Files
ccache/cache.go
Karl Seguin ece93bf87d On delete, always set promotions == -2 and node == nil
Also, item.promotions doesn't need to be loaded/stored using atomic. Once upon a
time it did. Cache was updated long ago to not use atomic operations on it, but
LayeredCache wasn't. They are both consistent now (they don't use atomic
operations).

Fixes: https://github.com/karlseguin/ccache/issues/76
2022-12-13 20:33:58 +08:00

450 lines
11 KiB
Go

// An LRU cached aimed at high concurrency
package ccache
import (
"hash/fnv"
"sync/atomic"
"time"
)
// The cache has a generic 'control' channel that is used to send
// messages to the worker. These are the messages that can be sent to it
type getDropped struct {
res chan int
}
type getSize struct {
res chan int64
}
type setMaxSize struct {
size int64
done chan struct{}
}
type clear struct {
done chan struct{}
}
type syncWorker struct {
done chan struct{}
}
type gc struct {
done chan struct{}
}
type Cache[T any] struct {
*Configuration[T]
list *List[*Item[T]]
size int64
buckets []*bucket[T]
bucketMask uint32
deletables chan *Item[T]
promotables chan *Item[T]
control chan interface{}
}
// Create a new cache with the specified configuration
// See ccache.Configure() for creating a configuration
func New[T any](config *Configuration[T]) *Cache[T] {
c := &Cache[T]{
list: NewList[*Item[T]](),
Configuration: config,
bucketMask: uint32(config.buckets) - 1,
buckets: make([]*bucket[T], config.buckets),
control: make(chan interface{}),
}
for i := 0; i < config.buckets; i++ {
c.buckets[i] = &bucket[T]{
lookup: make(map[string]*Item[T]),
}
}
c.restart()
return c
}
func (c *Cache[T]) ItemCount() int {
count := 0
for _, b := range c.buckets {
count += b.itemCount()
}
return count
}
func (c *Cache[T]) DeletePrefix(prefix string) int {
count := 0
for _, b := range c.buckets {
count += b.deletePrefix(prefix, c.deletables)
}
return count
}
// Deletes all items that the matches func evaluates to true.
func (c *Cache[T]) DeleteFunc(matches func(key string, item *Item[T]) bool) int {
count := 0
for _, b := range c.buckets {
count += b.deleteFunc(matches, c.deletables)
}
return count
}
func (c *Cache[T]) ForEachFunc(matches func(key string, item *Item[T]) bool) {
for _, b := range c.buckets {
if !b.forEachFunc(matches) {
break
}
}
}
// Get an item from the cache. Returns nil if the item wasn't found.
// This can return an expired item. Use item.Expired() to see if the item
// is expired and item.TTL() to see how long until the item expires (which
// will be negative for an already expired item).
func (c *Cache[T]) Get(key string) *Item[T] {
item := c.bucket(key).get(key)
if item == nil {
return nil
}
if !item.Expired() {
select {
case c.promotables <- item:
default:
}
}
return item
}
// Same as Get but does not promote the value. This essentially circumvents the
// "least recently used" aspect of this cache. To some degree, it's akin to a
// "peak"
func (c *Cache[T]) GetWithoutPromote(key string) *Item[T] {
return c.bucket(key).get(key)
}
// Used when the cache was created with the Track() configuration option.
// Avoid otherwise
func (c *Cache[T]) TrackingGet(key string) TrackedItem[T] {
item := c.Get(key)
if item == nil {
return nil
}
item.track()
return item
}
// Used when the cache was created with the Track() configuration option.
// Sets the item, and returns a tracked reference to it.
func (c *Cache[T]) TrackingSet(key string, value T, duration time.Duration) TrackedItem[T] {
return c.set(key, value, duration, true)
}
// Set the value in the cache for the specified duration
func (c *Cache[T]) Set(key string, value T, duration time.Duration) {
c.set(key, value, duration, false)
}
// Replace the value if it exists, does not set if it doesn't.
// Returns true if the item existed an was replaced, false otherwise.
// Replace does not reset item's TTL
func (c *Cache[T]) Replace(key string, value T) bool {
item := c.bucket(key).get(key)
if item == nil {
return false
}
c.Set(key, value, item.TTL())
return true
}
// Attempts to get the value from the cache and calles fetch on a miss (missing
// or stale item). If fetch returns an error, no value is cached and the error
// is returned back to the caller.
// Note that Fetch merely calls the public Get and Set functions. If you want
// a different Fetch behavior, such as thundering herd protection or returning
// expired items, implement it in your application.
func (c *Cache[T]) Fetch(key string, duration time.Duration, fetch func() (T, error)) (*Item[T], error) {
item := c.Get(key)
if item != nil && !item.Expired() {
return item, nil
}
value, err := fetch()
if err != nil {
return nil, err
}
return c.set(key, value, duration, false), nil
}
// Remove the item from the cache, return true if the item was present, false otherwise.
func (c *Cache[T]) Delete(key string) bool {
item := c.bucket(key).delete(key)
if item != nil {
c.deletables <- item
return true
}
return false
}
// Clears the cache
// This is a control command.
func (c *Cache[T]) Clear() {
done := make(chan struct{})
c.control <- clear{done: done}
<-done
}
// Stops the background worker. Operations performed on the cache after Stop
// is called are likely to panic
// This is a control command.
func (c *Cache[T]) Stop() {
close(c.promotables)
<-c.control
}
// Gets the number of items removed from the cache due to memory pressure since
// the last time GetDropped was called
// This is a control command.
func (c *Cache[T]) GetDropped() int {
return doGetDropped(c.control)
}
func doGetDropped(controlCh chan<- interface{}) int {
res := make(chan int)
controlCh <- getDropped{res: res}
return <-res
}
// SyncUpdates waits until the cache has finished asynchronous state updates for any operations
// that were done by the current goroutine up to now.
//
// For efficiency, the cache's implementation of LRU behavior is partly managed by a worker
// goroutine that updates its internal data structures asynchronously. This means that the
// cache's state in terms of (for instance) eviction of LRU items is only eventually consistent;
// there is no guarantee that it happens before a Get or Set call has returned. Most of the time
// application code will not care about this, but especially in a test scenario you may want to
// be able to know when the worker has caught up.
//
// This applies only to cache methods that were previously called by the same goroutine that is
// now calling SyncUpdates. If other goroutines are using the cache at the same time, there is
// no way to know whether any of them still have pending state updates when SyncUpdates returns.
// This is a control command.
func (c *Cache[T]) SyncUpdates() {
doSyncUpdates(c.control)
}
func doSyncUpdates(controlCh chan<- interface{}) {
done := make(chan struct{})
controlCh <- syncWorker{done: done}
<-done
}
// Sets a new max size. That can result in a GC being run if the new maxium size
// is smaller than the cached size
// This is a control command.
func (c *Cache[T]) SetMaxSize(size int64) {
done := make(chan struct{})
c.control <- setMaxSize{size: size, done: done}
<-done
}
// Forces GC. There should be no reason to call this function, except from tests
// which require synchronous GC.
// This is a control command.
func (c *Cache[T]) GC() {
done := make(chan struct{})
c.control <- gc{done: done}
<-done
}
// Gets the size of the cache. This is an O(1) call to make, but it is handled
// by the worker goroutine. It's meant to be called periodically for metrics, or
// from tests.
// This is a control command.
func (c *Cache[T]) GetSize() int64 {
res := make(chan int64)
c.control <- getSize{res}
return <-res
}
func (c *Cache[T]) restart() {
c.deletables = make(chan *Item[T], c.deleteBuffer)
c.promotables = make(chan *Item[T], c.promoteBuffer)
c.control = make(chan interface{})
go c.worker()
}
func (c *Cache[T]) deleteItem(bucket *bucket[T], item *Item[T]) {
bucket.delete(item.key) //stop other GETs from getting it
c.deletables <- item
}
func (c *Cache[T]) set(key string, value T, duration time.Duration, track bool) *Item[T] {
item, existing := c.bucket(key).set(key, value, duration, track)
if existing != nil {
c.deletables <- existing
}
c.promotables <- item
return item
}
func (c *Cache[T]) bucket(key string) *bucket[T] {
h := fnv.New32a()
h.Write([]byte(key))
return c.buckets[h.Sum32()&c.bucketMask]
}
func (c *Cache[T]) worker() {
defer close(c.control)
dropped := 0
promoteItem := func(item *Item[T]) {
if c.doPromote(item) && c.size > c.maxSize {
dropped += c.gc()
}
}
for {
select {
case item, ok := <-c.promotables:
if ok == false {
goto drain
}
promoteItem(item)
case item := <-c.deletables:
c.doDelete(item)
case control := <-c.control:
switch msg := control.(type) {
case getDropped:
msg.res <- dropped
dropped = 0
case setMaxSize:
c.maxSize = msg.size
if c.size > c.maxSize {
dropped += c.gc()
}
msg.done <- struct{}{}
case clear:
for _, bucket := range c.buckets {
bucket.clear()
}
c.size = 0
c.list = NewList[*Item[T]]()
msg.done <- struct{}{}
case getSize:
msg.res <- c.size
case gc:
dropped += c.gc()
msg.done <- struct{}{}
case syncWorker:
doAllPendingPromotesAndDeletes(c.promotables, promoteItem,
c.deletables, c.doDelete)
msg.done <- struct{}{}
}
}
}
drain:
for {
select {
case item := <-c.deletables:
c.doDelete(item)
default:
close(c.deletables)
return
}
}
}
// This method is used to implement SyncUpdates. It simply receives and processes as many
// items as it can receive from the promotables and deletables channels immediately without
// blocking. If some other goroutine sends an item on either channel after this method has
// finished receiving, that's OK, because SyncUpdates only guarantees processing of values
// that were already sent by the same goroutine.
func doAllPendingPromotesAndDeletes[T any](
promotables <-chan *Item[T],
promoteFn func(*Item[T]),
deletables <-chan *Item[T],
deleteFn func(*Item[T]),
) {
doAllPromotes:
for {
select {
case item := <-promotables:
if item != nil {
promoteFn(item)
}
default:
break doAllPromotes
}
}
doAllDeletes:
for {
select {
case item := <-deletables:
deleteFn(item)
default:
break doAllDeletes
}
}
}
func (c *Cache[T]) doDelete(item *Item[T]) {
if item.node == nil {
item.promotions = -2
} else {
c.size -= item.size
if c.onDelete != nil {
c.onDelete(item)
}
c.list.Remove(item.node)
item.node = nil
item.promotions = -2
}
}
func (c *Cache[T]) doPromote(item *Item[T]) bool {
//already deleted
if item.promotions == -2 {
return false
}
if item.node != nil { //not a new item
if item.shouldPromote(c.getsPerPromote) {
c.list.MoveToFront(item.node)
item.promotions = 0
}
return false
}
c.size += item.size
item.node = c.list.Insert(item)
return true
}
func (c *Cache[T]) gc() int {
dropped := 0
node := c.list.Tail
itemsToPrune := int64(c.itemsToPrune)
if min := c.size - c.maxSize; min > itemsToPrune {
itemsToPrune = min
}
for i := int64(0); i < itemsToPrune; i++ {
if node == nil {
return dropped
}
prev := node.Prev
item := node.Value
if c.tracking == false || atomic.LoadInt32(&item.refCount) == 0 {
c.bucket(item.key).delete(item.key)
c.size -= item.size
c.list.Remove(node)
if c.onDelete != nil {
c.onDelete(item)
}
dropped += 1
item.node = nil
item.promotions = -2
}
node = prev
}
return dropped
}