Files
AR-Video-Streaming-over-WebRTC/relevant_repos.txt
2024-11-30 17:55:02 -05:00

125 lines
4.6 KiB
Plaintext

https://github.com/njpietrow/Filter.io
https://github.com/tensorflow/tfjs-models/tree/master/body-segmentation
https://github.com/pion/awesome-pion
real-time quality - network
ffmpeg - encoding/decoding
base frame + delta diff
h264 encoding
client1 client2
os.exec(ffmpeg) os.exec(ffmpeg)
https://github.com/FFmpeg/FFmpeg
https://github.com/AlexEidt/Vidio
https://github.com/njpietrow/Filter.io
https://github.com/AgustinSRG/webrtc-video-filter
https://github.com/hybridgroup/cvscope/
https://github.com/ashellunts/ffmpeg-to-webrtc
https://github.com/pion/webrtc
https://github.com/pion/example-webrtc-applications
https://github.com/pion/example-webrtc-applications/tree/master/ffmpeg-send
https://github.com/asticode/go-astiav
https://jsfiddle.net/z17q28cd/
ffmpeg -f v4l2 -i /dev/video0 -f mpegts udp://224.0.0.251:5353
netstat -anu|sort -nk4
metric - time, energy consumption
Oct 16th -
look up energy consumption models for mobile phones/edge devices
drain based on the processor/cpu/RAM - battery drain emulators/simulators - estimate of energy consumption for the program.
monitoring tools for battery drains
TPUs = Tensor Processing Units
Tasks:
1. Look for other people working on same problem, google scholar
2. explore AR Workload
3. Volumetric videos - format, can handle with regular RTP?
4. battery savings?
ffmpeg -i input.webm -f mpegts udp://224.0.0.251:5353
/home/kalit/Desktop/GeorgiaTech/Fall_2024/CS_8903/WebRTC_research/ar-filters/filter_imgs/eye.jpg
/home/epl/Desktop/WebRTC_research/ar-filters/filter_imgs/eye.jpg
/home/epl/Desktop/WebRTC_research/ar-filters/filter_imgs/smile.png
AR workloads:
https://cuhksz-inml.github.io/full_scene_volumetric_video_dataset/factsfigures.html
Forward streams to localhost:5005 to jetson machine's localhost:5005 -
ssh -L 5005:localhost:5005 -J fastvideo -i ~/.ssh/picluster epl@10.100.1.165
Jetson: 4 CPU cores ARMv8 Processor rev 1
Device 0: "NVIDIA Tegra X1"
CUDA Driver Version / Runtime Version 10.0 / 10.0
CUDA Capability Major/Minor version number: 5.3
Total amount of global memory: 3962 MBytes (4154626048 bytes)
( 2) Multiprocessors, (128) CUDA Cores/MP: 256 CUDA Cores
GPU Max Clock rate: 998 MHz (1.00 GHz)
Memory Clock rate: 1600 Mhz
Memory Bus Width: 64-bit
L2 Cache Size: 262144 bytes
Maximum Texture Dimension Size (x,y,z) 1D=(65536), 2D=(65536, 65536), 3D=(4096, 4096, 4096)
Maximum Layered 1D Texture Size, (num) layers 1D=(16384), 2048 layers
Maximum Layered 2D Texture Size, (num) layers 2D=(16384, 16384), 2048 layers
Total amount of constant memory: 65536 bytes
Total amount of shared memory per block: 49152 bytes
Total number of registers available per block: 32768
Warp size: 32
Maximum number of threads per multiprocessor: 2048
Maximum number of threads per block: 1024
Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
Max dimension size of a grid size (x,y,z): (2147483647, 65535, 65535)
Maximum memory pitch: 2147483647 bytes
Texture alignment: 512 bytes
Concurrent copy and kernel execution: Yes with 1 copy engine(s)
Run time limit on kernels: Yes
Integrated GPU sharing Host Memory: Yes
Support host page-locked memory mapping: Yes
Alignment requirement for Surfaces: Yes
Device has ECC support: Disabled
Device supports Unified Addressing (UVA): Yes
Device supports Compute Preemption: No
Supports Cooperative Kernel Launch: No
Supports MultiDevice Co-op Kernel Launch: No
Device PCI Domain ID / Bus ID / location ID: 0 / 0 / 0
Compute Mode:
< Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >
deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.0, CUDA Runtime Version = 10.0, NumDevs = 1
Result = PASS
Mediapipe issues (GPU + Jetson :( )
1. https://github.com/google-ai-edge/mediapipe/issues/4017
2. https://github.com/google-ai-edge/mediapipe/issues/5344#issuecomment-2076742967
3. https://github.com/google-ai-edge/mediapipe/issues/3353
4. https://github.com/google-ai-edge/mediapipe/issues/1651#issuecomment-790176010
5. https://github.com/google-ai-edge/mediapipe/issues/1344
6. https://github.com/google-ai-edge/mediapipe/issues/5736
jetson benchmark suites - work on images? object detection filters?
ar-benchmarks suite