
Also, item.promotions doesn't need to be loaded/stored using atomic. Once upon a time it did. Cache was updated long ago to not use atomic operations on it, but LayeredCache wasn't. They are both consistent now (they don't use atomic operations). Fixes: https://github.com/karlseguin/ccache/issues/76
450 lines
11 KiB
Go
450 lines
11 KiB
Go
// An LRU cached aimed at high concurrency
|
|
package ccache
|
|
|
|
import (
|
|
"hash/fnv"
|
|
"sync/atomic"
|
|
"time"
|
|
)
|
|
|
|
// The cache has a generic 'control' channel that is used to send
|
|
// messages to the worker. These are the messages that can be sent to it
|
|
type getDropped struct {
|
|
res chan int
|
|
}
|
|
|
|
type getSize struct {
|
|
res chan int64
|
|
}
|
|
|
|
type setMaxSize struct {
|
|
size int64
|
|
done chan struct{}
|
|
}
|
|
|
|
type clear struct {
|
|
done chan struct{}
|
|
}
|
|
|
|
type syncWorker struct {
|
|
done chan struct{}
|
|
}
|
|
|
|
type gc struct {
|
|
done chan struct{}
|
|
}
|
|
|
|
type Cache[T any] struct {
|
|
*Configuration[T]
|
|
list *List[*Item[T]]
|
|
size int64
|
|
buckets []*bucket[T]
|
|
bucketMask uint32
|
|
deletables chan *Item[T]
|
|
promotables chan *Item[T]
|
|
control chan interface{}
|
|
}
|
|
|
|
// Create a new cache with the specified configuration
|
|
// See ccache.Configure() for creating a configuration
|
|
func New[T any](config *Configuration[T]) *Cache[T] {
|
|
c := &Cache[T]{
|
|
list: NewList[*Item[T]](),
|
|
Configuration: config,
|
|
bucketMask: uint32(config.buckets) - 1,
|
|
buckets: make([]*bucket[T], config.buckets),
|
|
control: make(chan interface{}),
|
|
}
|
|
for i := 0; i < config.buckets; i++ {
|
|
c.buckets[i] = &bucket[T]{
|
|
lookup: make(map[string]*Item[T]),
|
|
}
|
|
}
|
|
c.restart()
|
|
return c
|
|
}
|
|
|
|
func (c *Cache[T]) ItemCount() int {
|
|
count := 0
|
|
for _, b := range c.buckets {
|
|
count += b.itemCount()
|
|
}
|
|
return count
|
|
}
|
|
|
|
func (c *Cache[T]) DeletePrefix(prefix string) int {
|
|
count := 0
|
|
for _, b := range c.buckets {
|
|
count += b.deletePrefix(prefix, c.deletables)
|
|
}
|
|
return count
|
|
}
|
|
|
|
// Deletes all items that the matches func evaluates to true.
|
|
func (c *Cache[T]) DeleteFunc(matches func(key string, item *Item[T]) bool) int {
|
|
count := 0
|
|
for _, b := range c.buckets {
|
|
count += b.deleteFunc(matches, c.deletables)
|
|
}
|
|
return count
|
|
}
|
|
|
|
func (c *Cache[T]) ForEachFunc(matches func(key string, item *Item[T]) bool) {
|
|
for _, b := range c.buckets {
|
|
if !b.forEachFunc(matches) {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
// Get an item from the cache. Returns nil if the item wasn't found.
|
|
// This can return an expired item. Use item.Expired() to see if the item
|
|
// is expired and item.TTL() to see how long until the item expires (which
|
|
// will be negative for an already expired item).
|
|
func (c *Cache[T]) Get(key string) *Item[T] {
|
|
item := c.bucket(key).get(key)
|
|
if item == nil {
|
|
return nil
|
|
}
|
|
if !item.Expired() {
|
|
select {
|
|
case c.promotables <- item:
|
|
default:
|
|
}
|
|
}
|
|
return item
|
|
}
|
|
|
|
// Same as Get but does not promote the value. This essentially circumvents the
|
|
// "least recently used" aspect of this cache. To some degree, it's akin to a
|
|
// "peak"
|
|
func (c *Cache[T]) GetWithoutPromote(key string) *Item[T] {
|
|
return c.bucket(key).get(key)
|
|
}
|
|
|
|
// Used when the cache was created with the Track() configuration option.
|
|
// Avoid otherwise
|
|
func (c *Cache[T]) TrackingGet(key string) TrackedItem[T] {
|
|
item := c.Get(key)
|
|
if item == nil {
|
|
return nil
|
|
}
|
|
item.track()
|
|
return item
|
|
}
|
|
|
|
// Used when the cache was created with the Track() configuration option.
|
|
// Sets the item, and returns a tracked reference to it.
|
|
func (c *Cache[T]) TrackingSet(key string, value T, duration time.Duration) TrackedItem[T] {
|
|
return c.set(key, value, duration, true)
|
|
}
|
|
|
|
// Set the value in the cache for the specified duration
|
|
func (c *Cache[T]) Set(key string, value T, duration time.Duration) {
|
|
c.set(key, value, duration, false)
|
|
}
|
|
|
|
// Replace the value if it exists, does not set if it doesn't.
|
|
// Returns true if the item existed an was replaced, false otherwise.
|
|
// Replace does not reset item's TTL
|
|
func (c *Cache[T]) Replace(key string, value T) bool {
|
|
item := c.bucket(key).get(key)
|
|
if item == nil {
|
|
return false
|
|
}
|
|
c.Set(key, value, item.TTL())
|
|
return true
|
|
}
|
|
|
|
// Attempts to get the value from the cache and calles fetch on a miss (missing
|
|
// or stale item). If fetch returns an error, no value is cached and the error
|
|
// is returned back to the caller.
|
|
// Note that Fetch merely calls the public Get and Set functions. If you want
|
|
// a different Fetch behavior, such as thundering herd protection or returning
|
|
// expired items, implement it in your application.
|
|
func (c *Cache[T]) Fetch(key string, duration time.Duration, fetch func() (T, error)) (*Item[T], error) {
|
|
item := c.Get(key)
|
|
if item != nil && !item.Expired() {
|
|
return item, nil
|
|
}
|
|
value, err := fetch()
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return c.set(key, value, duration, false), nil
|
|
}
|
|
|
|
// Remove the item from the cache, return true if the item was present, false otherwise.
|
|
func (c *Cache[T]) Delete(key string) bool {
|
|
item := c.bucket(key).delete(key)
|
|
if item != nil {
|
|
c.deletables <- item
|
|
return true
|
|
}
|
|
return false
|
|
}
|
|
|
|
// Clears the cache
|
|
// This is a control command.
|
|
func (c *Cache[T]) Clear() {
|
|
done := make(chan struct{})
|
|
c.control <- clear{done: done}
|
|
<-done
|
|
}
|
|
|
|
// Stops the background worker. Operations performed on the cache after Stop
|
|
// is called are likely to panic
|
|
// This is a control command.
|
|
func (c *Cache[T]) Stop() {
|
|
close(c.promotables)
|
|
<-c.control
|
|
}
|
|
|
|
// Gets the number of items removed from the cache due to memory pressure since
|
|
// the last time GetDropped was called
|
|
// This is a control command.
|
|
func (c *Cache[T]) GetDropped() int {
|
|
return doGetDropped(c.control)
|
|
}
|
|
|
|
func doGetDropped(controlCh chan<- interface{}) int {
|
|
res := make(chan int)
|
|
controlCh <- getDropped{res: res}
|
|
return <-res
|
|
}
|
|
|
|
// SyncUpdates waits until the cache has finished asynchronous state updates for any operations
|
|
// that were done by the current goroutine up to now.
|
|
//
|
|
// For efficiency, the cache's implementation of LRU behavior is partly managed by a worker
|
|
// goroutine that updates its internal data structures asynchronously. This means that the
|
|
// cache's state in terms of (for instance) eviction of LRU items is only eventually consistent;
|
|
// there is no guarantee that it happens before a Get or Set call has returned. Most of the time
|
|
// application code will not care about this, but especially in a test scenario you may want to
|
|
// be able to know when the worker has caught up.
|
|
//
|
|
// This applies only to cache methods that were previously called by the same goroutine that is
|
|
// now calling SyncUpdates. If other goroutines are using the cache at the same time, there is
|
|
// no way to know whether any of them still have pending state updates when SyncUpdates returns.
|
|
// This is a control command.
|
|
func (c *Cache[T]) SyncUpdates() {
|
|
doSyncUpdates(c.control)
|
|
}
|
|
|
|
func doSyncUpdates(controlCh chan<- interface{}) {
|
|
done := make(chan struct{})
|
|
controlCh <- syncWorker{done: done}
|
|
<-done
|
|
}
|
|
|
|
// Sets a new max size. That can result in a GC being run if the new maxium size
|
|
// is smaller than the cached size
|
|
// This is a control command.
|
|
func (c *Cache[T]) SetMaxSize(size int64) {
|
|
done := make(chan struct{})
|
|
c.control <- setMaxSize{size: size, done: done}
|
|
<-done
|
|
}
|
|
|
|
// Forces GC. There should be no reason to call this function, except from tests
|
|
// which require synchronous GC.
|
|
// This is a control command.
|
|
func (c *Cache[T]) GC() {
|
|
done := make(chan struct{})
|
|
c.control <- gc{done: done}
|
|
<-done
|
|
}
|
|
|
|
// Gets the size of the cache. This is an O(1) call to make, but it is handled
|
|
// by the worker goroutine. It's meant to be called periodically for metrics, or
|
|
// from tests.
|
|
// This is a control command.
|
|
func (c *Cache[T]) GetSize() int64 {
|
|
res := make(chan int64)
|
|
c.control <- getSize{res}
|
|
return <-res
|
|
}
|
|
|
|
func (c *Cache[T]) restart() {
|
|
c.deletables = make(chan *Item[T], c.deleteBuffer)
|
|
c.promotables = make(chan *Item[T], c.promoteBuffer)
|
|
c.control = make(chan interface{})
|
|
go c.worker()
|
|
}
|
|
|
|
func (c *Cache[T]) deleteItem(bucket *bucket[T], item *Item[T]) {
|
|
bucket.delete(item.key) //stop other GETs from getting it
|
|
c.deletables <- item
|
|
}
|
|
|
|
func (c *Cache[T]) set(key string, value T, duration time.Duration, track bool) *Item[T] {
|
|
item, existing := c.bucket(key).set(key, value, duration, track)
|
|
if existing != nil {
|
|
c.deletables <- existing
|
|
}
|
|
c.promotables <- item
|
|
return item
|
|
}
|
|
|
|
func (c *Cache[T]) bucket(key string) *bucket[T] {
|
|
h := fnv.New32a()
|
|
h.Write([]byte(key))
|
|
return c.buckets[h.Sum32()&c.bucketMask]
|
|
}
|
|
|
|
func (c *Cache[T]) worker() {
|
|
defer close(c.control)
|
|
dropped := 0
|
|
promoteItem := func(item *Item[T]) {
|
|
if c.doPromote(item) && c.size > c.maxSize {
|
|
dropped += c.gc()
|
|
}
|
|
}
|
|
for {
|
|
select {
|
|
case item, ok := <-c.promotables:
|
|
if ok == false {
|
|
goto drain
|
|
}
|
|
promoteItem(item)
|
|
case item := <-c.deletables:
|
|
c.doDelete(item)
|
|
case control := <-c.control:
|
|
switch msg := control.(type) {
|
|
case getDropped:
|
|
msg.res <- dropped
|
|
dropped = 0
|
|
case setMaxSize:
|
|
c.maxSize = msg.size
|
|
if c.size > c.maxSize {
|
|
dropped += c.gc()
|
|
}
|
|
msg.done <- struct{}{}
|
|
case clear:
|
|
for _, bucket := range c.buckets {
|
|
bucket.clear()
|
|
}
|
|
c.size = 0
|
|
c.list = NewList[*Item[T]]()
|
|
msg.done <- struct{}{}
|
|
case getSize:
|
|
msg.res <- c.size
|
|
case gc:
|
|
dropped += c.gc()
|
|
msg.done <- struct{}{}
|
|
case syncWorker:
|
|
doAllPendingPromotesAndDeletes(c.promotables, promoteItem,
|
|
c.deletables, c.doDelete)
|
|
msg.done <- struct{}{}
|
|
}
|
|
}
|
|
}
|
|
|
|
drain:
|
|
for {
|
|
select {
|
|
case item := <-c.deletables:
|
|
c.doDelete(item)
|
|
default:
|
|
close(c.deletables)
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
// This method is used to implement SyncUpdates. It simply receives and processes as many
|
|
// items as it can receive from the promotables and deletables channels immediately without
|
|
// blocking. If some other goroutine sends an item on either channel after this method has
|
|
// finished receiving, that's OK, because SyncUpdates only guarantees processing of values
|
|
// that were already sent by the same goroutine.
|
|
func doAllPendingPromotesAndDeletes[T any](
|
|
promotables <-chan *Item[T],
|
|
promoteFn func(*Item[T]),
|
|
deletables <-chan *Item[T],
|
|
deleteFn func(*Item[T]),
|
|
) {
|
|
doAllPromotes:
|
|
for {
|
|
select {
|
|
case item := <-promotables:
|
|
if item != nil {
|
|
promoteFn(item)
|
|
}
|
|
default:
|
|
break doAllPromotes
|
|
}
|
|
}
|
|
doAllDeletes:
|
|
for {
|
|
select {
|
|
case item := <-deletables:
|
|
deleteFn(item)
|
|
default:
|
|
break doAllDeletes
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *Cache[T]) doDelete(item *Item[T]) {
|
|
if item.node == nil {
|
|
item.promotions = -2
|
|
} else {
|
|
c.size -= item.size
|
|
if c.onDelete != nil {
|
|
c.onDelete(item)
|
|
}
|
|
c.list.Remove(item.node)
|
|
item.node = nil
|
|
item.promotions = -2
|
|
}
|
|
}
|
|
|
|
func (c *Cache[T]) doPromote(item *Item[T]) bool {
|
|
//already deleted
|
|
if item.promotions == -2 {
|
|
return false
|
|
}
|
|
if item.node != nil { //not a new item
|
|
if item.shouldPromote(c.getsPerPromote) {
|
|
c.list.MoveToFront(item.node)
|
|
item.promotions = 0
|
|
}
|
|
return false
|
|
}
|
|
|
|
c.size += item.size
|
|
item.node = c.list.Insert(item)
|
|
return true
|
|
}
|
|
|
|
func (c *Cache[T]) gc() int {
|
|
dropped := 0
|
|
node := c.list.Tail
|
|
|
|
itemsToPrune := int64(c.itemsToPrune)
|
|
if min := c.size - c.maxSize; min > itemsToPrune {
|
|
itemsToPrune = min
|
|
}
|
|
|
|
for i := int64(0); i < itemsToPrune; i++ {
|
|
if node == nil {
|
|
return dropped
|
|
}
|
|
prev := node.Prev
|
|
item := node.Value
|
|
if c.tracking == false || atomic.LoadInt32(&item.refCount) == 0 {
|
|
c.bucket(item.key).delete(item.key)
|
|
c.size -= item.size
|
|
c.list.Remove(node)
|
|
if c.onDelete != nil {
|
|
c.onDelete(item)
|
|
}
|
|
dropped += 1
|
|
item.node = nil
|
|
item.promotions = -2
|
|
}
|
|
node = prev
|
|
}
|
|
return dropped
|
|
}
|