Files
ccache/cache.go
Karl Seguin 55899506d5 Add setable buffer to handle sets in order to allow a hard max size limit
Previously, items were pushed onto the frequency linked list via the promotable
buffer. As a general rule, you want your protobable buffer to be quite large,
since you don't want to block Gets. But because Set uses the same buffer, the
cache could grow to MaxSize + cap(promotables).

Sets are now "promoted" via a new "setables" buffer. These are handled exactly
the same way as before, but having it be a separate buffer means they can have
different capacity. Thus, using the new `SetableBuffer(int)` configuration
method can help set a hard limit on the maximum size.
2023-03-08 12:44:20 +08:00

368 lines
8.5 KiB
Go

// An LRU cached aimed at high concurrency
package ccache
import (
"hash/fnv"
"sync/atomic"
"time"
)
// The cache has a generic 'control' channel that is used to send
// messages to the worker. These are the messages that can be sent to it
type getDropped struct {
res chan int
}
type getSize struct {
res chan int64
}
type setMaxSize struct {
size int64
done chan struct{}
}
type clear struct {
done chan struct{}
}
type syncWorker struct {
done chan struct{}
}
type gc struct {
done chan struct{}
}
type Cache[T any] struct {
*Configuration[T]
control
list *List[*Item[T]]
size int64
buckets []*bucket[T]
bucketMask uint32
deletables chan *Item[T]
promotables chan *Item[T]
setables chan *Item[T]
}
// Create a new cache with the specified configuration
// See ccache.Configure() for creating a configuration
func New[T any](config *Configuration[T]) *Cache[T] {
c := &Cache[T]{
list: NewList[*Item[T]](),
Configuration: config,
control: newControl(),
bucketMask: uint32(config.buckets) - 1,
buckets: make([]*bucket[T], config.buckets),
deletables: make(chan *Item[T], config.deleteBuffer),
promotables: make(chan *Item[T], config.promoteBuffer),
setables: make(chan *Item[T], config.setableBuffer),
}
for i := 0; i < config.buckets; i++ {
c.buckets[i] = &bucket[T]{
lookup: make(map[string]*Item[T]),
}
}
go c.worker()
return c
}
func (c *Cache[T]) ItemCount() int {
count := 0
for _, b := range c.buckets {
count += b.itemCount()
}
return count
}
func (c *Cache[T]) DeletePrefix(prefix string) int {
count := 0
for _, b := range c.buckets {
count += b.deletePrefix(prefix, c.deletables)
}
return count
}
// Deletes all items that the matches func evaluates to true.
func (c *Cache[T]) DeleteFunc(matches func(key string, item *Item[T]) bool) int {
count := 0
for _, b := range c.buckets {
count += b.deleteFunc(matches, c.deletables)
}
return count
}
func (c *Cache[T]) ForEachFunc(matches func(key string, item *Item[T]) bool) {
for _, b := range c.buckets {
if !b.forEachFunc(matches) {
break
}
}
}
// Get an item from the cache. Returns nil if the item wasn't found.
// This can return an expired item. Use item.Expired() to see if the item
// is expired and item.TTL() to see how long until the item expires (which
// will be negative for an already expired item).
func (c *Cache[T]) Get(key string) *Item[T] {
item := c.bucket(key).get(key)
if item == nil {
return nil
}
if !item.Expired() {
select {
case c.promotables <- item:
default:
}
}
return item
}
// Same as Get but does not promote the value. This essentially circumvents the
// "least recently used" aspect of this cache. To some degree, it's akin to a
// "peak"
func (c *Cache[T]) GetWithoutPromote(key string) *Item[T] {
return c.bucket(key).get(key)
}
// Used when the cache was created with the Track() configuration option.
// Avoid otherwise
func (c *Cache[T]) TrackingGet(key string) TrackedItem[T] {
item := c.Get(key)
if item == nil {
return nil
}
item.track()
return item
}
// Used when the cache was created with the Track() configuration option.
// Sets the item, and returns a tracked reference to it.
func (c *Cache[T]) TrackingSet(key string, value T, duration time.Duration) TrackedItem[T] {
return c.set(key, value, duration, true)
}
// Set the value in the cache for the specified duration
func (c *Cache[T]) Set(key string, value T, duration time.Duration) {
c.set(key, value, duration, false)
}
// Replace the value if it exists, does not set if it doesn't.
// Returns true if the item existed an was replaced, false otherwise.
// Replace does not reset item's TTL
func (c *Cache[T]) Replace(key string, value T) bool {
item := c.bucket(key).get(key)
if item == nil {
return false
}
c.Set(key, value, item.TTL())
return true
}
// Attempts to get the value from the cache and calles fetch on a miss (missing
// or stale item). If fetch returns an error, no value is cached and the error
// is returned back to the caller.
// Note that Fetch merely calls the public Get and Set functions. If you want
// a different Fetch behavior, such as thundering herd protection or returning
// expired items, implement it in your application.
func (c *Cache[T]) Fetch(key string, duration time.Duration, fetch func() (T, error)) (*Item[T], error) {
item := c.Get(key)
if item != nil && !item.Expired() {
return item, nil
}
value, err := fetch()
if err != nil {
return nil, err
}
return c.set(key, value, duration, false), nil
}
// Remove the item from the cache, return true if the item was present, false otherwise.
func (c *Cache[T]) Delete(key string) bool {
item := c.bucket(key).delete(key)
if item != nil {
c.deletables <- item
return true
}
return false
}
func (c *Cache[T]) deleteItem(bucket *bucket[T], item *Item[T]) {
bucket.delete(item.key) //stop other GETs from getting it
c.deletables <- item
}
func (c *Cache[T]) set(key string, value T, duration time.Duration, track bool) *Item[T] {
item, existing := c.bucket(key).set(key, value, duration, track)
if existing != nil {
c.deletables <- existing
}
c.setables <- item
return item
}
func (c *Cache[T]) bucket(key string) *bucket[T] {
h := fnv.New32a()
h.Write([]byte(key))
return c.buckets[h.Sum32()&c.bucketMask]
}
func (c *Cache[T]) worker() {
dropped := 0
cc := c.control
promoteItem := func(item *Item[T]) {
if c.doPromote(item) && c.size > c.maxSize {
dropped += c.gc()
}
}
for {
select {
case item := <-c.promotables:
promoteItem(item)
case item := <-c.setables:
promoteItem(item)
case item := <-c.deletables:
c.doDelete(item)
case control := <-cc:
switch msg := control.(type) {
case controlStop:
goto drain
case controlGetDropped:
msg.res <- dropped
dropped = 0
case controlSetMaxSize:
c.maxSize = msg.size
if c.size > c.maxSize {
dropped += c.gc()
}
msg.done <- struct{}{}
case controlClear:
for _, bucket := range c.buckets {
bucket.clear()
}
c.size = 0
c.list = NewList[*Item[T]]()
msg.done <- struct{}{}
case controlGetSize:
msg.res <- c.size
case controlGC:
dropped += c.gc()
msg.done <- struct{}{}
case controlSyncUpdates:
doAllPendingPromotesAndDeletes(c.promotables, c.setables, promoteItem, c.deletables, c.doDelete)
msg.done <- struct{}{}
}
}
}
drain:
for {
select {
case item := <-c.deletables:
c.doDelete(item)
default:
return
}
}
}
// This method is used to implement SyncUpdates. It simply receives and processes as many
// items as it can receive from the promotables and deletables channels immediately without
// blocking. If some other goroutine sends an item on either channel after this method has
// finished receiving, that's OK, because SyncUpdates only guarantees processing of values
// that were already sent by the same goroutine.
func doAllPendingPromotesAndDeletes[T any](
promotables <-chan *Item[T],
setables <-chan *Item[T],
promoteFn func(*Item[T]),
deletables <-chan *Item[T],
deleteFn func(*Item[T]),
) {
doAllPromotes:
for {
select {
case item := <-promotables:
promoteFn(item)
case item := <-setables:
promoteFn(item)
default:
break doAllPromotes
}
}
doAllDeletes:
for {
select {
case item := <-deletables:
deleteFn(item)
default:
break doAllDeletes
}
}
}
func (c *Cache[T]) doDelete(item *Item[T]) {
if item.node == nil {
item.promotions = -2
} else {
c.size -= item.size
if c.onDelete != nil {
c.onDelete(item)
}
c.list.Remove(item.node)
item.node = nil
item.promotions = -2
}
}
func (c *Cache[T]) doPromote(item *Item[T]) bool {
//already deleted
if item.promotions == -2 {
return false
}
if item.node != nil { //not a new item
if item.shouldPromote(c.getsPerPromote) {
c.list.MoveToFront(item.node)
item.promotions = 0
}
return false
}
c.size += item.size
item.node = c.list.Insert(item)
return true
}
func (c *Cache[T]) gc() int {
dropped := 0
node := c.list.Tail
itemsToPrune := int64(c.itemsToPrune)
if min := c.size - c.maxSize; min > itemsToPrune {
itemsToPrune = min
}
for i := int64(0); i < itemsToPrune; i++ {
if node == nil {
return dropped
}
prev := node.Prev
item := node.Value
if c.tracking == false || atomic.LoadInt32(&item.refCount) == 0 {
c.bucket(item.key).delete(item.key)
c.size -= item.size
c.list.Remove(node)
if c.onDelete != nil {
c.onDelete(item)
}
dropped += 1
item.node = nil
item.promotions = -2
}
node = prev
}
return dropped
}