Files
ccache/layeredcache.go
Karl Seguin 55899506d5 Add setable buffer to handle sets in order to allow a hard max size limit
Previously, items were pushed onto the frequency linked list via the promotable
buffer. As a general rule, you want your protobable buffer to be quite large,
since you don't want to block Gets. But because Set uses the same buffer, the
cache could grow to MaxSize + cap(promotables).

Sets are now "promoted" via a new "setables" buffer. These are handled exactly
the same way as before, but having it be a separate buffer means they can have
different capacity. Thus, using the new `SetableBuffer(int)` configuration
method can help set a hard limit on the maximum size.
2023-03-08 12:44:20 +08:00

323 lines
8.8 KiB
Go

// An LRU cached aimed at high concurrency
package ccache
import (
"hash/fnv"
"sync/atomic"
"time"
)
type LayeredCache[T any] struct {
*Configuration[T]
control
list *List[*Item[T]]
buckets []*layeredBucket[T]
bucketMask uint32
size int64
deletables chan *Item[T]
promotables chan *Item[T]
setables chan *Item[T]
}
// Create a new layered cache with the specified configuration.
// A layered cache used a two keys to identify a value: a primary key
// and a secondary key. Get, Set and Delete require both a primary and
// secondary key. However, DeleteAll requires only a primary key, deleting
// all values that share the same primary key.
// Layered Cache is useful as an HTTP cache, where an HTTP purge might
// delete multiple variants of the same resource:
// primary key = "user/44"
// secondary key 1 = ".json"
// secondary key 2 = ".xml"
// See ccache.Configure() for creating a configuration
func Layered[T any](config *Configuration[T]) *LayeredCache[T] {
c := &LayeredCache[T]{
list: NewList[*Item[T]](),
Configuration: config,
control: newControl(),
bucketMask: uint32(config.buckets) - 1,
buckets: make([]*layeredBucket[T], config.buckets),
deletables: make(chan *Item[T], config.deleteBuffer),
promotables: make(chan *Item[T], config.promoteBuffer),
setables: make(chan *Item[T], config.setableBuffer),
}
for i := 0; i < int(config.buckets); i++ {
c.buckets[i] = &layeredBucket[T]{
buckets: make(map[string]*bucket[T]),
}
}
go c.worker()
return c
}
func (c *LayeredCache[T]) ItemCount() int {
count := 0
for _, b := range c.buckets {
count += b.itemCount()
}
return count
}
// Get an item from the cache. Returns nil if the item wasn't found.
// This can return an expired item. Use item.Expired() to see if the item
// is expired and item.TTL() to see how long until the item expires (which
// will be negative for an already expired item).
func (c *LayeredCache[T]) Get(primary, secondary string) *Item[T] {
item := c.bucket(primary).get(primary, secondary)
if item == nil {
return nil
}
if item.expires > time.Now().UnixNano() {
select {
case c.promotables <- item:
default:
}
}
return item
}
// Same as Get but does not promote the value. This essentially circumvents the
// "least recently used" aspect of this cache. To some degree, it's akin to a
// "peak"
func (c *LayeredCache[T]) GetWithoutPromote(primary, secondary string) *Item[T] {
return c.bucket(primary).get(primary, secondary)
}
func (c *LayeredCache[T]) ForEachFunc(primary string, matches func(key string, item *Item[T]) bool) {
c.bucket(primary).forEachFunc(primary, matches)
}
// Get the secondary cache for a given primary key. This operation will
// never return nil. In the case where the primary key does not exist, a
// new, underlying, empty bucket will be created and returned.
func (c *LayeredCache[T]) GetOrCreateSecondaryCache(primary string) *SecondaryCache[T] {
primaryBkt := c.bucket(primary)
bkt := primaryBkt.getSecondaryBucket(primary)
primaryBkt.Lock()
if bkt == nil {
bkt = &bucket[T]{lookup: make(map[string]*Item[T])}
primaryBkt.buckets[primary] = bkt
}
primaryBkt.Unlock()
return &SecondaryCache[T]{
bucket: bkt,
pCache: c,
}
}
// Used when the cache was created with the Track() configuration option.
// Avoid otherwise
func (c *LayeredCache[T]) TrackingGet(primary, secondary string) TrackedItem[T] {
item := c.Get(primary, secondary)
if item == nil {
return nil
}
item.track()
return item
}
// Set the value in the cache for the specified duration
func (c *LayeredCache[T]) TrackingSet(primary, secondary string, value T, duration time.Duration) TrackedItem[T] {
return c.set(primary, secondary, value, duration, true)
}
// Set the value in the cache for the specified duration
func (c *LayeredCache[T]) Set(primary, secondary string, value T, duration time.Duration) {
c.set(primary, secondary, value, duration, false)
}
// Replace the value if it exists, does not set if it doesn't.
// Returns true if the item existed an was replaced, false otherwise.
// Replace does not reset item's TTL nor does it alter its position in the LRU
func (c *LayeredCache[T]) Replace(primary, secondary string, value T) bool {
item := c.bucket(primary).get(primary, secondary)
if item == nil {
return false
}
c.Set(primary, secondary, value, item.TTL())
return true
}
// Attempts to get the value from the cache and calles fetch on a miss.
// If fetch returns an error, no value is cached and the error is returned back
// to the caller.
// Note that Fetch merely calls the public Get and Set functions. If you want
// a different Fetch behavior, such as thundering herd protection or returning
// expired items, implement it in your application.
func (c *LayeredCache[T]) Fetch(primary, secondary string, duration time.Duration, fetch func() (T, error)) (*Item[T], error) {
item := c.Get(primary, secondary)
if item != nil {
return item, nil
}
value, err := fetch()
if err != nil {
return nil, err
}
return c.set(primary, secondary, value, duration, false), nil
}
// Remove the item from the cache, return true if the item was present, false otherwise.
func (c *LayeredCache[T]) Delete(primary, secondary string) bool {
item := c.bucket(primary).delete(primary, secondary)
if item != nil {
c.deletables <- item
return true
}
return false
}
// Deletes all items that share the same primary key
func (c *LayeredCache[T]) DeleteAll(primary string) bool {
return c.bucket(primary).deleteAll(primary, c.deletables)
}
// Deletes all items that share the same primary key and prefix.
func (c *LayeredCache[T]) DeletePrefix(primary, prefix string) int {
return c.bucket(primary).deletePrefix(primary, prefix, c.deletables)
}
// Deletes all items that share the same primary key and where the matches func evaluates to true.
func (c *LayeredCache[T]) DeleteFunc(primary string, matches func(key string, item *Item[T]) bool) int {
return c.bucket(primary).deleteFunc(primary, matches, c.deletables)
}
func (c *LayeredCache[T]) set(primary, secondary string, value T, duration time.Duration, track bool) *Item[T] {
item, existing := c.bucket(primary).set(primary, secondary, value, duration, track)
if existing != nil {
c.deletables <- existing
}
c.setables <- item
return item
}
func (c *LayeredCache[T]) bucket(key string) *layeredBucket[T] {
h := fnv.New32a()
h.Write([]byte(key))
return c.buckets[h.Sum32()&c.bucketMask]
}
func (c *LayeredCache[T]) worker() {
dropped := 0
cc := c.control
promoteItem := func(item *Item[T]) {
if c.doPromote(item) && c.size > c.maxSize {
dropped += c.gc()
}
}
for {
select {
case item := <-c.promotables:
promoteItem(item)
case item := <-c.setables:
promoteItem(item)
case item := <-c.deletables:
c.doDelete(item)
case control := <-cc:
switch msg := control.(type) {
case controlStop:
goto drain
case controlGetDropped:
msg.res <- dropped
dropped = 0
case controlSetMaxSize:
c.maxSize = msg.size
if c.size > c.maxSize {
dropped += c.gc()
}
msg.done <- struct{}{}
case controlClear:
for _, bucket := range c.buckets {
bucket.clear()
}
c.size = 0
c.list = NewList[*Item[T]]()
msg.done <- struct{}{}
case controlGetSize:
msg.res <- c.size
case controlGC:
dropped += c.gc()
msg.done <- struct{}{}
case controlSyncUpdates:
doAllPendingPromotesAndDeletes(c.promotables, c.promotables, promoteItem, c.deletables, c.doDelete)
msg.done <- struct{}{}
}
}
}
drain:
for {
select {
case item := <-c.deletables:
c.doDelete(item)
default:
return
}
}
}
func (c *LayeredCache[T]) doDelete(item *Item[T]) {
if item.node == nil {
item.promotions = -2
} else {
c.size -= item.size
if c.onDelete != nil {
c.onDelete(item)
}
c.list.Remove(item.node)
item.node = nil
item.promotions = -2
}
}
func (c *LayeredCache[T]) doPromote(item *Item[T]) bool {
// deleted before it ever got promoted
if item.promotions == -2 {
return false
}
if item.node != nil { //not a new item
if item.shouldPromote(c.getsPerPromote) {
c.list.MoveToFront(item.node)
item.promotions = 0
}
return false
}
c.size += item.size
item.node = c.list.Insert(item)
return true
}
func (c *LayeredCache[T]) gc() int {
node := c.list.Tail
dropped := 0
itemsToPrune := int64(c.itemsToPrune)
if min := c.size - c.maxSize; min > itemsToPrune {
itemsToPrune = min
}
for i := int64(0); i < itemsToPrune; i++ {
if node == nil {
return dropped
}
prev := node.Prev
item := node.Value
if c.tracking == false || atomic.LoadInt32(&item.refCount) == 0 {
c.bucket(item.group).delete(item.group, item.key)
c.size -= item.size
c.list.Remove(node)
if c.onDelete != nil {
c.onDelete(item)
}
item.node = nil
item.promotions = -2
dropped += 1
}
node = prev
}
return dropped
}