocate(block, &allocCreateInfo, &alloc, nullptr);
 | |
| \endcode
 | |
| 
 | |
| Alignments of different allocations made from one block may vary.
 | |
| However, if all alignments and sizes are always multiply of some size e.g. 4 B or `sizeof(MyDataStruct)`,
 | |
| you can express all sizes, alignments, and offsets in multiples of that size instead of individual bytes.
 | |
| It might be more convenient, but you need to make sure to use this new unit consistently in all the places:
 | |
| 
 | |
| - VmaVirtualBlockCreateInfo::size
 | |
| - VmaVirtualAllocationCreateInfo::size and VmaVirtualAllocationCreateInfo::alignment
 | |
| - Using offset returned by vmaVirtualAllocate() or in VmaVirtualAllocationInfo::offset
 | |
| 
 | |
| \section virtual_allocator_statistics Statistics
 | |
| 
 | |
| You can obtain statistics of a virtual block using vmaGetVirtualBlockStatistics()
 | |
| (to get brief statistics that are fast to calculate)
 | |
| or vmaCalculateVirtualBlockStatistics() (to get more detailed statistics, slower to calculate).
 | |
| The functions fill structures #VmaStatistics, #VmaDetailedStatistics respectively - same as used by the normal Vulkan memory allocator.
 | |
| Example:
 | |
| 
 | |
| \code
 | |
| VmaStatistics stats;
 | |
| vmaGetVirtualBlockStatistics(block, &stats);
 | |
| printf("My virtual block has %llu bytes used by %u virtual allocations\n",
 | |
|     stats.allocationBytes, stats.allocationCount);
 | |
| \endcode
 | |
| 
 | |
| You can also request a full list of allocations and free regions as a string in JSON format by calling
 | |
| vmaBuildVirtualBlockStatsString().
 | |
| Returned string must be later freed using vmaFreeVirtualBlockStatsString().
 | |
| The format of this string differs from the one returned by the main Vulkan allocator, but it is similar.
 | |
| 
 | |
| \section virtual_allocator_additional_considerations Additional considerations
 | |
| 
 | |
| The "virtual allocator" functionality is implemented on a level of individual memory blocks.
 | |
| Keeping track of a whole collection of blocks, allocating new ones when out of free space,
 | |
| deleting empty ones, and deciding which one to try first for a new allocation must be implemented by the user.
 | |
| 
 | |
| Alternative allocation algorithms are supported, just like in custom pools of the real GPU memory.
 | |
| See enum #VmaVirtualBlockCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_BLOCK_CREATE_LINEAR_ALGORITHM_BIT).
 | |
| You can find their description in chapter \ref custom_memory_pools.
 | |
| Allocation strategies are also supported.
 | |
| See enum #VmaVirtualAllocationCreateFlagBits to learn how to specify them (e.g. #VMA_VIRTUAL_ALLOCATION_CREATE_STRATEGY_MIN_TIME_BIT).
 | |
| 
 | |
| Following features are supported only by the allocator of the real GPU memory and not by virtual allocations:
 | |
| buffer-image granularity, `VMA_DEBUG_MARGIN`, `VMA_MIN_ALIGNMENT`.
 | |
| 
 | |
| 
 | |
| \page debugging_memory_usage Debugging incorrect memory usage
 | |
| 
 | |
| If you suspect a bug with memory usage, like usage of uninitialized memory or
 | |
| memory being overwritten out of bounds of an allocation,
 | |
| you can use debug features of this library to verify this.
 | |
| 
 | |
| \section debugging_memory_usage_initialization Memory initialization
 | |
| 
 | |
| If you experience a bug with incorrect and nondeterministic data in your program and you suspect uninitialized memory to be used,
 | |
| you can enable automatic memory initialization to verify this.
 | |
| To do it, define macro `VMA_DEBUG_INITIALIZE_ALLOCATIONS` to 1.
 | |
| 
 | |
| \code
 | |
| #define VMA_DEBUG_INITIALIZE_ALLOCATIONS 1
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| It makes memory of new allocations initialized to bit pattern `0xDCDCDCDC`.
 | |
| Before an allocation is destroyed, its memory is filled with bit pattern `0xEFEFEFEF`.
 | |
| Memory is automatically mapped and unmapped if necessary.
 | |
| 
 | |
| If you find these values while debugging your program, good chances are that you incorrectly
 | |
| read Vulkan memory that is allocated but not initialized, or already freed, respectively.
 | |
| 
 | |
| Memory initialization works only with memory types that are `HOST_VISIBLE` and with allocations that can be mapped.
 | |
| It works also with dedicated allocations.
 | |
| 
 | |
| \section debugging_memory_usage_margins Margins
 | |
| 
 | |
| By default, allocations are laid out in memory blocks next to each other if possible
 | |
| (considering required alignment, `bufferImageGranularity`, and `nonCoherentAtomSize`).
 | |
| 
 | |
| 
 | |
| 
 | |
| Define macro `VMA_DEBUG_MARGIN` to some non-zero value (e.g. 16) to enforce specified
 | |
| number of bytes as a margin after every allocation.
 | |
| 
 | |
| \code
 | |
| #define VMA_DEBUG_MARGIN 16
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| 
 | |
| 
 | |
| If your bug goes away after enabling margins, it means it may be caused by memory
 | |
| being overwritten outside of allocation boundaries. It is not 100% certain though.
 | |
| Change in application behavior may also be caused by different order and distribution
 | |
| of allocations across memory blocks after margins are applied.
 | |
| 
 | |
| Margins work with all types of memory.
 | |
| 
 | |
| Margin is applied only to allocations made out of memory blocks and not to dedicated
 | |
| allocations, which have their own memory block of specific size.
 | |
| It is thus not applied to allocations made using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT flag
 | |
| or those automatically decided to put into dedicated allocations, e.g. due to its
 | |
| large size or recommended by VK_KHR_dedicated_allocation extension.
 | |
| 
 | |
| Margins appear in [JSON dump](@ref statistics_json_dump) as part of free space.
 | |
| 
 | |
| Note that enabling margins increases memory usage and fragmentation.
 | |
| 
 | |
| Margins do not apply to \ref virtual_allocator.
 | |
| 
 | |
| \section debugging_memory_usage_corruption_detection Corruption detection
 | |
| 
 | |
| You can additionally define macro `VMA_DEBUG_DETECT_CORRUPTION` to 1 to enable validation
 | |
| of contents of the margins.
 | |
| 
 | |
| \code
 | |
| #define VMA_DEBUG_MARGIN 16
 | |
| #define VMA_DEBUG_DETECT_CORRUPTION 1
 | |
| #include "vk_mem_alloc.h"
 | |
| \endcode
 | |
| 
 | |
| When this feature is enabled, number of bytes specified as `VMA_DEBUG_MARGIN`
 | |
| (it must be multiply of 4) after every allocation is filled with a magic number.
 | |
| This idea is also know as "canary".
 | |
| Memory is automatically mapped and unmapped if necessary.
 | |
| 
 | |
| This number is validated automatically when the allocation is destroyed.
 | |
| If it is not equal to the expected value, `VMA_ASSERT()` is executed.
 | |
| It clearly means that either CPU or GPU overwritten the memory outside of boundaries of the allocation,
 | |
| which indicates a serious bug.
 | |
| 
 | |
| You can also explicitly request checking margins of all allocations in all memory blocks
 | |
| that belong to specified memory types by using function vmaCheckCorruption(),
 | |
| or in memory blocks that belong to specified custom pool, by using function
 | |
| vmaCheckPoolCorruption().
 | |
| 
 | |
| Margin validation (corruption detection) works only for memory types that are
 | |
| `HOST_VISIBLE` and `HOST_COHERENT`.
 | |
| 
 | |
| 
 | |
| \page opengl_interop OpenGL Interop
 | |
| 
 | |
| VMA provides some features that help with interoperability with OpenGL.
 | |
| 
 | |
| \section opengl_interop_exporting_memory Exporting memory
 | |
| 
 | |
| If you want to attach `VkExportMemoryAllocateInfoKHR` structure to `pNext` chain of memory allocations made by the library:
 | |
| 
 | |
| It is recommended to create \ref custom_memory_pools for such allocations.
 | |
| Define and fill in your `VkExportMemoryAllocateInfoKHR` structure and attach it to VmaPoolCreateInfo::pMemoryAllocateNext
 | |
| while creating the custom pool.
 | |
| Please note that the structure must remain alive and unchanged for the whole lifetime of the #VmaPool,
 | |
| not only while creating it, as no copy of the structure is made,
 | |
| but its original pointer is used for each allocation instead.
 | |
| 
 | |
| If you want to export all memory allocated by the library from certain memory types,
 | |
| also dedicated allocations or other allocations made from default pools,
 | |
| an alternative solution is to fill in VmaAllocatorCreateInfo::pTypeExternalMemoryHandleTypes.
 | |
| It should point to an array with `VkExternalMemoryHandleTypeFlagsKHR` to be automatically passed by the library
 | |
| through `VkExportMemoryAllocateInfoKHR` on each allocation made from a specific memory type.
 | |
| Please note that new versions of the library also support dedicated allocations created in custom pools.
 | |
| 
 | |
| You should not mix these two methods in a way that allows to apply both to the same memory type.
 | |
| Otherwise, `VkExportMemoryAllocateInfoKHR` structure would be attached twice to the `pNext` chain of `VkMemoryAllocateInfo`.
 | |
| 
 | |
| 
 | |
| \section opengl_interop_custom_alignment Custom alignment
 | |
| 
 | |
| Buffers or images exported to a different API like OpenGL may require a different alignment,
 | |
| higher than the one used by the library automatically, queried from functions like `vkGetBufferMemoryRequirements`.
 | |
| To impose such alignment:
 | |
| 
 | |
| It is recommended to create \ref custom_memory_pools for such allocations.
 | |
| Set VmaPoolCreateInfo::minAllocationAlignment member to the minimum alignment required for each allocation
 | |
| to be made out of this pool.
 | |
| The alignment actually used will be the maximum of this member and the alignment returned for the specific buffer or image
 | |
| from a function like `vkGetBufferMemoryRequirements`, which is called by VMA automatically.
 | |
| 
 | |
| If you want to create a buffer with a specific minimum alignment out of default pools,
 | |
| use special function vmaCreateBufferWithAlignment(), which takes additional parameter `minAlignment`.
 | |
| 
 | |
| Note the problem of alignment affects only resources placed inside bigger `VkDeviceMemory` blocks and not dedicated
 | |
| allocations, as these, by definition, always have alignment = 0 because the resource is bound to the beginning of its dedicated block.
 | |
| Contrary to Direct3D 12, Vulkan doesn't have a concept of alignment of the entire memory block passed on its allocation.
 | |
| 
 | |
| 
 | |
| \page usage_patterns Recommended usage patterns
 | |
| 
 | |
| Vulkan gives great flexibility in memory allocation.
 | |
| This chapter shows the most common patterns.
 | |
| 
 | |
| See also slides from talk:
 | |
| [Sawicki, Adam. Advanced Graphics Techniques Tutorial: Memory management in Vulkan and DX12. Game Developers Conference, 2018](https://www.gdcvault.com/play/1025458/Advanced-Graphics-Techniques-Tutorial-New)
 | |
| 
 | |
| 
 | |
| \section usage_patterns_gpu_only GPU-only resource
 | |
| 
 | |
| <b>When:</b>
 | |
| Any resources that you frequently write and read on GPU,
 | |
| e.g. images used as color attachments (aka "render targets"), depth-stencil attachments,
 | |
| images/buffers used as storage image/buffer (aka "Unordered Access View (UAV)").
 | |
| 
 | |
| <b>What to do:</b>
 | |
| Let the library select the optimal memory type, which will likely have `VK_MEMORY_PROPERTY_DEVICE_LOCAL_BIT`.
 | |
| 
 | |
| \code
 | |
| VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | |
| imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
 | |
| imgCreateInfo.extent.width = 3840;
 | |
| imgCreateInfo.extent.height = 2160;
 | |
| imgCreateInfo.extent.depth = 1;
 | |
| imgCreateInfo.mipLevels = 1;
 | |
| imgCreateInfo.arrayLayers = 1;
 | |
| imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
 | |
| imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 | |
| imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
 | |
| imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
 | |
| imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | |
| allocCreateInfo.priority = 1.0f;
 | |
| 
 | |
| VkImage img;
 | |
| VmaAllocation alloc;
 | |
| vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
 | |
| \endcode
 | |
| 
 | |
| <b>Also consider:</b>
 | |
| Consider creating them as dedicated allocations using #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT,
 | |
| especially if they are large or if you plan to destroy and recreate them with different sizes
 | |
| e.g. when display resolution changes.
 | |
| Prefer to create such resources first and all other GPU resources (like textures and vertex buffers) later.
 | |
| When VK_EXT_memory_priority extension is enabled, it is also worth setting high priority to such allocation
 | |
| to decrease chances to be evicted to system memory by the operating system.
 | |
| 
 | |
| \section usage_patterns_staging_copy_upload Staging copy for upload
 | |
| 
 | |
| <b>When:</b>
 | |
| A "staging" buffer than you want to map and fill from CPU code, then use as a source of transfer
 | |
| to some GPU resource.
 | |
| 
 | |
| <b>What to do:</b>
 | |
| Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT.
 | |
| Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = 65536;
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
 | |
|     VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | |
| 
 | |
| ...
 | |
| 
 | |
| memcpy(allocInfo.pMappedData, myData, myDataSize);
 | |
| \endcode
 | |
| 
 | |
| <b>Also consider:</b>
 | |
| You can map the allocation using vmaMapMemory() or you can create it as persistenly mapped
 | |
| using #VMA_ALLOCATION_CREATE_MAPPED_BIT, as in the example above.
 | |
| 
 | |
| 
 | |
| \section usage_patterns_readback Readback
 | |
| 
 | |
| <b>When:</b>
 | |
| Buffers for data written by or transferred from the GPU that you want to read back on the CPU,
 | |
| e.g. results of some computations.
 | |
| 
 | |
| <b>What to do:</b>
 | |
| Use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT.
 | |
| Let the library select the optimal memory type, which will always have `VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT`
 | |
| and `VK_MEMORY_PROPERTY_HOST_CACHED_BIT`.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = 65536;
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_RANDOM_BIT |
 | |
|     VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | |
| 
 | |
| ...
 | |
| 
 | |
| const float* downloadedData = (const float*)allocInfo.pMappedData;
 | |
| \endcode
 | |
| 
 | |
| 
 | |
| \section usage_patterns_advanced_data_uploading Advanced data uploading
 | |
| 
 | |
| For resources that you frequently write on CPU via mapped pointer and
 | |
| frequently read on GPU e.g. as a uniform buffer (also called "dynamic"), multiple options are possible:
 | |
| 
 | |
| -# Easiest solution is to have one copy of the resource in `HOST_VISIBLE` memory,
 | |
|    even if it means system RAM (not `DEVICE_LOCAL`) on systems with a discrete graphics card,
 | |
|    and make the device reach out to that resource directly.
 | |
|    - Reads performed by the device will then go through PCI Express bus.
 | |
|      The performance of this access may be limited, but it may be fine depending on the size
 | |
|      of this resource (whether it is small enough to quickly end up in GPU cache) and the sparsity
 | |
|      of access.
 | |
| -# On systems with unified memory (e.g. AMD APU or Intel integrated graphics, mobile chips),
 | |
|    a memory type may be available that is both `HOST_VISIBLE` (available for mapping) and `DEVICE_LOCAL`
 | |
|    (fast to access from the GPU). Then, it is likely the best choice for such type of resource.
 | |
| -# Systems with a discrete graphics card and separate video memory may or may not expose
 | |
|    a memory type that is both `HOST_VISIBLE` and `DEVICE_LOCAL`, also known as Base Address Register (BAR).
 | |
|    If they do, it represents a piece of VRAM (or entire VRAM, if ReBAR is enabled in the motherboard BIOS)
 | |
|    that is available to CPU for mapping.
 | |
|    - Writes performed by the host to that memory go through PCI Express bus.
 | |
|      The performance of these writes may be limited, but it may be fine, especially on PCIe 4.0,
 | |
|      as long as rules of using uncached and write-combined memory are followed - only sequential writes and no reads.
 | |
| -# Finally, you may need or prefer to create a separate copy of the resource in `DEVICE_LOCAL` memory,
 | |
|    a separate "staging" copy in `HOST_VISIBLE` memory and perform an explicit transfer command between them.
 | |
| 
 | |
| Thankfully, VMA offers an aid to create and use such resources in the the way optimal
 | |
| for the current Vulkan device. To help the library make the best choice,
 | |
| use flag #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT together with
 | |
| #VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT.
 | |
| It will then prefer a memory type that is both `DEVICE_LOCAL` and `HOST_VISIBLE` (integrated memory or BAR),
 | |
| but if no such memory type is available or allocation from it fails
 | |
| (PC graphics cards have only 256 MB of BAR by default, unless ReBAR is supported and enabled in BIOS),
 | |
| it will fall back to `DEVICE_LOCAL` memory for fast GPU access.
 | |
| It is then up to you to detect that the allocation ended up in a memory type that is not `HOST_VISIBLE`,
 | |
| so you need to create another "staging" allocation and perform explicit transfers.
 | |
| 
 | |
| \code
 | |
| VkBufferCreateInfo bufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
| bufCreateInfo.size = 65536;
 | |
| bufCreateInfo.usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT | VK_BUFFER_USAGE_TRANSFER_DST_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
 | |
|     VMA_ALLOCATION_CREATE_HOST_ACCESS_ALLOW_TRANSFER_INSTEAD_BIT |
 | |
|     VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
| VkBuffer buf;
 | |
| VmaAllocation alloc;
 | |
| VmaAllocationInfo allocInfo;
 | |
| vmaCreateBuffer(allocator, &bufCreateInfo, &allocCreateInfo, &buf, &alloc, &allocInfo);
 | |
| 
 | |
| VkMemoryPropertyFlags memPropFlags;
 | |
| vmaGetAllocationMemoryProperties(allocator, alloc, &memPropFlags);
 | |
| 
 | |
| if(memPropFlags & VK_MEMORY_PROPERTY_HOST_VISIBLE_BIT)
 | |
| {
 | |
|     // Allocation ended up in a mappable memory and is already mapped - write to it directly.
 | |
| 
 | |
|     // [Executed in runtime]:
 | |
|     memcpy(allocInfo.pMappedData, myData, myDataSize);
 | |
| }
 | |
| else
 | |
| {
 | |
|     // Allocation ended up in a non-mappable memory - need to transfer.
 | |
|     VkBufferCreateInfo stagingBufCreateInfo = { VK_STRUCTURE_TYPE_BUFFER_CREATE_INFO };
 | |
|     stagingBufCreateInfo.size = 65536;
 | |
|     stagingBufCreateInfo.usage = VK_BUFFER_USAGE_TRANSFER_SRC_BIT;
 | |
| 
 | |
|     VmaAllocationCreateInfo stagingAllocCreateInfo = {};
 | |
|     stagingAllocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
|     stagingAllocCreateInfo.flags = VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT |
 | |
|         VMA_ALLOCATION_CREATE_MAPPED_BIT;
 | |
| 
 | |
|     VkBuffer stagingBuf;
 | |
|     VmaAllocation stagingAlloc;
 | |
|     VmaAllocationInfo stagingAllocInfo;
 | |
|     vmaCreateBuffer(allocator, &stagingBufCreateInfo, &stagingAllocCreateInfo,
 | |
|         &stagingBuf, &stagingAlloc, stagingAllocInfo);
 | |
| 
 | |
|     // [Executed in runtime]:
 | |
|     memcpy(stagingAllocInfo.pMappedData, myData, myDataSize);
 | |
|     vmaFlushAllocation(allocator, stagingAlloc, 0, VK_WHOLE_SIZE);
 | |
|     //vkCmdPipelineBarrier: VK_ACCESS_HOST_WRITE_BIT --> VK_ACCESS_TRANSFER_READ_BIT
 | |
|     VkBufferCopy bufCopy = {
 | |
|         0, // srcOffset
 | |
|         0, // dstOffset,
 | |
|         myDataSize); // size
 | |
|     vkCmdCopyBuffer(cmdBuf, stagingBuf, buf, 1, &bufCopy);
 | |
| }
 | |
| \endcode
 | |
| 
 | |
| \section usage_patterns_other_use_cases Other use cases
 | |
| 
 | |
| Here are some other, less obvious use cases and their recommended settings:
 | |
| 
 | |
| - An image that is used only as transfer source and destination, but it should stay on the device,
 | |
|   as it is used to temporarily store a copy of some texture, e.g. from the current to the next frame,
 | |
|   for temporal antialiasing or other temporal effects.
 | |
|   - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
 | |
|   - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO
 | |
| - An image that is used only as transfer source and destination, but it should be placed
 | |
|   in the system RAM despite it doesn't need to be mapped, because it serves as a "swap" copy to evict
 | |
|   least recently used textures from VRAM.
 | |
|   - Use `VkImageCreateInfo::usage = VK_IMAGE_USAGE_TRANSFER_SRC_BIT | VK_IMAGE_USAGE_TRANSFER_DST_BIT`
 | |
|   - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_HOST,
 | |
|     as VMA needs a hint here to differentiate from the previous case.
 | |
| - A buffer that you want to map and write from the CPU, directly read from the GPU
 | |
|   (e.g. as a uniform or vertex buffer), but you have a clear preference to place it in device or
 | |
|   host memory due to its large size.
 | |
|   - Use `VkBufferCreateInfo::usage = VK_BUFFER_USAGE_UNIFORM_BUFFER_BIT`
 | |
|   - Use VmaAllocationCreateInfo::usage = #VMA_MEMORY_USAGE_AUTO_PREFER_DEVICE or #VMA_MEMORY_USAGE_AUTO_PREFER_HOST
 | |
|   - Use VmaAllocationCreateInfo::flags = #VMA_ALLOCATION_CREATE_HOST_ACCESS_SEQUENTIAL_WRITE_BIT
 | |
| 
 | |
| 
 | |
| \page configuration Configuration
 | |
| 
 | |
| Please check "CONFIGURATION SECTION" in the code to find macros that you can define
 | |
| before each include of this file or change directly in this file to provide
 | |
| your own implementation of basic facilities like assert, `min()` and `max()` functions,
 | |
| mutex, atomic etc.
 | |
| The library uses its own implementation of containers by default, but you can switch to using
 | |
| STL containers instead.
 | |
| 
 | |
| For example, define `VMA_ASSERT(expr)` before including the library to provide
 | |
| custom implementation of the assertion, compatible with your project.
 | |
| By default it is defined to standard C `assert(expr)` in `_DEBUG` configuration
 | |
| and empty otherwise.
 | |
| 
 | |
| \section config_Vulkan_functions Pointers to Vulkan functions
 | |
| 
 | |
| There are multiple ways to import pointers to Vulkan functions in the library.
 | |
| In the simplest case you don't need to do anything.
 | |
| If the compilation or linking of your program or the initialization of the #VmaAllocator
 | |
| doesn't work for you, you can try to reconfigure it.
 | |
| 
 | |
| First, the allocator tries to fetch pointers to Vulkan functions linked statically,
 | |
| like this:
 | |
| 
 | |
| \code
 | |
| m_VulkanFunctions.vkAllocateMemory = (PFN_vkAllocateMemory)vkAllocateMemory;
 | |
| \endcode
 | |
| 
 | |
| If you want to disable this feature, set configuration macro: `#define VMA_STATIC_VULKAN_FUNCTIONS 0`.
 | |
| 
 | |
| Second, you can provide the pointers yourself by setting member VmaAllocatorCreateInfo::pVulkanFunctions.
 | |
| You can fetch them e.g. using functions `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` or
 | |
| by using a helper library like [volk](https://github.com/zeux/volk).
 | |
| 
 | |
| Third, VMA tries to fetch remaining pointers that are still null by calling
 | |
| `vkGetInstanceProcAddr` and `vkGetDeviceProcAddr` on its own.
 | |
| You need to only fill in VmaVulkanFunctions::vkGetInstanceProcAddr and VmaVulkanFunctions::vkGetDeviceProcAddr.
 | |
| Other pointers will be fetched automatically.
 | |
| If you want to disable this feature, set configuration macro: `#define VMA_DYNAMIC_VULKAN_FUNCTIONS 0`.
 | |
| 
 | |
| Finally, all the function pointers required by the library (considering selected
 | |
| Vulkan version and enabled extensions) are checked with `VMA_ASSERT` if they are not null.
 | |
| 
 | |
| 
 | |
| \section custom_memory_allocator Custom host memory allocator
 | |
| 
 | |
| If you use custom allocator for CPU memory rather than default operator `new`
 | |
| and `delete` from C++, you can make this library using your allocator as well
 | |
| by filling optional member VmaAllocatorCreateInfo::pAllocationCallbacks. These
 | |
| functions will be passed to Vulkan, as well as used by the library itself to
 | |
| make any CPU-side allocations.
 | |
| 
 | |
| \section allocation_callbacks Device memory allocation callbacks
 | |
| 
 | |
| The library makes calls to `vkAllocateMemory()` and `vkFreeMemory()` internally.
 | |
| You can setup callbacks to be informed about these calls, e.g. for the purpose
 | |
| of gathering some statistics. To do it, fill optional member
 | |
| VmaAllocatorCreateInfo::pDeviceMemoryCallbacks.
 | |
| 
 | |
| \section heap_memory_limit Device heap memory limit
 | |
| 
 | |
| When device memory of certain heap runs out of free space, new allocations may
 | |
| fail (returning error code) or they may succeed, silently pushing some existing_
 | |
| memory blocks from GPU VRAM to system RAM (which degrades performance). This
 | |
| behavior is implementation-dependent - it depends on GPU vendor and graphics
 | |
| driver.
 | |
| 
 | |
| On AMD cards it can be controlled while creating Vulkan device object by using
 | |
| VK_AMD_memory_overallocation_behavior extension, if available.
 | |
| 
 | |
| Alternatively, if you want to test how your program behaves with limited amount of Vulkan device
 | |
| memory available without switching your graphics card to one that really has
 | |
| smaller VRAM, you can use a feature of this library intended for this purpose.
 | |
| To do it, fill optional member VmaAllocatorCreateInfo::pHeapSizeLimit.
 | |
| 
 | |
| 
 | |
| 
 | |
| \page vk_khr_dedicated_allocation VK_KHR_dedicated_allocation
 | |
| 
 | |
| VK_KHR_dedicated_allocation is a Vulkan extension which can be used to improve
 | |
| performance on some GPUs. It augments Vulkan API with possibility to query
 | |
| driver whether it prefers particular buffer or image to have its own, dedicated
 | |
| allocation (separate `VkDeviceMemory` block) for better efficiency - to be able
 | |
| to do some internal optimizations. The extension is supported by this library.
 | |
| It will be used automatically when enabled.
 | |
| 
 | |
| It has been promoted to core Vulkan 1.1, so if you use eligible Vulkan version
 | |
| and inform VMA about it by setting VmaAllocatorCreateInfo::vulkanApiVersion,
 | |
| you are all set.
 | |
| 
 | |
| Otherwise, if you want to use it as an extension:
 | |
| 
 | |
| 1 . When creating Vulkan device, check if following 2 device extensions are
 | |
| supported (call `vkEnumerateDeviceExtensionProperties()`).
 | |
| If yes, enable them (fill `VkDeviceCreateInfo::ppEnabledExtensionNames`).
 | |
| 
 | |
| - VK_KHR_get_memory_requirements2
 | |
| - VK_KHR_dedicated_allocation
 | |
| 
 | |
| If you enabled these extensions:
 | |
| 
 | |
| 2 . Use #VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT flag when creating
 | |
| your #VmaAllocator to inform the library that you enabled required extensions
 | |
| and you want the library to use them.
 | |
| 
 | |
| \code
 | |
| allocatorInfo.flags |= VMA_ALLOCATOR_CREATE_KHR_DEDICATED_ALLOCATION_BIT;
 | |
| 
 | |
| vmaCreateAllocator(&allocatorInfo, &allocator);
 | |
| \endcode
 | |
| 
 | |
| That is all. The extension will be automatically used whenever you create a
 | |
| buffer using vmaCreateBuffer() or image using vmaCreateImage().
 | |
| 
 | |
| When using the extension together with Vulkan Validation Layer, you will receive
 | |
| warnings like this:
 | |
| 
 | |
| _vkBindBufferMemory(): Binding memory to buffer 0x33 but vkGetBufferMemoryRequirements() has not been called on that buffer._
 | |
| 
 | |
| It is OK, you should just ignore it. It happens because you use function
 | |
| `vkGetBufferMemoryRequirements2KHR()` instead of standard
 | |
| `vkGetBufferMemoryRequirements()`, while the validation layer seems to be
 | |
| unaware of it.
 | |
| 
 | |
| To learn more about this extension, see:
 | |
| 
 | |
| - [VK_KHR_dedicated_allocation in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap50.html#VK_KHR_dedicated_allocation)
 | |
| - [VK_KHR_dedicated_allocation unofficial manual](http://asawicki.info/articles/VK_KHR_dedicated_allocation.php5)
 | |
| 
 | |
| 
 | |
| 
 | |
| \page vk_ext_memory_priority VK_EXT_memory_priority
 | |
| 
 | |
| VK_EXT_memory_priority is a device extension that allows to pass additional "priority"
 | |
| value to Vulkan memory allocations that the implementation may use prefer certain
 | |
| buffers and images that are critical for performance to stay in device-local memory
 | |
| in cases when the memory is over-subscribed, while some others may be moved to the system memory.
 | |
| 
 | |
| VMA offers convenient usage of this extension.
 | |
| If you enable it, you can pass "priority" parameter when creating allocations or custom pools
 | |
| and the library automatically passes the value to Vulkan using this extension.
 | |
| 
 | |
| If you want to use this extension in connection with VMA, follow these steps:
 | |
| 
 | |
| \section vk_ext_memory_priority_initialization Initialization
 | |
| 
 | |
| 1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
 | |
| Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_EXT_memory_priority".
 | |
| 
 | |
| 2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
 | |
| Attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
 | |
| Check if the device feature is really supported - check if `VkPhysicalDeviceMemoryPriorityFeaturesEXT::memoryPriority` is true.
 | |
| 
 | |
| 3) While creating device with `vkCreateDevice`, enable this extension - add "VK_EXT_memory_priority"
 | |
| to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
 | |
| 
 | |
| 4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
 | |
| Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
 | |
| Enable this device feature - attach additional structure `VkPhysicalDeviceMemoryPriorityFeaturesEXT` to
 | |
| `VkPhysicalDeviceFeatures2::pNext` chain and set its member `memoryPriority` to `VK_TRUE`.
 | |
| 
 | |
| 5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
 | |
| have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_EXT_MEMORY_PRIORITY_BIT
 | |
| to VmaAllocatorCreateInfo::flags.
 | |
| 
 | |
| \section vk_ext_memory_priority_usage Usage
 | |
| 
 | |
| When using this extension, you should initialize following member:
 | |
| 
 | |
| - VmaAllocationCreateInfo::priority when creating a dedicated allocation with #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
| - VmaPoolCreateInfo::priority when creating a custom pool.
 | |
| 
 | |
| It should be a floating-point value between `0.0f` and `1.0f`, where recommended default is `0.5f`.
 | |
| Memory allocated with higher value can be treated by the Vulkan implementation as higher priority
 | |
| and so it can have lower chances of being pushed out to system memory, experiencing degraded performance.
 | |
| 
 | |
| It might be a good idea to create performance-critical resources like color-attachment or depth-stencil images
 | |
| as dedicated and set high priority to them. For example:
 | |
| 
 | |
| \code
 | |
| VkImageCreateInfo imgCreateInfo = { VK_STRUCTURE_TYPE_IMAGE_CREATE_INFO };
 | |
| imgCreateInfo.imageType = VK_IMAGE_TYPE_2D;
 | |
| imgCreateInfo.extent.width = 3840;
 | |
| imgCreateInfo.extent.height = 2160;
 | |
| imgCreateInfo.extent.depth = 1;
 | |
| imgCreateInfo.mipLevels = 1;
 | |
| imgCreateInfo.arrayLayers = 1;
 | |
| imgCreateInfo.format = VK_FORMAT_R8G8B8A8_UNORM;
 | |
| imgCreateInfo.tiling = VK_IMAGE_TILING_OPTIMAL;
 | |
| imgCreateInfo.initialLayout = VK_IMAGE_LAYOUT_UNDEFINED;
 | |
| imgCreateInfo.usage = VK_IMAGE_USAGE_SAMPLED_BIT | VK_IMAGE_USAGE_COLOR_ATTACHMENT_BIT;
 | |
| imgCreateInfo.samples = VK_SAMPLE_COUNT_1_BIT;
 | |
| 
 | |
| VmaAllocationCreateInfo allocCreateInfo = {};
 | |
| allocCreateInfo.usage = VMA_MEMORY_USAGE_AUTO;
 | |
| allocCreateInfo.flags = VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT;
 | |
| allocCreateInfo.priority = 1.0f;
 | |
| 
 | |
| VkImage img;
 | |
| VmaAllocation alloc;
 | |
| vmaCreateImage(allocator, &imgCreateInfo, &allocCreateInfo, &img, &alloc, nullptr);
 | |
| \endcode
 | |
| 
 | |
| `priority` member is ignored in the following situations:
 | |
| 
 | |
| - Allocations created in custom pools: They inherit the priority, along with all other allocation parameters
 | |
|   from the parametrs passed in #VmaPoolCreateInfo when the pool was created.
 | |
| - Allocations created in default pools: They inherit the priority from the parameters
 | |
|   VMA used when creating default pools, which means `priority == 0.5f`.
 | |
| 
 | |
| 
 | |
| \page vk_amd_device_coherent_memory VK_AMD_device_coherent_memory
 | |
| 
 | |
| VK_AMD_device_coherent_memory is a device extension that enables access to
 | |
| additional memory types with `VK_MEMORY_PROPERTY_DEVICE_COHERENT_BIT_AMD` and
 | |
| `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` flag. It is useful mostly for
 | |
| allocation of buffers intended for writing "breadcrumb markers" in between passes
 | |
| or draw calls, which in turn are useful for debugging GPU crash/hang/TDR cases.
 | |
| 
 | |
| When the extension is available but has not been enabled, Vulkan physical device
 | |
| still exposes those memory types, but their usage is forbidden. VMA automatically
 | |
| takes care of that - it returns `VK_ERROR_FEATURE_NOT_PRESENT` when an attempt
 | |
| to allocate memory of such type is made.
 | |
| 
 | |
| If you want to use this extension in connection with VMA, follow these steps:
 | |
| 
 | |
| \section vk_amd_device_coherent_memory_initialization Initialization
 | |
| 
 | |
| 1) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
 | |
| Check if the extension is supported - if returned array of `VkExtensionProperties` contains "VK_AMD_device_coherent_memory".
 | |
| 
 | |
| 2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
 | |
| Attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
 | |
| Check if the device feature is really supported - check if `VkPhysicalDeviceCoherentMemoryFeaturesAMD::deviceCoherentMemory` is true.
 | |
| 
 | |
| 3) While creating device with `vkCreateDevice`, enable this extension - add "VK_AMD_device_coherent_memory"
 | |
| to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
 | |
| 
 | |
| 4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
 | |
| Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
 | |
| Enable this device feature - attach additional structure `VkPhysicalDeviceCoherentMemoryFeaturesAMD` to
 | |
| `VkPhysicalDeviceFeatures2::pNext` and set its member `deviceCoherentMemory` to `VK_TRUE`.
 | |
| 
 | |
| 5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
 | |
| have enabled this extension and feature - add #VMA_ALLOCATOR_CREATE_AMD_DEVICE_COHERENT_MEMORY_BIT
 | |
| to VmaAllocatorCreateInfo::flags.
 | |
| 
 | |
| \section vk_amd_device_coherent_memory_usage Usage
 | |
| 
 | |
| After following steps described above, you can create VMA allocations and custom pools
 | |
| out of the special `DEVICE_COHERENT` and `DEVICE_UNCACHED` memory types on eligible
 | |
| devices. There are multiple ways to do it, for example:
 | |
| 
 | |
| - You can request or prefer to allocate out of such memory types by adding
 | |
|   `VK_MEMORY_PROPERTY_DEVICE_UNCACHED_BIT_AMD` to VmaAllocationCreateInfo::requiredFlags
 | |
|   or VmaAllocationCreateInfo::preferredFlags. Those flags can be freely mixed with
 | |
|   other ways of \ref choosing_memory_type, like setting VmaAllocationCreateInfo::usage.
 | |
| - If you manually found memory type index to use for this purpose, force allocation
 | |
|   from this specific index by setting VmaAllocationCreateInfo::memoryTypeBits `= 1u << index`.
 | |
| 
 | |
| \section vk_amd_device_coherent_memory_more_information More information
 | |
| 
 | |
| To learn more about this extension, see [VK_AMD_device_coherent_memory in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/man/html/VK_AMD_device_coherent_memory.html)
 | |
| 
 | |
| Example use of this extension can be found in the code of the sample and test suite
 | |
| accompanying this library.
 | |
| 
 | |
| 
 | |
| \page enabling_buffer_device_address Enabling buffer device address
 | |
| 
 | |
| Device extension VK_KHR_buffer_device_address
 | |
| allow to fetch raw GPU pointer to a buffer and pass it for usage in a shader code.
 | |
| It has been promoted to core Vulkan 1.2.
 | |
| 
 | |
| If you want to use this feature in connection with VMA, follow these steps:
 | |
| 
 | |
| \section enabling_buffer_device_address_initialization Initialization
 | |
| 
 | |
| 1) (For Vulkan version < 1.2) Call `vkEnumerateDeviceExtensionProperties` for the physical device.
 | |
| Check if the extension is supported - if returned array of `VkExtensionProperties` contains
 | |
| "VK_KHR_buffer_device_address".
 | |
| 
 | |
| 2) Call `vkGetPhysicalDeviceFeatures2` for the physical device instead of old `vkGetPhysicalDeviceFeatures`.
 | |
| Attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to `VkPhysicalDeviceFeatures2::pNext` to be returned.
 | |
| Check if the device feature is really supported - check if `VkPhysicalDeviceBufferDeviceAddressFeatures::bufferDeviceAddress` is true.
 | |
| 
 | |
| 3) (For Vulkan version < 1.2) While creating device with `vkCreateDevice`, enable this extension - add
 | |
| "VK_KHR_buffer_device_address" to the list passed as `VkDeviceCreateInfo::ppEnabledExtensionNames`.
 | |
| 
 | |
| 4) While creating the device, also don't set `VkDeviceCreateInfo::pEnabledFeatures`.
 | |
| Fill in `VkPhysicalDeviceFeatures2` structure instead and pass it as `VkDeviceCreateInfo::pNext`.
 | |
| Enable this device feature - attach additional structure `VkPhysicalDeviceBufferDeviceAddressFeatures*` to
 | |
| `VkPhysicalDeviceFeatures2::pNext` and set its member `bufferDeviceAddress` to `VK_TRUE`.
 | |
| 
 | |
| 5) While creating #VmaAllocator with vmaCreateAllocator() inform VMA that you
 | |
| have enabled this feature - add #VMA_ALLOCATOR_CREATE_BUFFER_DEVICE_ADDRESS_BIT
 | |
| to VmaAllocatorCreateInfo::flags.
 | |
| 
 | |
| \section enabling_buffer_device_address_usage Usage
 | |
| 
 | |
| After following steps described above, you can create buffers with `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*` using VMA.
 | |
| The library automatically adds `VK_MEMORY_ALLOCATE_DEVICE_ADDRESS_BIT*` to
 | |
| allocated memory blocks wherever it might be needed.
 | |
| 
 | |
| Please note that the library supports only `VK_BUFFER_USAGE_SHADER_DEVICE_ADDRESS_BIT*`.
 | |
| The second part of this functionality related to "capture and replay" is not supported,
 | |
| as it is intended for usage in debugging tools like RenderDoc, not in everyday Vulkan usage.
 | |
| 
 | |
| \section enabling_buffer_device_address_more_information More information
 | |
| 
 | |
| To learn more about this extension, see [VK_KHR_buffer_device_address in Vulkan specification](https://www.khronos.org/registry/vulkan/specs/1.2-extensions/html/chap46.html#VK_KHR_buffer_device_address)
 | |
| 
 | |
| Example use of this extension can be found in the code of the sample and test suite
 | |
| accompanying this library.
 | |
| 
 | |
| \page general_considerations General considerations
 | |
| 
 | |
| \section general_considerations_thread_safety Thread safety
 | |
| 
 | |
| - The library has no global state, so separate #VmaAllocator objects can be used
 | |
|   independently.
 | |
|   There should be no need to create multiple such objects though - one per `VkDevice` is enough.
 | |
| - By default, all calls to functions that take #VmaAllocator as first parameter
 | |
|   are safe to call from multiple threads simultaneously because they are
 | |
|   synchronized internally when needed.
 | |
|   This includes allocation and deallocation from default memory pool, as well as custom #VmaPool.
 | |
| - When the allocator is created with #VMA_ALLOCATOR_CREATE_EXTERNALLY_SYNCHRONIZED_BIT
 | |
|   flag, calls to functions that take such #VmaAllocator object must be
 | |
|   synchronized externally.
 | |
| - Access to a #VmaAllocation object must be externally synchronized. For example,
 | |
|   you must not call vmaGetAllocationInfo() and vmaMapMemory() from different
 | |
|   threads at the same time if you pass the same #VmaAllocation object to these
 | |
|   functions.
 | |
| - #VmaVirtualBlock is not safe to be used from multiple threads simultaneously.
 | |
| 
 | |
| \section general_considerations_versioning_and_compatibility Versioning and compatibility
 | |
| 
 | |
| The library uses [**Semantic Versioning**](https://semver.org/),
 | |
| which means version numbers follow convention: Major.Minor.Patch (e.g. 2.3.0), where:
 | |
| 
 | |
| - Incremented Patch version means a release is backward- and forward-compatible,
 | |
|   introducing only some internal improvements, bug fixes, optimizations etc.
 | |
|   or changes that are out of scope of the official API described in this documentation.
 | |
| - Incremented Minor version means a release is backward-compatible,
 | |
|   so existing code that uses the library should continue to work, while some new
 | |
|   symbols could have been added: new structures, functions, new values in existing
 | |
|   enums and bit flags, new structure members, but not new function parameters.
 | |
| - Incrementing Major version means a release could break some backward compatibility.
 | |
| 
 | |
| All changes between official releases are documented in file "CHANGELOG.md".
 | |
| 
 | |
| \warning Backward compatibility is considered on the level of C++ source code, not binary linkage.
 | |
| Adding new members to existing structures is treated as backward compatible if initializing
 | |
| the new members to binary zero results in the old behavior.
 | |
| You should always fully initialize all library structures to zeros and not rely on their
 | |
| exact binary size.
 | |
| 
 | |
| \section general_considerations_validation_layer_warnings Validation layer warnings
 | |
| 
 | |
| When using this library, you can meet following types of warnings issued by
 | |
| Vulkan validation layer. They don't necessarily indicate a bug, so you may need
 | |
| to just ignore them.
 | |
| 
 | |
| - *vkBindBufferMemory(): Binding memory to buffer 0xeb8e4 but vkGetBufferMemoryRequirements() has not been called on that buffer.*
 | |
|   - It happens when VK_KHR_dedicated_allocation extension is enabled.
 | |
|     `vkGetBufferMemoryRequirements2KHR` function is used instead, while validation layer seems to be unaware of it.
 | |
| - *Mapping an image with layout VK_IMAGE_LAYOUT_DEPTH_STENCIL_ATTACHMENT_OPTIMAL can result in undefined behavior if this memory is used by the device. Only GENERAL or PREINITIALIZED should be used.*
 | |
|   - It happens when you map a buffer or image, because the library maps entire
 | |
|     `VkDeviceMemory` block, where different types of images and buffers may end
 | |
|     up together, especially on GPUs with unified memory like Intel.
 | |
| - *Non-linear image 0xebc91 is aliased with linear buffer 0xeb8e4 which may indicate a bug.*
 | |
|   - It may happen when you use [defragmentation](@ref defragmentation).
 | |
| 
 | |
| \section general_considerations_allocation_algorithm Allocation algorithm
 | |
| 
 | |
| The library uses following algorithm for allocation, in order:
 | |
| 
 | |
| -# Try to find free range of memory in existing blocks.
 | |
| -# If failed, try to create a new block of `VkDeviceMemory`, with preferred block size.
 | |
| -# If failed, try to create such block with size / 2, size / 4, size / 8.
 | |
| -# If failed, try to allocate separate `VkDeviceMemory` for this allocation,
 | |
|    just like when you use #VMA_ALLOCATION_CREATE_DEDICATED_MEMORY_BIT.
 | |
| -# If failed, choose other memory type that meets the requirements specified in
 | |
|    VmaAllocationCreateInfo and go to point 1.
 | |
| -# If failed, return `VK_ERROR_OUT_OF_DEVICE_MEMORY`.
 | |
| 
 | |
| \section general_considerations_features_not_supported Features not supported
 | |
| 
 | |
| Features deliberately excluded from the scope of this library:
 | |
| 
 | |
| -# **Data transfer.** Uploading (streaming) and downloading data of buffers and images
 | |
|    between CPU and GPU memory and related synchronization is responsibility of the user.
 | |
|    Defining some "texture" object that would automatically stream its data from a
 | |
|    staging copy in CPU memory to GPU memory would rather be a feature of another,
 | |
|    higher-level library implemented on top of VMA.
 | |
|    VMA doesn't record any commands to a `VkCommandBuffer`. It just allocates memory.
 | |
| -# **Recreation of buffers and images.** Although the library has functions for
 | |
|    buffer and image creation: vmaCreateBuffer(), vmaCreateImage(), you need to
 | |
|    recreate these objects yourself after defragmentation. That is because the big
 | |
|    structures `VkBufferCreateInfo`, `VkImageCreateInfo` are not stored in
 | |
|    #VmaAllocation object.
 | |
| -# **Handling CPU memory allocation failures.** When dynamically creating small C++
 | |
|    objects in CPU memory (not Vulkan memory), allocation failures are not checked
 | |
|    and handled gracefully, because that would complicate code significantly and
 | |
|    is usually not needed in desktop PC applications anyway.
 | |
|    Success of an allocation is just checked with an assert.
 | |
| -# **Code free of any compiler warnings.** Maintaining the library to compile and
 | |
|    work correctly on so many different platforms is hard enough. Being free of
 | |
|    any warnings, on any version of any compiler, is simply not feasible.
 | |
|    There are many preprocessor macros that make some variables unused, function parameters unreferenced,
 | |
|    or conditional expressions constant in some configurations.
 | |
|    The code of this library should not be bigger or more complicated just to silence these warnings.
 | |
|    It is recommended to disable such warnings instead.
 | |
| -# This is a C++ library with C interface. **Bindings or ports to any other programming languages** are welcome as external projects but
 | |
|    are not going to be included into this repository.
 | |
| */
 | 
