Installed memberlist package to for cluster member discovery.

This commit is contained in:
Kelvin Clement Mwinuka
2023-07-21 05:48:20 +08:00
parent feaacab88a
commit 5507f32c73
488 changed files with 83454 additions and 2479 deletions

13
go.mod
View File

@@ -3,6 +3,7 @@ module github.com/kelvinmwinuka/memstore
go 1.20
require (
github.com/hashicorp/go-hclog v1.5.0
github.com/hashicorp/raft v1.5.0
github.com/tidwall/resp v0.1.1
gopkg.in/yaml.v3 v3.0.1
@@ -11,11 +12,19 @@ require (
require (
github.com/armon/go-metrics v0.4.1 // indirect
github.com/fatih/color v1.13.0 // indirect
github.com/hashicorp/go-hclog v1.5.0 // indirect
github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c // indirect
github.com/hashicorp/errwrap v1.0.0 // indirect
github.com/hashicorp/go-immutable-radix v1.0.0 // indirect
github.com/hashicorp/go-msgpack v0.5.5 // indirect
github.com/hashicorp/go-multierror v1.0.0 // indirect
github.com/hashicorp/go-sockaddr v1.0.0 // indirect
github.com/hashicorp/golang-lru v0.5.0 // indirect
github.com/hashicorp/memberlist v0.5.0 // indirect
github.com/mattn/go-colorable v0.1.12 // indirect
github.com/mattn/go-isatty v0.0.14 // indirect
golang.org/x/sys v0.0.0-20220503163025-988cb79eb6c6 // indirect
github.com/miekg/dns v1.1.26 // indirect
github.com/sean-/seed v0.0.0-20170313163322-e2103e2c3529 // indirect
golang.org/x/crypto v0.0.0-20190923035154-9ee001bba392 // indirect
golang.org/x/net v0.0.0-20190923162816-aa69164e4478 // indirect
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10 // indirect
)

33
go.sum
View File

@@ -3,6 +3,7 @@ github.com/alecthomas/template v0.0.0-20160405071501-a0175ee3bccc/go.mod h1:LOuy
github.com/alecthomas/template v0.0.0-20190718012654-fb15b899a751/go.mod h1:LOuyumcjzFXgccqObfd/Ljyb9UuFJ6TxHnclSeseNhc=
github.com/alecthomas/units v0.0.0-20151022065526-2efee857e7cf/go.mod h1:ybxpYRFXyAe+OPACYpWeL0wqObRcbAqCMya13uyzqw0=
github.com/alecthomas/units v0.0.0-20190717042225-c3de453c63f4/go.mod h1:ybxpYRFXyAe+OPACYpWeL0wqObRcbAqCMya13uyzqw0=
github.com/armon/go-metrics v0.0.0-20180917152333-f0300d1749da/go.mod h1:Q73ZrmVTwzkszR9V5SSuryQ31EELlFMUz1kKyl939pY=
github.com/armon/go-metrics v0.4.1 h1:hR91U9KYmb6bLBYLQjyM+3j+rcd/UhE+G78SFnF8gJA=
github.com/armon/go-metrics v0.4.1/go.mod h1:E6amYzXo6aW1tqzoZGT755KkbgrJsSdpwZ+3JqfkOG4=
github.com/beorn7/perks v0.0.0-20180321164747-3a771d992973/go.mod h1:Dwedo/Wpr24TaqPxmxbtue+5NUziq4I4S80YR8gNf3Q=
@@ -25,21 +26,32 @@ github.com/gogo/protobuf v1.1.1/go.mod h1:r8qH/GZQm5c6nD/R0oafs1akxWv10x8SbQlK7a
github.com/golang/protobuf v1.2.0/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/golang/protobuf v1.3.1/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/golang/protobuf v1.3.2/go.mod h1:6lQm79b+lXiMfvg/cZm0SGofjICqVBUtrP5yJMmIC1U=
github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c h1:964Od4U6p2jUkFxvCydnIczKteheJEzHRToSGK3Bnlw=
github.com/google/btree v0.0.0-20180813153112-4030bb1f1f0c/go.mod h1:lNA+9X1NB3Zf8V7Ke586lFgjr2dZNuvo3lPJSGZ5JPQ=
github.com/google/go-cmp v0.3.1/go.mod h1:8QqcDgzrUqlUb/G2PQTWiueGozuR1884gddMywk6iLU=
github.com/google/go-cmp v0.4.0/go.mod h1:v8dTdLbMG2kIc/vJvl+f65V22dbkXbowE6jgT/gNBxE=
github.com/google/gofuzz v1.0.0/go.mod h1:dBl0BpW6vV/+mYPU4Po3pmUjxk6FQPldtuIdl/M65Eg=
github.com/hashicorp/errwrap v1.0.0 h1:hLrqtEDnRye3+sgx6z4qVLNuviH3MR5aQ0ykNJa/UYA=
github.com/hashicorp/errwrap v1.0.0/go.mod h1:YH+1FKiLXxHSkmPseP+kNlulaMuP3n2brvKWEqk/Jc4=
github.com/hashicorp/go-cleanhttp v0.5.0/go.mod h1:JpRdi6/HCYpAwUzNwuwqhbovhLtngrth3wmdIIUrZ80=
github.com/hashicorp/go-hclog v1.5.0 h1:bI2ocEMgcVlz55Oj1xZNBsVi900c7II+fWDyV9o+13c=
github.com/hashicorp/go-hclog v1.5.0/go.mod h1:W4Qnvbt70Wk/zYJryRzDRU/4r0kIg0PVHBcfoyhpF5M=
github.com/hashicorp/go-immutable-radix v1.0.0 h1:AKDB1HM5PWEA7i4nhcpwOrO2byshxBjXVn/J/3+z5/0=
github.com/hashicorp/go-immutable-radix v1.0.0/go.mod h1:0y9vanUI8NX6FsYoO3zeMjhV/C5i9g4Q3DwcSNZ4P60=
github.com/hashicorp/go-msgpack v0.5.3/go.mod h1:ahLV/dePpqEmjfWmKiqvPkv/twdG7iPBM1vqhUKIvfM=
github.com/hashicorp/go-msgpack v0.5.5 h1:i9R9JSrqIz0QVLz3sz+i3YJdT7TTSLcfLLzJi9aZTuI=
github.com/hashicorp/go-msgpack v0.5.5/go.mod h1:ahLV/dePpqEmjfWmKiqvPkv/twdG7iPBM1vqhUKIvfM=
github.com/hashicorp/go-multierror v1.0.0 h1:iVjPR7a6H0tWELX5NxNe7bYopibicUzc7uPribsnS6o=
github.com/hashicorp/go-multierror v1.0.0/go.mod h1:dHtQlpGsu+cZNNAkkCN/P3hoUDHhCYQXV3UM06sGGrk=
github.com/hashicorp/go-retryablehttp v0.5.3/go.mod h1:9B5zBasrRhHXnJnui7y6sL7es7NDiJgTc6Er0maI1Xs=
github.com/hashicorp/go-sockaddr v1.0.0 h1:GeH6tui99pF4NJgfnhp+L6+FfobzVW3Ah46sLo0ICXs=
github.com/hashicorp/go-sockaddr v1.0.0/go.mod h1:7Xibr9yA9JjQq1JpNB2Vw7kxv8xerXegt+ozgdvDeDU=
github.com/hashicorp/go-uuid v1.0.0 h1:RS8zrF7PhGwyNPOtxSClXXj9HA8feRnJzgnI1RJCSnM=
github.com/hashicorp/go-uuid v1.0.0/go.mod h1:6SBZvOh/SIDV7/2o3Jml5SYk/TvGqwFJ/bN7x4byOro=
github.com/hashicorp/golang-lru v0.5.0 h1:CL2msUPvZTLb5O648aiLNJw3hnBxN2+1Jq8rCOH9wdo=
github.com/hashicorp/golang-lru v0.5.0/go.mod h1:/m3WP610KZHVQ1SGc6re/UDhFvYD7pJ4Ao+sR/qLZy8=
github.com/hashicorp/memberlist v0.5.0 h1:EtYPN8DpAURiapus508I4n9CzHs2W+8NZGbmmR/prTM=
github.com/hashicorp/memberlist v0.5.0/go.mod h1:yvyXLpo0QaGE59Y7hDTsTzDD25JYBZ4mHgHUZ8lrOI0=
github.com/hashicorp/raft v1.5.0 h1:uNs9EfJ4FwiArZRxxfd/dQ5d33nV31/CdCHArH89hT8=
github.com/hashicorp/raft v1.5.0/go.mod h1:pKHB2mf/Y25u3AHNSXVRv+yT+WAnmeTX0BwVppVQV+M=
github.com/json-iterator/go v1.1.6/go.mod h1:+SdeFBvtyEkXs7REEP0seUULqWtbJapLOCVDaaPEHmU=
@@ -59,11 +71,14 @@ github.com/mattn/go-isatty v0.0.12/go.mod h1:cbi8OIDigv2wuxKPP5vlRcQ1OAZbq2CE4Ky
github.com/mattn/go-isatty v0.0.14 h1:yVuAays6BHfxijgZPzw+3Zlu5yQgKGP2/hcQbHb7S9Y=
github.com/mattn/go-isatty v0.0.14/go.mod h1:7GGIvUiUoEMVVmxf/4nioHXj79iQHKdU27kJ6hsGG94=
github.com/matttproud/golang_protobuf_extensions v1.0.1/go.mod h1:D8He9yQNgCq6Z5Ld7szi9bcBfOoFv/3dc6xSMkL2PC0=
github.com/miekg/dns v1.1.26 h1:gPxPSwALAeHJSjarOs00QjVdV9QoBvc1D2ujQUr5BzU=
github.com/miekg/dns v1.1.26/go.mod h1:bPDLeHnStXmXAq1m/Ch/hvfNHr14JKNPMBo3VZKjuso=
github.com/modern-go/concurrent v0.0.0-20180228061459-e0a39a4cb421/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/concurrent v0.0.0-20180306012644-bacd9c7ef1dd/go.mod h1:6dJC0mAP4ikYIbvyc7fijjWJddQyLn8Ig3JB5CqoB9Q=
github.com/modern-go/reflect2 v0.0.0-20180701023420-4b7aa43c6742/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0=
github.com/modern-go/reflect2 v1.0.1/go.mod h1:bx2lNnkwVCuqBIxFjflWJWanXIb3RllmbCylyMrvgv0=
github.com/mwitkow/go-conntrack v0.0.0-20161129095857-cc309e4a2223/go.mod h1:qRWi+5nqEBWmkhHvq77mSJWrCKwh8bxhgT7d/eI7P4U=
github.com/pascaldekloe/goe v0.0.0-20180627143212-57f6aae5913c/go.mod h1:lzWF7FIEvWOWxwDKqyGYQf6ZUaNfKdP144TG7ZOy1lc=
github.com/pascaldekloe/goe v0.1.0 h1:cBOtyMzM9HTpWjXfbbunk26uA6nG3a8n06Wieeh0MwY=
github.com/pascaldekloe/goe v0.1.0/go.mod h1:lzWF7FIEvWOWxwDKqyGYQf6ZUaNfKdP144TG7ZOy1lc=
github.com/pkg/errors v0.8.0/go.mod h1:bwawxfHBFNV+L2hUp1rHADufV3IMtnDRdf1r5NINEl0=
@@ -81,6 +96,8 @@ github.com/prometheus/common v0.9.1/go.mod h1:yhUN8i9wzaXS3w1O07YhxHEBxD+W35wd8b
github.com/prometheus/procfs v0.0.0-20181005140218-185b4288413d/go.mod h1:c3At6R/oaqEKCNdg8wHV1ftS6bRYblBhIjjI8uT2IGk=
github.com/prometheus/procfs v0.0.2/go.mod h1:TjEm7ze935MbeOT/UhFTIMYKhuLP4wbCsTZCD3I8kEA=
github.com/prometheus/procfs v0.0.8/go.mod h1:7Qr8sr6344vo1JqZ6HhLceV9o3AJ1Ff+GxbHq6oeK9A=
github.com/sean-/seed v0.0.0-20170313163322-e2103e2c3529 h1:nn5Wsu0esKSJiIVhscUtVbo7ada43DJhG55ua/hjS5I=
github.com/sean-/seed v0.0.0-20170313163322-e2103e2c3529/go.mod h1:DxrIzT+xaE7yg65j358z/aeFdxmN0P9QXhEzd20vsDc=
github.com/sirupsen/logrus v1.2.0/go.mod h1:LxeOpSwHxABJmUn/MG1IvRgCAasNZTLOkJPxbbu5VWo=
github.com/sirupsen/logrus v1.4.2/go.mod h1:tLMulIdttU9McNUspp0xgXVQah82FyeX6MwdIuYE2rE=
github.com/stretchr/objx v0.1.0/go.mod h1:HFkY916IF+rwdDfMAkV7OtwuqBVzrE8GR6GFx+wExME=
@@ -100,23 +117,37 @@ github.com/tidwall/resp v0.1.1/go.mod h1:3/FrruOBAxPTPtundW0VXgmsQ4ZBA0Aw714lVYg
github.com/tv42/httpunix v0.0.0-20150427012821-b75d8614f926/go.mod h1:9ESjWnEqriFuLhtthL60Sar/7RFoluCcXsuvEwTV5KM=
golang.org/x/crypto v0.0.0-20180904163835-0709b304e793/go.mod h1:6SG95UA2DQfeDnfUPMdvaQW0Q7yPrPDi9nlGo2tz2b4=
golang.org/x/crypto v0.0.0-20190308221718-c2843e01d9a2/go.mod h1:djNgcEr1/C05ACkg1iLfiJU5Ep61QUkGW8qpdssI0+w=
golang.org/x/crypto v0.0.0-20190923035154-9ee001bba392 h1:ACG4HJsFiNMf47Y4PeRoebLNy/2lXT9EtprMuTFWt1M=
golang.org/x/crypto v0.0.0-20190923035154-9ee001bba392/go.mod h1:/lpIB1dKB+9EgE3H3cr1v9wB50oz8l4C4h62xy7jSTY=
golang.org/x/net v0.0.0-20181114220301-adae6a3d119a/go.mod h1:mL1N/T3taQHkDXs73rZJwtUhF3w3ftmwwsq0BUmARs4=
golang.org/x/net v0.0.0-20190404232315-eb5bcb51f2a3/go.mod h1:t9HGtf8HONx5eT2rtn7q6eTqICYqUVnKs3thJo3Qplg=
golang.org/x/net v0.0.0-20190613194153-d28f0bde5980/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20190620200207-3b0461eec859/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/net v0.0.0-20190923162816-aa69164e4478 h1:l5EDrHhldLYb3ZRHDUhXF7Om7MvYXnkV9/iQNo1lX6g=
golang.org/x/net v0.0.0-20190923162816-aa69164e4478/go.mod h1:z5CRVTTTmAJ677TzLLGU+0bjPO0LkuOLi4/5GtJWs/s=
golang.org/x/sync v0.0.0-20181108010431-42b317875d0f/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20181221193216-37e7f081c4d4/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190423024810-112230192c58/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sync v0.0.0-20190911185100-cd5d95a43a6e/go.mod h1:RxMgew5VJxzue5/jJTE5uejpjVlOe/izrB70Jof72aM=
golang.org/x/sys v0.0.0-20180905080454-ebe1bf3edb33/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20181116152217-5ac8a444bdc5/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190215142949-d0b11bdaac8a/go.mod h1:STP8DvDyc/dI5b8T5hshtkjS+E42TnysNCUPdjciGhY=
golang.org/x/sys v0.0.0-20190422165155-953cdadca894/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190922100055-0a153f010e69/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20190924154521-2837fb4f24fe/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200116001909-b77594299b42/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200122134326-e047566fdf82/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20200223170610-d5e6a3e2c0ae/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=
golang.org/x/sys v0.0.0-20210630005230-0f9fa26af87c/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20210927094055-39ccf1dd6fa6/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220503163025-988cb79eb6c6 h1:nonptSpoQ4vQjyraW20DXPAglgQfVnM9ZC6MmNLMR60=
golang.org/x/sys v0.0.0-20220503163025-988cb79eb6c6/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10 h1:WIoqL4EROvwiPdUtaip4VcDdpZ4kha7wBWZrbVKCIZg=
golang.org/x/sys v0.0.0-20220728004956-3c1f35247d10/go.mod h1:oPkhp1MJrh7nUepCBck5+mAzfO9JrbApNNgaTdGDITg=
golang.org/x/text v0.3.0/go.mod h1:NqM8EUOU14njkJ3fqMW+pc6Ldnwhi/IjpwHt7yyuwOQ=
golang.org/x/text v0.3.2/go.mod h1:bEr9sfX3Q8Zfm5fL9x+3itogRgK3+ptLWKqgva+5dAk=
golang.org/x/tools v0.0.0-20180917221912-90fa682c2a6e/go.mod h1:n7NCudcB/nEzxVGmLbDWY5pfWTLqBcC2KZ6jyYvM4mQ=
golang.org/x/tools v0.0.0-20190907020128-2ca718005c18/go.mod h1:b+2E5dAYhXwXZwtnZ6UAqBI28+e2cm9otk0dWdXHAEo=
golang.org/x/xerrors v0.0.0-20190717185122-a985d3407aa7/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
golang.org/x/xerrors v0.0.0-20191204190536-9bdfabe68543/go.mod h1:I/5z698sn9Ka8TeJc9MKroUUfqBBauWjQqLJ2OPfmY0=
gopkg.in/alecthomas/kingpin.v2 v2.2.6/go.mod h1:FMv+mEhP44yOT+4EoQTLFTRgOQ1FBLkstjWtayDeSgw=
gopkg.in/check.v1 v0.0.0-20161208181325-20d25e280405/go.mod h1:Co6ibVJAznAaIkqp8huTwlJQCZ016jof/cbN4VW5Yz0=

View File

@@ -16,7 +16,7 @@ import (
"sync"
"time"
"github.com/hashicorp/go-hclog"
"github.com/hashicorp/memberlist"
"github.com/hashicorp/raft"
"github.com/kelvinmwinuka/memstore/utils"
)
@@ -34,11 +34,11 @@ type Data struct {
}
type Server struct {
config utils.Config
data Data
plugins []Plugin
raft *raft.Raft
logger hclog.Logger
config utils.Config
data Data
plugins []Plugin
raft *raft.Raft
memberList *memberlist.Memberlist
}
func (server *Server) Lock() {
@@ -234,31 +234,6 @@ func (server *Server) Restore(snapshot io.ReadCloser) error {
return nil
}
// Implement raft.LogStore interface
func (server *Server) FirstIndex() (uint64, error) {
return 0, nil
}
func (server *Server) LastIndex() (uint64, error) {
return 0, nil
}
func (server *Server) GetLog(index uint64, log *raft.Log) error {
return nil
}
func (server *Server) StoreLog(log *raft.Log) error {
return nil
}
func (server *Server) StoreLogs(logs []*raft.Log) error {
return nil
}
func (server *Server) DeleteRange(min, max uint64) error {
return nil
}
// Implement raft.StableStore interface
func (server *Server) Set(key []byte, value []byte) error {
return nil
@@ -279,8 +254,6 @@ func (server *Server) GetUint64(key []byte) (uint64, error) {
func (server *Server) Start() {
server.data.data = make(map[string]interface{})
server.logger = hclog.Default()
server.config = utils.GetConfig()
conf := server.config
@@ -339,16 +312,27 @@ func (server *Server) Start() {
server.raft = raftServer
if err := server.raft.BootstrapCluster(raft.Configuration{
Servers: []raft.Server{
{
Suffrage: raft.Voter,
ID: raft.ServerID(conf.ServerID),
Address: raft.ServerAddress(raftAddr),
if conf.JoinAddr == "" {
// Start memberlist cluster
memberList, err := memberlist.Create(memberlist.DefaultLocalConfig())
if err != nil {
log.Fatal("Could not start memberlist cluster.")
}
server.memberList = memberList
// Bootstrap raft cluster
if err := server.raft.BootstrapCluster(raft.Configuration{
Servers: []raft.Server{
{
Suffrage: raft.Voter,
ID: raft.ServerID(conf.ServerID),
Address: raft.ServerAddress(raftAddr),
},
},
},
}).Error(); err != nil {
log.Fatal(err)
}).Error(); err != nil {
log.Fatal(err)
}
}
if conf.HTTP {
@@ -376,7 +360,6 @@ func getServerAddresses() (string, error) {
}
func main() {
server := &Server{}
server.Start()
}

View File

@@ -54,10 +54,10 @@ func GetConfig() Config {
plugins := flag.String("plugins", ".", "The path to the plugins folder.")
clusterPort := flag.Int("clusterPort", 7481, "Port to use for intra-cluster communication. Leave on the client.")
serverId := flag.String("serverId", "1", "Server ID in raft cluster. Leave empty for client.")
joinAddr := flag.String("joinAddr", "", "Address of cluster member in a cluster to join. If left empty, a new cluster will be created with current server as first member.")
joinAddr := flag.String("joinAddr", "", "Address of cluster member in a cluster to you want to join.")
// Client Only
addr := flag.String("addr", "127.0.0.1", "On client, this is the address of a server node. Leave blank on server.")
addr := flag.String("addr", "127.0.0.1", "On client, this is the address of a server node to connect to.")
flag.Parse()

1
vendor/github.com/google/btree/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1 @@
language: go

202
vendor/github.com/google/btree/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,202 @@
Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/
TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.
"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.
"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.
"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.
"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.
"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.
"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.
"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work
(an example is provided in the Appendix below).
"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.
"Contribution" shall mean any work of authorship, including
the original version of the Work and any modifications or additions
to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"
means any form of electronic, verbal, or written communication sent
to the Licensor or its representatives, including but not limited to
communication on electronic mailing lists, source code control systems,
and issue tracking systems that are managed by, or on behalf of, the
Licensor for the purpose of discussing and improving the Work, but
excluding communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a Contribution."
"Contributor" shall mean Licensor and any individual or Legal Entity
on behalf of whom a Contribution has been received by Licensor and
subsequently incorporated within the Work.
2. Grant of Copyright License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
copyright license to reproduce, prepare Derivative Works of,
publicly display, publicly perform, sublicense, and distribute the
Work and such Derivative Works in Source or Object form.
3. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have made,
use, offer to sell, sell, import, and otherwise transfer the Work,
where such license applies only to those patent claims licensable
by such Contributor that are necessarily infringed by their
Contribution(s) alone or by combination of their Contribution(s)
with the Work to which such Contribution(s) was submitted. If You
institute patent litigation against any entity (including a
cross-claim or counterclaim in a lawsuit) alleging that the Work
or a Contribution incorporated within the Work constitutes direct
or contributory patent infringement, then any patent licenses
granted to You under this License for that Work shall terminate
as of the date such litigation is filed.
4. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:
(a) You must give any other recipients of the Work or
Derivative Works a copy of this License; and
(b) You must cause any modified files to carry prominent notices
stating that You changed the files; and
(c) You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of
the Derivative Works; and
(d) If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute must
include a readable copy of the attribution notices contained
within such NOTICE file, excluding those notices that do not
pertain to any part of the Derivative Works, in at least one
of the following places: within a NOTICE text file distributed
as part of the Derivative Works; within the Source form or
documentation, if provided along with the Derivative Works; or,
within a display generated by the Derivative Works, if and
wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and
do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed
as modifying the License.
You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
5. Submission of Contributions. Unless You explicitly state otherwise,
any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.
6. Trademarks. This License does not grant permission to use the trade
names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.
7. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.
8. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.
9. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.
END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.
To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]"
replaced with your own identifying information. (Don't include
the brackets!) The text should be enclosed in the appropriate
comment syntax for the file format. We also recommend that a
file or class name and description of purpose be included on the
same "printed page" as the copyright notice for easier
identification within third-party archives.
Copyright [yyyy] [name of copyright owner]
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

12
vendor/github.com/google/btree/README.md generated vendored Normal file
View File

@@ -0,0 +1,12 @@
# BTree implementation for Go
![Travis CI Build Status](https://api.travis-ci.org/google/btree.svg?branch=master)
This package provides an in-memory B-Tree implementation for Go, useful as
an ordered, mutable data structure.
The API is based off of the wonderful
http://godoc.org/github.com/petar/GoLLRB/llrb, and is meant to allow btree to
act as a drop-in replacement for gollrb trees.
See http://godoc.org/github.com/google/btree for documentation.

890
vendor/github.com/google/btree/btree.go generated vendored Normal file
View File

@@ -0,0 +1,890 @@
// Copyright 2014 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package btree implements in-memory B-Trees of arbitrary degree.
//
// btree implements an in-memory B-Tree for use as an ordered data structure.
// It is not meant for persistent storage solutions.
//
// It has a flatter structure than an equivalent red-black or other binary tree,
// which in some cases yields better memory usage and/or performance.
// See some discussion on the matter here:
// http://google-opensource.blogspot.com/2013/01/c-containers-that-save-memory-and-time.html
// Note, though, that this project is in no way related to the C++ B-Tree
// implementation written about there.
//
// Within this tree, each node contains a slice of items and a (possibly nil)
// slice of children. For basic numeric values or raw structs, this can cause
// efficiency differences when compared to equivalent C++ template code that
// stores values in arrays within the node:
// * Due to the overhead of storing values as interfaces (each
// value needs to be stored as the value itself, then 2 words for the
// interface pointing to that value and its type), resulting in higher
// memory use.
// * Since interfaces can point to values anywhere in memory, values are
// most likely not stored in contiguous blocks, resulting in a higher
// number of cache misses.
// These issues don't tend to matter, though, when working with strings or other
// heap-allocated structures, since C++-equivalent structures also must store
// pointers and also distribute their values across the heap.
//
// This implementation is designed to be a drop-in replacement to gollrb.LLRB
// trees, (http://github.com/petar/gollrb), an excellent and probably the most
// widely used ordered tree implementation in the Go ecosystem currently.
// Its functions, therefore, exactly mirror those of
// llrb.LLRB where possible. Unlike gollrb, though, we currently don't
// support storing multiple equivalent values.
package btree
import (
"fmt"
"io"
"sort"
"strings"
"sync"
)
// Item represents a single object in the tree.
type Item interface {
// Less tests whether the current item is less than the given argument.
//
// This must provide a strict weak ordering.
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
// hold one of either a or b in the tree).
Less(than Item) bool
}
const (
DefaultFreeListSize = 32
)
var (
nilItems = make(items, 16)
nilChildren = make(children, 16)
)
// FreeList represents a free list of btree nodes. By default each
// BTree has its own FreeList, but multiple BTrees can share the same
// FreeList.
// Two Btrees using the same freelist are safe for concurrent write access.
type FreeList struct {
mu sync.Mutex
freelist []*node
}
// NewFreeList creates a new free list.
// size is the maximum size of the returned free list.
func NewFreeList(size int) *FreeList {
return &FreeList{freelist: make([]*node, 0, size)}
}
func (f *FreeList) newNode() (n *node) {
f.mu.Lock()
index := len(f.freelist) - 1
if index < 0 {
f.mu.Unlock()
return new(node)
}
n = f.freelist[index]
f.freelist[index] = nil
f.freelist = f.freelist[:index]
f.mu.Unlock()
return
}
// freeNode adds the given node to the list, returning true if it was added
// and false if it was discarded.
func (f *FreeList) freeNode(n *node) (out bool) {
f.mu.Lock()
if len(f.freelist) < cap(f.freelist) {
f.freelist = append(f.freelist, n)
out = true
}
f.mu.Unlock()
return
}
// ItemIterator allows callers of Ascend* to iterate in-order over portions of
// the tree. When this function returns false, iteration will stop and the
// associated Ascend* function will immediately return.
type ItemIterator func(i Item) bool
// New creates a new B-Tree with the given degree.
//
// New(2), for example, will create a 2-3-4 tree (each node contains 1-3 items
// and 2-4 children).
func New(degree int) *BTree {
return NewWithFreeList(degree, NewFreeList(DefaultFreeListSize))
}
// NewWithFreeList creates a new B-Tree that uses the given node free list.
func NewWithFreeList(degree int, f *FreeList) *BTree {
if degree <= 1 {
panic("bad degree")
}
return &BTree{
degree: degree,
cow: &copyOnWriteContext{freelist: f},
}
}
// items stores items in a node.
type items []Item
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *items) insertAt(index int, item Item) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = item
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *items) removeAt(index int) Item {
item := (*s)[index]
copy((*s)[index:], (*s)[index+1:])
(*s)[len(*s)-1] = nil
*s = (*s)[:len(*s)-1]
return item
}
// pop removes and returns the last element in the list.
func (s *items) pop() (out Item) {
index := len(*s) - 1
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
}
// truncate truncates this instance at index so that it contains only the
// first index items. index must be less than or equal to length.
func (s *items) truncate(index int) {
var toClear items
*s, toClear = (*s)[:index], (*s)[index:]
for len(toClear) > 0 {
toClear = toClear[copy(toClear, nilItems):]
}
}
// find returns the index where the given item should be inserted into this
// list. 'found' is true if the item already exists in the list at the given
// index.
func (s items) find(item Item) (index int, found bool) {
i := sort.Search(len(s), func(i int) bool {
return item.Less(s[i])
})
if i > 0 && !s[i-1].Less(item) {
return i - 1, true
}
return i, false
}
// children stores child nodes in a node.
type children []*node
// insertAt inserts a value into the given index, pushing all subsequent values
// forward.
func (s *children) insertAt(index int, n *node) {
*s = append(*s, nil)
if index < len(*s) {
copy((*s)[index+1:], (*s)[index:])
}
(*s)[index] = n
}
// removeAt removes a value at a given index, pulling all subsequent values
// back.
func (s *children) removeAt(index int) *node {
n := (*s)[index]
copy((*s)[index:], (*s)[index+1:])
(*s)[len(*s)-1] = nil
*s = (*s)[:len(*s)-1]
return n
}
// pop removes and returns the last element in the list.
func (s *children) pop() (out *node) {
index := len(*s) - 1
out = (*s)[index]
(*s)[index] = nil
*s = (*s)[:index]
return
}
// truncate truncates this instance at index so that it contains only the
// first index children. index must be less than or equal to length.
func (s *children) truncate(index int) {
var toClear children
*s, toClear = (*s)[:index], (*s)[index:]
for len(toClear) > 0 {
toClear = toClear[copy(toClear, nilChildren):]
}
}
// node is an internal node in a tree.
//
// It must at all times maintain the invariant that either
// * len(children) == 0, len(items) unconstrained
// * len(children) == len(items) + 1
type node struct {
items items
children children
cow *copyOnWriteContext
}
func (n *node) mutableFor(cow *copyOnWriteContext) *node {
if n.cow == cow {
return n
}
out := cow.newNode()
if cap(out.items) >= len(n.items) {
out.items = out.items[:len(n.items)]
} else {
out.items = make(items, len(n.items), cap(n.items))
}
copy(out.items, n.items)
// Copy children
if cap(out.children) >= len(n.children) {
out.children = out.children[:len(n.children)]
} else {
out.children = make(children, len(n.children), cap(n.children))
}
copy(out.children, n.children)
return out
}
func (n *node) mutableChild(i int) *node {
c := n.children[i].mutableFor(n.cow)
n.children[i] = c
return c
}
// split splits the given node at the given index. The current node shrinks,
// and this function returns the item that existed at that index and a new node
// containing all items/children after it.
func (n *node) split(i int) (Item, *node) {
item := n.items[i]
next := n.cow.newNode()
next.items = append(next.items, n.items[i+1:]...)
n.items.truncate(i)
if len(n.children) > 0 {
next.children = append(next.children, n.children[i+1:]...)
n.children.truncate(i + 1)
}
return item, next
}
// maybeSplitChild checks if a child should be split, and if so splits it.
// Returns whether or not a split occurred.
func (n *node) maybeSplitChild(i, maxItems int) bool {
if len(n.children[i].items) < maxItems {
return false
}
first := n.mutableChild(i)
item, second := first.split(maxItems / 2)
n.items.insertAt(i, item)
n.children.insertAt(i+1, second)
return true
}
// insert inserts an item into the subtree rooted at this node, making sure
// no nodes in the subtree exceed maxItems items. Should an equivalent item be
// be found/replaced by insert, it will be returned.
func (n *node) insert(item Item, maxItems int) Item {
i, found := n.items.find(item)
if found {
out := n.items[i]
n.items[i] = item
return out
}
if len(n.children) == 0 {
n.items.insertAt(i, item)
return nil
}
if n.maybeSplitChild(i, maxItems) {
inTree := n.items[i]
switch {
case item.Less(inTree):
// no change, we want first split node
case inTree.Less(item):
i++ // we want second split node
default:
out := n.items[i]
n.items[i] = item
return out
}
}
return n.mutableChild(i).insert(item, maxItems)
}
// get finds the given key in the subtree and returns it.
func (n *node) get(key Item) Item {
i, found := n.items.find(key)
if found {
return n.items[i]
} else if len(n.children) > 0 {
return n.children[i].get(key)
}
return nil
}
// min returns the first item in the subtree.
func min(n *node) Item {
if n == nil {
return nil
}
for len(n.children) > 0 {
n = n.children[0]
}
if len(n.items) == 0 {
return nil
}
return n.items[0]
}
// max returns the last item in the subtree.
func max(n *node) Item {
if n == nil {
return nil
}
for len(n.children) > 0 {
n = n.children[len(n.children)-1]
}
if len(n.items) == 0 {
return nil
}
return n.items[len(n.items)-1]
}
// toRemove details what item to remove in a node.remove call.
type toRemove int
const (
removeItem toRemove = iota // removes the given item
removeMin // removes smallest item in the subtree
removeMax // removes largest item in the subtree
)
// remove removes an item from the subtree rooted at this node.
func (n *node) remove(item Item, minItems int, typ toRemove) Item {
var i int
var found bool
switch typ {
case removeMax:
if len(n.children) == 0 {
return n.items.pop()
}
i = len(n.items)
case removeMin:
if len(n.children) == 0 {
return n.items.removeAt(0)
}
i = 0
case removeItem:
i, found = n.items.find(item)
if len(n.children) == 0 {
if found {
return n.items.removeAt(i)
}
return nil
}
default:
panic("invalid type")
}
// If we get to here, we have children.
if len(n.children[i].items) <= minItems {
return n.growChildAndRemove(i, item, minItems, typ)
}
child := n.mutableChild(i)
// Either we had enough items to begin with, or we've done some
// merging/stealing, because we've got enough now and we're ready to return
// stuff.
if found {
// The item exists at index 'i', and the child we've selected can give us a
// predecessor, since if we've gotten here it's got > minItems items in it.
out := n.items[i]
// We use our special-case 'remove' call with typ=maxItem to pull the
// predecessor of item i (the rightmost leaf of our immediate left child)
// and set it into where we pulled the item from.
n.items[i] = child.remove(nil, minItems, removeMax)
return out
}
// Final recursive call. Once we're here, we know that the item isn't in this
// node and that the child is big enough to remove from.
return child.remove(item, minItems, typ)
}
// growChildAndRemove grows child 'i' to make sure it's possible to remove an
// item from it while keeping it at minItems, then calls remove to actually
// remove it.
//
// Most documentation says we have to do two sets of special casing:
// 1) item is in this node
// 2) item is in child
// In both cases, we need to handle the two subcases:
// A) node has enough values that it can spare one
// B) node doesn't have enough values
// For the latter, we have to check:
// a) left sibling has node to spare
// b) right sibling has node to spare
// c) we must merge
// To simplify our code here, we handle cases #1 and #2 the same:
// If a node doesn't have enough items, we make sure it does (using a,b,c).
// We then simply redo our remove call, and the second time (regardless of
// whether we're in case 1 or 2), we'll have enough items and can guarantee
// that we hit case A.
func (n *node) growChildAndRemove(i int, item Item, minItems int, typ toRemove) Item {
if i > 0 && len(n.children[i-1].items) > minItems {
// Steal from left child
child := n.mutableChild(i)
stealFrom := n.mutableChild(i - 1)
stolenItem := stealFrom.items.pop()
child.items.insertAt(0, n.items[i-1])
n.items[i-1] = stolenItem
if len(stealFrom.children) > 0 {
child.children.insertAt(0, stealFrom.children.pop())
}
} else if i < len(n.items) && len(n.children[i+1].items) > minItems {
// steal from right child
child := n.mutableChild(i)
stealFrom := n.mutableChild(i + 1)
stolenItem := stealFrom.items.removeAt(0)
child.items = append(child.items, n.items[i])
n.items[i] = stolenItem
if len(stealFrom.children) > 0 {
child.children = append(child.children, stealFrom.children.removeAt(0))
}
} else {
if i >= len(n.items) {
i--
}
child := n.mutableChild(i)
// merge with right child
mergeItem := n.items.removeAt(i)
mergeChild := n.children.removeAt(i + 1)
child.items = append(child.items, mergeItem)
child.items = append(child.items, mergeChild.items...)
child.children = append(child.children, mergeChild.children...)
n.cow.freeNode(mergeChild)
}
return n.remove(item, minItems, typ)
}
type direction int
const (
descend = direction(-1)
ascend = direction(+1)
)
// iterate provides a simple method for iterating over elements in the tree.
//
// When ascending, the 'start' should be less than 'stop' and when descending,
// the 'start' should be greater than 'stop'. Setting 'includeStart' to true
// will force the iterator to include the first item when it equals 'start',
// thus creating a "greaterOrEqual" or "lessThanEqual" rather than just a
// "greaterThan" or "lessThan" queries.
func (n *node) iterate(dir direction, start, stop Item, includeStart bool, hit bool, iter ItemIterator) (bool, bool) {
var ok, found bool
var index int
switch dir {
case ascend:
if start != nil {
index, _ = n.items.find(start)
}
for i := index; i < len(n.items); i++ {
if len(n.children) > 0 {
if hit, ok = n.children[i].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
if !includeStart && !hit && start != nil && !start.Less(n.items[i]) {
hit = true
continue
}
hit = true
if stop != nil && !n.items[i].Less(stop) {
return hit, false
}
if !iter(n.items[i]) {
return hit, false
}
}
if len(n.children) > 0 {
if hit, ok = n.children[len(n.children)-1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
case descend:
if start != nil {
index, found = n.items.find(start)
if !found {
index = index - 1
}
} else {
index = len(n.items) - 1
}
for i := index; i >= 0; i-- {
if start != nil && !n.items[i].Less(start) {
if !includeStart || hit || start.Less(n.items[i]) {
continue
}
}
if len(n.children) > 0 {
if hit, ok = n.children[i+1].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
if stop != nil && !stop.Less(n.items[i]) {
return hit, false // continue
}
hit = true
if !iter(n.items[i]) {
return hit, false
}
}
if len(n.children) > 0 {
if hit, ok = n.children[0].iterate(dir, start, stop, includeStart, hit, iter); !ok {
return hit, false
}
}
}
return hit, true
}
// Used for testing/debugging purposes.
func (n *node) print(w io.Writer, level int) {
fmt.Fprintf(w, "%sNODE:%v\n", strings.Repeat(" ", level), n.items)
for _, c := range n.children {
c.print(w, level+1)
}
}
// BTree is an implementation of a B-Tree.
//
// BTree stores Item instances in an ordered structure, allowing easy insertion,
// removal, and iteration.
//
// Write operations are not safe for concurrent mutation by multiple
// goroutines, but Read operations are.
type BTree struct {
degree int
length int
root *node
cow *copyOnWriteContext
}
// copyOnWriteContext pointers determine node ownership... a tree with a write
// context equivalent to a node's write context is allowed to modify that node.
// A tree whose write context does not match a node's is not allowed to modify
// it, and must create a new, writable copy (IE: it's a Clone).
//
// When doing any write operation, we maintain the invariant that the current
// node's context is equal to the context of the tree that requested the write.
// We do this by, before we descend into any node, creating a copy with the
// correct context if the contexts don't match.
//
// Since the node we're currently visiting on any write has the requesting
// tree's context, that node is modifiable in place. Children of that node may
// not share context, but before we descend into them, we'll make a mutable
// copy.
type copyOnWriteContext struct {
freelist *FreeList
}
// Clone clones the btree, lazily. Clone should not be called concurrently,
// but the original tree (t) and the new tree (t2) can be used concurrently
// once the Clone call completes.
//
// The internal tree structure of b is marked read-only and shared between t and
// t2. Writes to both t and t2 use copy-on-write logic, creating new nodes
// whenever one of b's original nodes would have been modified. Read operations
// should have no performance degredation. Write operations for both t and t2
// will initially experience minor slow-downs caused by additional allocs and
// copies due to the aforementioned copy-on-write logic, but should converge to
// the original performance characteristics of the original tree.
func (t *BTree) Clone() (t2 *BTree) {
// Create two entirely new copy-on-write contexts.
// This operation effectively creates three trees:
// the original, shared nodes (old b.cow)
// the new b.cow nodes
// the new out.cow nodes
cow1, cow2 := *t.cow, *t.cow
out := *t
t.cow = &cow1
out.cow = &cow2
return &out
}
// maxItems returns the max number of items to allow per node.
func (t *BTree) maxItems() int {
return t.degree*2 - 1
}
// minItems returns the min number of items to allow per node (ignored for the
// root node).
func (t *BTree) minItems() int {
return t.degree - 1
}
func (c *copyOnWriteContext) newNode() (n *node) {
n = c.freelist.newNode()
n.cow = c
return
}
type freeType int
const (
ftFreelistFull freeType = iota // node was freed (available for GC, not stored in freelist)
ftStored // node was stored in the freelist for later use
ftNotOwned // node was ignored by COW, since it's owned by another one
)
// freeNode frees a node within a given COW context, if it's owned by that
// context. It returns what happened to the node (see freeType const
// documentation).
func (c *copyOnWriteContext) freeNode(n *node) freeType {
if n.cow == c {
// clear to allow GC
n.items.truncate(0)
n.children.truncate(0)
n.cow = nil
if c.freelist.freeNode(n) {
return ftStored
} else {
return ftFreelistFull
}
} else {
return ftNotOwned
}
}
// ReplaceOrInsert adds the given item to the tree. If an item in the tree
// already equals the given one, it is removed from the tree and returned.
// Otherwise, nil is returned.
//
// nil cannot be added to the tree (will panic).
func (t *BTree) ReplaceOrInsert(item Item) Item {
if item == nil {
panic("nil item being added to BTree")
}
if t.root == nil {
t.root = t.cow.newNode()
t.root.items = append(t.root.items, item)
t.length++
return nil
} else {
t.root = t.root.mutableFor(t.cow)
if len(t.root.items) >= t.maxItems() {
item2, second := t.root.split(t.maxItems() / 2)
oldroot := t.root
t.root = t.cow.newNode()
t.root.items = append(t.root.items, item2)
t.root.children = append(t.root.children, oldroot, second)
}
}
out := t.root.insert(item, t.maxItems())
if out == nil {
t.length++
}
return out
}
// Delete removes an item equal to the passed in item from the tree, returning
// it. If no such item exists, returns nil.
func (t *BTree) Delete(item Item) Item {
return t.deleteItem(item, removeItem)
}
// DeleteMin removes the smallest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMin() Item {
return t.deleteItem(nil, removeMin)
}
// DeleteMax removes the largest item in the tree and returns it.
// If no such item exists, returns nil.
func (t *BTree) DeleteMax() Item {
return t.deleteItem(nil, removeMax)
}
func (t *BTree) deleteItem(item Item, typ toRemove) Item {
if t.root == nil || len(t.root.items) == 0 {
return nil
}
t.root = t.root.mutableFor(t.cow)
out := t.root.remove(item, t.minItems(), typ)
if len(t.root.items) == 0 && len(t.root.children) > 0 {
oldroot := t.root
t.root = t.root.children[0]
t.cow.freeNode(oldroot)
}
if out != nil {
t.length--
}
return out
}
// AscendRange calls the iterator for every value in the tree within the range
// [greaterOrEqual, lessThan), until iterator returns false.
func (t *BTree) AscendRange(greaterOrEqual, lessThan Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, greaterOrEqual, lessThan, true, false, iterator)
}
// AscendLessThan calls the iterator for every value in the tree within the range
// [first, pivot), until iterator returns false.
func (t *BTree) AscendLessThan(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, nil, pivot, false, false, iterator)
}
// AscendGreaterOrEqual calls the iterator for every value in the tree within
// the range [pivot, last], until iterator returns false.
func (t *BTree) AscendGreaterOrEqual(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, pivot, nil, true, false, iterator)
}
// Ascend calls the iterator for every value in the tree within the range
// [first, last], until iterator returns false.
func (t *BTree) Ascend(iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(ascend, nil, nil, false, false, iterator)
}
// DescendRange calls the iterator for every value in the tree within the range
// [lessOrEqual, greaterThan), until iterator returns false.
func (t *BTree) DescendRange(lessOrEqual, greaterThan Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, lessOrEqual, greaterThan, true, false, iterator)
}
// DescendLessOrEqual calls the iterator for every value in the tree within the range
// [pivot, first], until iterator returns false.
func (t *BTree) DescendLessOrEqual(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, pivot, nil, true, false, iterator)
}
// DescendGreaterThan calls the iterator for every value in the tree within
// the range (pivot, last], until iterator returns false.
func (t *BTree) DescendGreaterThan(pivot Item, iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, nil, pivot, false, false, iterator)
}
// Descend calls the iterator for every value in the tree within the range
// [last, first], until iterator returns false.
func (t *BTree) Descend(iterator ItemIterator) {
if t.root == nil {
return
}
t.root.iterate(descend, nil, nil, false, false, iterator)
}
// Get looks for the key item in the tree, returning it. It returns nil if
// unable to find that item.
func (t *BTree) Get(key Item) Item {
if t.root == nil {
return nil
}
return t.root.get(key)
}
// Min returns the smallest item in the tree, or nil if the tree is empty.
func (t *BTree) Min() Item {
return min(t.root)
}
// Max returns the largest item in the tree, or nil if the tree is empty.
func (t *BTree) Max() Item {
return max(t.root)
}
// Has returns true if the given key is in the tree.
func (t *BTree) Has(key Item) bool {
return t.Get(key) != nil
}
// Len returns the number of items currently in the tree.
func (t *BTree) Len() int {
return t.length
}
// Clear removes all items from the btree. If addNodesToFreelist is true,
// t's nodes are added to its freelist as part of this call, until the freelist
// is full. Otherwise, the root node is simply dereferenced and the subtree
// left to Go's normal GC processes.
//
// This can be much faster
// than calling Delete on all elements, because that requires finding/removing
// each element in the tree and updating the tree accordingly. It also is
// somewhat faster than creating a new tree to replace the old one, because
// nodes from the old tree are reclaimed into the freelist for use by the new
// one, instead of being lost to the garbage collector.
//
// This call takes:
// O(1): when addNodesToFreelist is false, this is a single operation.
// O(1): when the freelist is already full, it breaks out immediately
// O(freelist size): when the freelist is empty and the nodes are all owned
// by this tree, nodes are added to the freelist until full.
// O(tree size): when all nodes are owned by another tree, all nodes are
// iterated over looking for nodes to add to the freelist, and due to
// ownership, none are.
func (t *BTree) Clear(addNodesToFreelist bool) {
if t.root != nil && addNodesToFreelist {
t.root.reset(t.cow)
}
t.root, t.length = nil, 0
}
// reset returns a subtree to the freelist. It breaks out immediately if the
// freelist is full, since the only benefit of iterating is to fill that
// freelist up. Returns true if parent reset call should continue.
func (n *node) reset(c *copyOnWriteContext) bool {
for _, child := range n.children {
if !child.reset(c) {
return false
}
}
return c.freeNode(n) != ftFreelistFull
}
// Int implements the Item interface for integers.
type Int int
// Less returns true if int(a) < int(b).
func (a Int) Less(b Item) bool {
return a < b.(Int)
}

354
vendor/github.com/hashicorp/errwrap/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,354 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

89
vendor/github.com/hashicorp/errwrap/README.md generated vendored Normal file
View File

@@ -0,0 +1,89 @@
# errwrap
`errwrap` is a package for Go that formalizes the pattern of wrapping errors
and checking if an error contains another error.
There is a common pattern in Go of taking a returned `error` value and
then wrapping it (such as with `fmt.Errorf`) before returning it. The problem
with this pattern is that you completely lose the original `error` structure.
Arguably the _correct_ approach is that you should make a custom structure
implementing the `error` interface, and have the original error as a field
on that structure, such [as this example](http://golang.org/pkg/os/#PathError).
This is a good approach, but you have to know the entire chain of possible
rewrapping that happens, when you might just care about one.
`errwrap` formalizes this pattern (it doesn't matter what approach you use
above) by giving a single interface for wrapping errors, checking if a specific
error is wrapped, and extracting that error.
## Installation and Docs
Install using `go get github.com/hashicorp/errwrap`.
Full documentation is available at
http://godoc.org/github.com/hashicorp/errwrap
## Usage
#### Basic Usage
Below is a very basic example of its usage:
```go
// A function that always returns an error, but wraps it, like a real
// function might.
func tryOpen() error {
_, err := os.Open("/i/dont/exist")
if err != nil {
return errwrap.Wrapf("Doesn't exist: {{err}}", err)
}
return nil
}
func main() {
err := tryOpen()
// We can use the Contains helpers to check if an error contains
// another error. It is safe to do this with a nil error, or with
// an error that doesn't even use the errwrap package.
if errwrap.Contains(err, "does not exist") {
// Do something
}
if errwrap.ContainsType(err, new(os.PathError)) {
// Do something
}
// Or we can use the associated `Get` functions to just extract
// a specific error. This would return nil if that specific error doesn't
// exist.
perr := errwrap.GetType(err, new(os.PathError))
}
```
#### Custom Types
If you're already making custom types that properly wrap errors, then
you can get all the functionality of `errwraps.Contains` and such by
implementing the `Wrapper` interface with just one function. Example:
```go
type AppError {
Code ErrorCode
Err error
}
func (e *AppError) WrappedErrors() []error {
return []error{e.Err}
}
```
Now this works:
```go
err := &AppError{Err: fmt.Errorf("an error")}
if errwrap.ContainsType(err, fmt.Errorf("")) {
// This will work!
}
```

169
vendor/github.com/hashicorp/errwrap/errwrap.go generated vendored Normal file
View File

@@ -0,0 +1,169 @@
// Package errwrap implements methods to formalize error wrapping in Go.
//
// All of the top-level functions that take an `error` are built to be able
// to take any error, not just wrapped errors. This allows you to use errwrap
// without having to type-check and type-cast everywhere.
package errwrap
import (
"errors"
"reflect"
"strings"
)
// WalkFunc is the callback called for Walk.
type WalkFunc func(error)
// Wrapper is an interface that can be implemented by custom types to
// have all the Contains, Get, etc. functions in errwrap work.
//
// When Walk reaches a Wrapper, it will call the callback for every
// wrapped error in addition to the wrapper itself. Since all the top-level
// functions in errwrap use Walk, this means that all those functions work
// with your custom type.
type Wrapper interface {
WrappedErrors() []error
}
// Wrap defines that outer wraps inner, returning an error type that
// can be cleanly used with the other methods in this package, such as
// Contains, GetAll, etc.
//
// This function won't modify the error message at all (the outer message
// will be used).
func Wrap(outer, inner error) error {
return &wrappedError{
Outer: outer,
Inner: inner,
}
}
// Wrapf wraps an error with a formatting message. This is similar to using
// `fmt.Errorf` to wrap an error. If you're using `fmt.Errorf` to wrap
// errors, you should replace it with this.
//
// format is the format of the error message. The string '{{err}}' will
// be replaced with the original error message.
func Wrapf(format string, err error) error {
outerMsg := "<nil>"
if err != nil {
outerMsg = err.Error()
}
outer := errors.New(strings.Replace(
format, "{{err}}", outerMsg, -1))
return Wrap(outer, err)
}
// Contains checks if the given error contains an error with the
// message msg. If err is not a wrapped error, this will always return
// false unless the error itself happens to match this msg.
func Contains(err error, msg string) bool {
return len(GetAll(err, msg)) > 0
}
// ContainsType checks if the given error contains an error with
// the same concrete type as v. If err is not a wrapped error, this will
// check the err itself.
func ContainsType(err error, v interface{}) bool {
return len(GetAllType(err, v)) > 0
}
// Get is the same as GetAll but returns the deepest matching error.
func Get(err error, msg string) error {
es := GetAll(err, msg)
if len(es) > 0 {
return es[len(es)-1]
}
return nil
}
// GetType is the same as GetAllType but returns the deepest matching error.
func GetType(err error, v interface{}) error {
es := GetAllType(err, v)
if len(es) > 0 {
return es[len(es)-1]
}
return nil
}
// GetAll gets all the errors that might be wrapped in err with the
// given message. The order of the errors is such that the outermost
// matching error (the most recent wrap) is index zero, and so on.
func GetAll(err error, msg string) []error {
var result []error
Walk(err, func(err error) {
if err.Error() == msg {
result = append(result, err)
}
})
return result
}
// GetAllType gets all the errors that are the same type as v.
//
// The order of the return value is the same as described in GetAll.
func GetAllType(err error, v interface{}) []error {
var result []error
var search string
if v != nil {
search = reflect.TypeOf(v).String()
}
Walk(err, func(err error) {
var needle string
if err != nil {
needle = reflect.TypeOf(err).String()
}
if needle == search {
result = append(result, err)
}
})
return result
}
// Walk walks all the wrapped errors in err and calls the callback. If
// err isn't a wrapped error, this will be called once for err. If err
// is a wrapped error, the callback will be called for both the wrapper
// that implements error as well as the wrapped error itself.
func Walk(err error, cb WalkFunc) {
if err == nil {
return
}
switch e := err.(type) {
case *wrappedError:
cb(e.Outer)
Walk(e.Inner, cb)
case Wrapper:
cb(err)
for _, err := range e.WrappedErrors() {
Walk(err, cb)
}
default:
cb(err)
}
}
// wrappedError is an implementation of error that has both the
// outer and inner errors.
type wrappedError struct {
Outer error
Inner error
}
func (w *wrappedError) Error() string {
return w.Outer.Error()
}
func (w *wrappedError) WrappedErrors() []error {
return []error{w.Outer, w.Inner}
}

12
vendor/github.com/hashicorp/go-multierror/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,12 @@
sudo: false
language: go
go:
- 1.x
branches:
only:
- master
script: make test testrace

353
vendor/github.com/hashicorp/go-multierror/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,353 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

31
vendor/github.com/hashicorp/go-multierror/Makefile generated vendored Normal file
View File

@@ -0,0 +1,31 @@
TEST?=./...
default: test
# test runs the test suite and vets the code.
test: generate
@echo "==> Running tests..."
@go list $(TEST) \
| grep -v "/vendor/" \
| xargs -n1 go test -timeout=60s -parallel=10 ${TESTARGS}
# testrace runs the race checker
testrace: generate
@echo "==> Running tests (race)..."
@go list $(TEST) \
| grep -v "/vendor/" \
| xargs -n1 go test -timeout=60s -race ${TESTARGS}
# updatedeps installs all the dependencies needed to run and build.
updatedeps:
@sh -c "'${CURDIR}/scripts/deps.sh' '${NAME}'"
# generate runs `go generate` to build the dynamically generated source files.
generate:
@echo "==> Generating..."
@find . -type f -name '.DS_Store' -delete
@go list ./... \
| grep -v "/vendor/" \
| xargs -n1 go generate
.PHONY: default test testrace updatedeps generate

97
vendor/github.com/hashicorp/go-multierror/README.md generated vendored Normal file
View File

@@ -0,0 +1,97 @@
# go-multierror
[![Build Status](http://img.shields.io/travis/hashicorp/go-multierror.svg?style=flat-square)][travis]
[![Go Documentation](http://img.shields.io/badge/go-documentation-blue.svg?style=flat-square)][godocs]
[travis]: https://travis-ci.org/hashicorp/go-multierror
[godocs]: https://godoc.org/github.com/hashicorp/go-multierror
`go-multierror` is a package for Go that provides a mechanism for
representing a list of `error` values as a single `error`.
This allows a function in Go to return an `error` that might actually
be a list of errors. If the caller knows this, they can unwrap the
list and access the errors. If the caller doesn't know, the error
formats to a nice human-readable format.
`go-multierror` implements the
[errwrap](https://github.com/hashicorp/errwrap) interface so that it can
be used with that library, as well.
## Installation and Docs
Install using `go get github.com/hashicorp/go-multierror`.
Full documentation is available at
http://godoc.org/github.com/hashicorp/go-multierror
## Usage
go-multierror is easy to use and purposely built to be unobtrusive in
existing Go applications/libraries that may not be aware of it.
**Building a list of errors**
The `Append` function is used to create a list of errors. This function
behaves a lot like the Go built-in `append` function: it doesn't matter
if the first argument is nil, a `multierror.Error`, or any other `error`,
the function behaves as you would expect.
```go
var result error
if err := step1(); err != nil {
result = multierror.Append(result, err)
}
if err := step2(); err != nil {
result = multierror.Append(result, err)
}
return result
```
**Customizing the formatting of the errors**
By specifying a custom `ErrorFormat`, you can customize the format
of the `Error() string` function:
```go
var result *multierror.Error
// ... accumulate errors here, maybe using Append
if result != nil {
result.ErrorFormat = func([]error) string {
return "errors!"
}
}
```
**Accessing the list of errors**
`multierror.Error` implements `error` so if the caller doesn't know about
multierror, it will work just fine. But if you're aware a multierror might
be returned, you can use type switches to access the list of errors:
```go
if err := something(); err != nil {
if merr, ok := err.(*multierror.Error); ok {
// Use merr.Errors
}
}
```
**Returning a multierror only if there are errors**
If you build a `multierror.Error`, you can use the `ErrorOrNil` function
to return an `error` implementation only if there are errors to return:
```go
var result *multierror.Error
// ... accumulate errors here
// Return the `error` only if errors were added to the multierror, otherwise
// return nil since there are no errors.
return result.ErrorOrNil()
```

41
vendor/github.com/hashicorp/go-multierror/append.go generated vendored Normal file
View File

@@ -0,0 +1,41 @@
package multierror
// Append is a helper function that will append more errors
// onto an Error in order to create a larger multi-error.
//
// If err is not a multierror.Error, then it will be turned into
// one. If any of the errs are multierr.Error, they will be flattened
// one level into err.
func Append(err error, errs ...error) *Error {
switch err := err.(type) {
case *Error:
// Typed nils can reach here, so initialize if we are nil
if err == nil {
err = new(Error)
}
// Go through each error and flatten
for _, e := range errs {
switch e := e.(type) {
case *Error:
if e != nil {
err.Errors = append(err.Errors, e.Errors...)
}
default:
if e != nil {
err.Errors = append(err.Errors, e)
}
}
}
return err
default:
newErrs := make([]error, 0, len(errs)+1)
if err != nil {
newErrs = append(newErrs, err)
}
newErrs = append(newErrs, errs...)
return Append(&Error{}, newErrs...)
}
}

26
vendor/github.com/hashicorp/go-multierror/flatten.go generated vendored Normal file
View File

@@ -0,0 +1,26 @@
package multierror
// Flatten flattens the given error, merging any *Errors together into
// a single *Error.
func Flatten(err error) error {
// If it isn't an *Error, just return the error as-is
if _, ok := err.(*Error); !ok {
return err
}
// Otherwise, make the result and flatten away!
flatErr := new(Error)
flatten(err, flatErr)
return flatErr
}
func flatten(err error, flatErr *Error) {
switch err := err.(type) {
case *Error:
for _, e := range err.Errors {
flatten(e, flatErr)
}
default:
flatErr.Errors = append(flatErr.Errors, err)
}
}

27
vendor/github.com/hashicorp/go-multierror/format.go generated vendored Normal file
View File

@@ -0,0 +1,27 @@
package multierror
import (
"fmt"
"strings"
)
// ErrorFormatFunc is a function callback that is called by Error to
// turn the list of errors into a string.
type ErrorFormatFunc func([]error) string
// ListFormatFunc is a basic formatter that outputs the number of errors
// that occurred along with a bullet point list of the errors.
func ListFormatFunc(es []error) string {
if len(es) == 1 {
return fmt.Sprintf("1 error occurred:\n\t* %s\n\n", es[0])
}
points := make([]string, len(es))
for i, err := range es {
points[i] = fmt.Sprintf("* %s", err)
}
return fmt.Sprintf(
"%d errors occurred:\n\t%s\n\n",
len(es), strings.Join(points, "\n\t"))
}

View File

@@ -0,0 +1,51 @@
package multierror
import (
"fmt"
)
// Error is an error type to track multiple errors. This is used to
// accumulate errors in cases and return them as a single "error".
type Error struct {
Errors []error
ErrorFormat ErrorFormatFunc
}
func (e *Error) Error() string {
fn := e.ErrorFormat
if fn == nil {
fn = ListFormatFunc
}
return fn(e.Errors)
}
// ErrorOrNil returns an error interface if this Error represents
// a list of errors, or returns nil if the list of errors is empty. This
// function is useful at the end of accumulation to make sure that the value
// returned represents the existence of errors.
func (e *Error) ErrorOrNil() error {
if e == nil {
return nil
}
if len(e.Errors) == 0 {
return nil
}
return e
}
func (e *Error) GoString() string {
return fmt.Sprintf("*%#v", *e)
}
// WrappedErrors returns the list of errors that this Error is wrapping.
// It is an implementation of the errwrap.Wrapper interface so that
// multierror.Error can be used with that library.
//
// This method is not safe to be called concurrently and is no different
// than accessing the Errors field directly. It is implemented only to
// satisfy the errwrap.Wrapper interface.
func (e *Error) WrappedErrors() []error {
return e.Errors
}

37
vendor/github.com/hashicorp/go-multierror/prefix.go generated vendored Normal file
View File

@@ -0,0 +1,37 @@
package multierror
import (
"fmt"
"github.com/hashicorp/errwrap"
)
// Prefix is a helper function that will prefix some text
// to the given error. If the error is a multierror.Error, then
// it will be prefixed to each wrapped error.
//
// This is useful to use when appending multiple multierrors
// together in order to give better scoping.
func Prefix(err error, prefix string) error {
if err == nil {
return nil
}
format := fmt.Sprintf("%s {{err}}", prefix)
switch err := err.(type) {
case *Error:
// Typed nils can reach here, so initialize if we are nil
if err == nil {
err = new(Error)
}
// Wrap each of the errors
for i, e := range err.Errors {
err.Errors[i] = errwrap.Wrapf(format, e)
}
return err
default:
return errwrap.Wrapf(format, err)
}
}

16
vendor/github.com/hashicorp/go-multierror/sort.go generated vendored Normal file
View File

@@ -0,0 +1,16 @@
package multierror
// Len implements sort.Interface function for length
func (err Error) Len() int {
return len(err.Errors)
}
// Swap implements sort.Interface function for swapping elements
func (err Error) Swap(i, j int) {
err.Errors[i], err.Errors[j] = err.Errors[j], err.Errors[i]
}
// Less implements sort.Interface function for determining order
func (err Error) Less(i, j int) bool {
return err.Errors[i].Error() < err.Errors[j].Error()
}

26
vendor/github.com/hashicorp/go-sockaddr/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,26 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
*.prof
.cover.out*
coverage.html

65
vendor/github.com/hashicorp/go-sockaddr/GNUmakefile generated vendored Normal file
View File

@@ -0,0 +1,65 @@
TOOLS= golang.org/x/tools/cover
GOCOVER_TMPFILE?= $(GOCOVER_FILE).tmp
GOCOVER_FILE?= .cover.out
GOCOVERHTML?= coverage.html
FIND=`/usr/bin/which 2> /dev/null gfind find | /usr/bin/grep -v ^no | /usr/bin/head -n 1`
XARGS=`/usr/bin/which 2> /dev/null gxargs xargs | /usr/bin/grep -v ^no | /usr/bin/head -n 1`
test:: $(GOCOVER_FILE)
@$(MAKE) -C cmd/sockaddr test
cover:: coverage_report
$(GOCOVER_FILE)::
@${FIND} . -type d ! -path '*cmd*' ! -path '*.git*' -print0 | ${XARGS} -0 -I % sh -ec "cd % && rm -f $(GOCOVER_TMPFILE) && go test -coverprofile=$(GOCOVER_TMPFILE)"
@echo 'mode: set' > $(GOCOVER_FILE)
@${FIND} . -type f ! -path '*cmd*' ! -path '*.git*' -name "$(GOCOVER_TMPFILE)" -print0 | ${XARGS} -0 -n1 cat $(GOCOVER_TMPFILE) | grep -v '^mode: ' >> ${PWD}/$(GOCOVER_FILE)
$(GOCOVERHTML): $(GOCOVER_FILE)
go tool cover -html=$(GOCOVER_FILE) -o $(GOCOVERHTML)
coverage_report:: $(GOCOVER_FILE)
go tool cover -html=$(GOCOVER_FILE)
audit_tools::
@go get -u github.com/golang/lint/golint && echo "Installed golint:"
@go get -u github.com/fzipp/gocyclo && echo "Installed gocyclo:"
@go get -u github.com/remyoudompheng/go-misc/deadcode && echo "Installed deadcode:"
@go get -u github.com/client9/misspell/cmd/misspell && echo "Installed misspell:"
@go get -u github.com/gordonklaus/ineffassign && echo "Installed ineffassign:"
audit::
deadcode
go tool vet -all *.go
go tool vet -shadow=true *.go
golint *.go
ineffassign .
gocyclo -over 65 *.go
misspell *.go
clean::
rm -f $(GOCOVER_FILE) $(GOCOVERHTML)
dev::
@go build
@$(MAKE) -B -C cmd/sockaddr sockaddr
install::
@go install
@$(MAKE) -C cmd/sockaddr install
doc::
@echo Visit: http://127.0.0.1:6161/pkg/github.com/hashicorp/go-sockaddr/
godoc -http=:6161 -goroot $GOROOT
world::
@set -e; \
for os in solaris darwin freebsd linux windows; do \
for arch in amd64; do \
printf "Building on %s-%s\n" "$${os}" "$${arch}" ; \
env GOOS="$${os}" GOARCH="$${arch}" go build -o /dev/null; \
done; \
done
$(MAKE) -C cmd/sockaddr world

373
vendor/github.com/hashicorp/go-sockaddr/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,373 @@
Mozilla Public License Version 2.0
==================================
1. Definitions
--------------
1.1. "Contributor"
means each individual or legal entity that creates, contributes to
the creation of, or owns Covered Software.
1.2. "Contributor Version"
means the combination of the Contributions of others (if any) used
by a Contributor and that particular Contributor's Contribution.
1.3. "Contribution"
means Covered Software of a particular Contributor.
1.4. "Covered Software"
means Source Code Form to which the initial Contributor has attached
the notice in Exhibit A, the Executable Form of such Source Code
Form, and Modifications of such Source Code Form, in each case
including portions thereof.
1.5. "Incompatible With Secondary Licenses"
means
(a) that the initial Contributor has attached the notice described
in Exhibit B to the Covered Software; or
(b) that the Covered Software was made available under the terms of
version 1.1 or earlier of the License, but not also under the
terms of a Secondary License.
1.6. "Executable Form"
means any form of the work other than Source Code Form.
1.7. "Larger Work"
means a work that combines Covered Software with other material, in
a separate file or files, that is not Covered Software.
1.8. "License"
means this document.
1.9. "Licensable"
means having the right to grant, to the maximum extent possible,
whether at the time of the initial grant or subsequently, any and
all of the rights conveyed by this License.
1.10. "Modifications"
means any of the following:
(a) any file in Source Code Form that results from an addition to,
deletion from, or modification of the contents of Covered
Software; or
(b) any new file in Source Code Form that contains any Covered
Software.
1.11. "Patent Claims" of a Contributor
means any patent claim(s), including without limitation, method,
process, and apparatus claims, in any patent Licensable by such
Contributor that would be infringed, but for the grant of the
License, by the making, using, selling, offering for sale, having
made, import, or transfer of either its Contributions or its
Contributor Version.
1.12. "Secondary License"
means either the GNU General Public License, Version 2.0, the GNU
Lesser General Public License, Version 2.1, the GNU Affero General
Public License, Version 3.0, or any later versions of those
licenses.
1.13. "Source Code Form"
means the form of the work preferred for making modifications.
1.14. "You" (or "Your")
means an individual or a legal entity exercising rights under this
License. For legal entities, "You" includes any entity that
controls, is controlled by, or is under common control with You. For
purposes of this definition, "control" means (a) the power, direct
or indirect, to cause the direction or management of such entity,
whether by contract or otherwise, or (b) ownership of more than
fifty percent (50%) of the outstanding shares or beneficial
ownership of such entity.
2. License Grants and Conditions
--------------------------------
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
(a) under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or
as part of a Larger Work; and
(b) under Patent Claims of such Contributor to make, use, sell, offer
for sale, have made, import, and otherwise transfer either its
Contributions or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution
become effective for each Contribution on the date the Contributor first
distributes such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under
this License. No additional rights or licenses will be implied from the
distribution or licensing of Covered Software under this License.
Notwithstanding Section 2.1(b) above, no patent license is granted by a
Contributor:
(a) for any code that a Contributor has removed from Covered Software;
or
(b) for infringements caused by: (i) Your and any other third party's
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
(c) under Patent Claims infringed by Covered Software in the absence of
its Contributions.
This License does not grant any rights in the trademarks, service marks,
or logos of any Contributor (except as may be necessary to comply with
the notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this
License (see Section 10.2) or under the terms of a Secondary License (if
permitted under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its
Contributions are its original creation(s) or it has sufficient rights
to grant the rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under
applicable copyright doctrines of fair use, fair dealing, or other
equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted
in Section 2.1.
3. Responsibilities
-------------------
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under
the terms of this License. You must inform recipients that the Source
Code Form of the Covered Software is governed by the terms of this
License, and how they can obtain a copy of this License. You may not
attempt to alter or restrict the recipients' rights in the Source Code
Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
(a) such Covered Software must also be made available in Source Code
Form, as described in Section 3.1, and You must inform recipients of
the Executable Form how they can obtain a copy of such Source Code
Form by reasonable means in a timely manner, at a charge no more
than the cost of distribution to the recipient; and
(b) You may distribute such Executable Form under the terms of this
License, or sublicense it under different terms, provided that the
license for the Executable Form does not attempt to limit or alter
the recipients' rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for
the Covered Software. If the Larger Work is a combination of Covered
Software with a work governed by one or more Secondary Licenses, and the
Covered Software is not Incompatible With Secondary Licenses, this
License permits You to additionally distribute such Covered Software
under the terms of such Secondary License(s), so that the recipient of
the Larger Work may, at their option, further distribute the Covered
Software under the terms of either this License or such Secondary
License(s).
3.4. Notices
You may not remove or alter the substance of any license notices
(including copyright notices, patent notices, disclaimers of warranty,
or limitations of liability) contained within the Source Code Form of
the Covered Software, except that You may alter any license notices to
the extent required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on
behalf of any Contributor. You must make it absolutely clear that any
such warranty, support, indemnity, or liability obligation is offered by
You alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
---------------------------------------------------
If it is impossible for You to comply with any of the terms of this
License with respect to some or all of the Covered Software due to
statute, judicial order, or regulation then You must: (a) comply with
the terms of this License to the maximum extent possible; and (b)
describe the limitations and the code they affect. Such description must
be placed in a text file included with all distributions of the Covered
Software under this License. Except to the extent prohibited by statute
or regulation, such description must be sufficiently detailed for a
recipient of ordinary skill to be able to understand it.
5. Termination
--------------
5.1. The rights granted under this License will terminate automatically
if You fail to comply with any of its terms. However, if You become
compliant, then the rights granted under this License from a particular
Contributor are reinstated (a) provisionally, unless and until such
Contributor explicitly and finally terminates Your grants, and (b) on an
ongoing basis, if such Contributor fails to notify You of the
non-compliance by some reasonable means prior to 60 days after You have
come back into compliance. Moreover, Your grants from a particular
Contributor are reinstated on an ongoing basis if such Contributor
notifies You of the non-compliance by some reasonable means, this is the
first time You have received notice of non-compliance with this License
from such Contributor, and You become compliant prior to 30 days after
Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions,
counter-claims, and cross-claims) alleging that a Contributor Version
directly or indirectly infringes any patent, then the rights granted to
You by any and all Contributors for the Covered Software under Section
2.1 of this License shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all
end user license agreements (excluding distributors and resellers) which
have been validly granted by You or Your distributors under this License
prior to termination shall survive termination.
************************************************************************
* *
* 6. Disclaimer of Warranty *
* ------------------------- *
* *
* Covered Software is provided under this License on an "as is" *
* basis, without warranty of any kind, either expressed, implied, or *
* statutory, including, without limitation, warranties that the *
* Covered Software is free of defects, merchantable, fit for a *
* particular purpose or non-infringing. The entire risk as to the *
* quality and performance of the Covered Software is with You. *
* Should any Covered Software prove defective in any respect, You *
* (not any Contributor) assume the cost of any necessary servicing, *
* repair, or correction. This disclaimer of warranty constitutes an *
* essential part of this License. No use of any Covered Software is *
* authorized under this License except under this disclaimer. *
* *
************************************************************************
************************************************************************
* *
* 7. Limitation of Liability *
* -------------------------- *
* *
* Under no circumstances and under no legal theory, whether tort *
* (including negligence), contract, or otherwise, shall any *
* Contributor, or anyone who distributes Covered Software as *
* permitted above, be liable to You for any direct, indirect, *
* special, incidental, or consequential damages of any character *
* including, without limitation, damages for lost profits, loss of *
* goodwill, work stoppage, computer failure or malfunction, or any *
* and all other commercial damages or losses, even if such party *
* shall have been informed of the possibility of such damages. This *
* limitation of liability shall not apply to liability for death or *
* personal injury resulting from such party's negligence to the *
* extent applicable law prohibits such limitation. Some *
* jurisdictions do not allow the exclusion or limitation of *
* incidental or consequential damages, so this exclusion and *
* limitation may not apply to You. *
* *
************************************************************************
8. Litigation
-------------
Any litigation relating to this License may be brought only in the
courts of a jurisdiction where the defendant maintains its principal
place of business and such litigation shall be governed by laws of that
jurisdiction, without reference to its conflict-of-law provisions.
Nothing in this Section shall prevent a party's ability to bring
cross-claims or counter-claims.
9. Miscellaneous
----------------
This License represents the complete agreement concerning the subject
matter hereof. If any provision of this License is held to be
unenforceable, such provision shall be reformed only to the extent
necessary to make it enforceable. Any law or regulation which provides
that the language of a contract shall be construed against the drafter
shall not be used to construe this License against a Contributor.
10. Versions of the License
---------------------------
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version
of the License under which You originally received the Covered Software,
or under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a
modified version of this License if you rename the license and remove
any references to the name of the license steward (except to note that
such modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary
Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
-------------------------------------------
This Source Code Form is subject to the terms of the Mozilla Public
License, v. 2.0. If a copy of the MPL was not distributed with this
file, You can obtain one at http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular
file, then You may include the notice in a location (such as a LICENSE
file in a relevant directory) where a recipient would be likely to look
for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - "Incompatible With Secondary Licenses" Notice
---------------------------------------------------------
This Source Code Form is "Incompatible With Secondary Licenses", as
defined by the Mozilla Public License, v. 2.0.

118
vendor/github.com/hashicorp/go-sockaddr/README.md generated vendored Normal file
View File

@@ -0,0 +1,118 @@
# go-sockaddr
## `sockaddr` Library
Socket address convenience functions for Go. `go-sockaddr` is a convenience
library that makes doing the right thing with IP addresses easy. `go-sockaddr`
is loosely modeled after the UNIX `sockaddr_t` and creates a union of the family
of `sockaddr_t` types (see below for an ascii diagram). Library documentation
is available
at
[https://godoc.org/github.com/hashicorp/go-sockaddr](https://godoc.org/github.com/hashicorp/go-sockaddr).
The primary intent of the library was to make it possible to define heuristics
for selecting the correct IP addresses when a configuration is evaluated at
runtime. See
the
[docs](https://godoc.org/github.com/hashicorp/go-sockaddr),
[`template` package](https://godoc.org/github.com/hashicorp/go-sockaddr/template),
tests,
and
[CLI utility](https://github.com/hashicorp/go-sockaddr/tree/master/cmd/sockaddr)
for details and hints as to how to use this library.
For example, with this library it is possible to find an IP address that:
* is attached to a default route
([`GetDefaultInterfaces()`](https://godoc.org/github.com/hashicorp/go-sockaddr#GetDefaultInterfaces))
* is contained within a CIDR block ([`IfByNetwork()`](https://godoc.org/github.com/hashicorp/go-sockaddr#IfByNetwork))
* is an RFC1918 address
([`IfByRFC("1918")`](https://godoc.org/github.com/hashicorp/go-sockaddr#IfByRFC))
* is ordered
([`OrderedIfAddrBy(args)`](https://godoc.org/github.com/hashicorp/go-sockaddr#OrderedIfAddrBy) where
`args` includes, but is not limited
to,
[`AscIfType`](https://godoc.org/github.com/hashicorp/go-sockaddr#AscIfType),
[`AscNetworkSize`](https://godoc.org/github.com/hashicorp/go-sockaddr#AscNetworkSize))
* excludes all IPv6 addresses
([`IfByType("^(IPv4)$")`](https://godoc.org/github.com/hashicorp/go-sockaddr#IfByType))
* is larger than a `/32`
([`IfByMaskSize(32)`](https://godoc.org/github.com/hashicorp/go-sockaddr#IfByMaskSize))
* is not on a `down` interface
([`ExcludeIfs("flags", "down")`](https://godoc.org/github.com/hashicorp/go-sockaddr#ExcludeIfs))
* preferences an IPv6 address over an IPv4 address
([`SortIfByType()`](https://godoc.org/github.com/hashicorp/go-sockaddr#SortIfByType) +
[`ReverseIfAddrs()`](https://godoc.org/github.com/hashicorp/go-sockaddr#ReverseIfAddrs)); and
* excludes any IP in RFC6890 address
([`IfByRFC("6890")`](https://godoc.org/github.com/hashicorp/go-sockaddr#IfByRFC))
Or any combination or variation therein.
There are also a few simple helper functions such as `GetPublicIP` and
`GetPrivateIP` which both return strings and select the first public or private
IP address on the default interface, respectively. Similarly, there is also a
helper function called `GetInterfaceIP` which returns the first usable IP
address on the named interface.
## `sockaddr` CLI
Given the possible complexity of the `sockaddr` library, there is a CLI utility
that accompanies the library, also
called
[`sockaddr`](https://github.com/hashicorp/go-sockaddr/tree/master/cmd/sockaddr).
The
[`sockaddr`](https://github.com/hashicorp/go-sockaddr/tree/master/cmd/sockaddr)
utility exposes nearly all of the functionality of the library and can be used
either as an administrative tool or testing tool. To install
the
[`sockaddr`](https://github.com/hashicorp/go-sockaddr/tree/master/cmd/sockaddr),
run:
```text
$ go get -u github.com/hashicorp/go-sockaddr/cmd/sockaddr
```
If you're familiar with UNIX's `sockaddr` struct's, the following diagram
mapping the C `sockaddr` (top) to `go-sockaddr` structs (bottom) and
interfaces will be helpful:
```
+-------------------------------------------------------+
| |
| sockaddr |
| SockAddr |
| |
| +--------------+ +----------------------------------+ |
| | sockaddr_un | | | |
| | SockAddrUnix | | sockaddr_in{,6} | |
| +--------------+ | IPAddr | |
| | | |
| | +-------------+ +--------------+ | |
| | | sockaddr_in | | sockaddr_in6 | | |
| | | IPv4Addr | | IPv6Addr | | |
| | +-------------+ +--------------+ | |
| | | |
| +----------------------------------+ |
| |
+-------------------------------------------------------+
```
## Inspiration and Design
There were many subtle inspirations that led to this design, but the most direct
inspiration for the filtering syntax was
OpenBSD's
[`pf.conf(5)`](https://www.freebsd.org/cgi/man.cgi?query=pf.conf&apropos=0&sektion=0&arch=default&format=html#PARAMETERS) firewall
syntax that lets you select the first IP address on a given named interface.
The original problem stemmed from:
* needing to create immutable images using [Packer](https://www.packer.io) that
ran the [Consul](https://www.consul.io) process (Consul can only use one IP
address at a time);
* images that may or may not have multiple interfaces or IP addresses at
runtime; and
* we didn't want to rely on configuration management to render out the correct
IP address if the VM image was being used in an auto-scaling group.
Instead we needed some way to codify a heuristic that would correctly select the
right IP address but the input parameters were not known when the image was
created.

5
vendor/github.com/hashicorp/go-sockaddr/doc.go generated vendored Normal file
View File

@@ -0,0 +1,5 @@
/*
Package sockaddr is a Go implementation of the UNIX socket family data types and
related helper functions.
*/
package sockaddr

254
vendor/github.com/hashicorp/go-sockaddr/ifaddr.go generated vendored Normal file
View File

@@ -0,0 +1,254 @@
package sockaddr
import "strings"
// ifAddrAttrMap is a map of the IfAddr type-specific attributes.
var ifAddrAttrMap map[AttrName]func(IfAddr) string
var ifAddrAttrs []AttrName
func init() {
ifAddrAttrInit()
}
// GetPrivateIP returns a string with a single IP address that is part of RFC
// 6890 and has a default route. If the system can't determine its IP address
// or find an RFC 6890 IP address, an empty string will be returned instead.
// This function is the `eval` equivalent of:
//
// ```
// $ sockaddr eval -r '{{GetPrivateInterfaces | attr "address"}}'
/// ```
func GetPrivateIP() (string, error) {
privateIfs, err := GetPrivateInterfaces()
if err != nil {
return "", err
}
if len(privateIfs) < 1 {
return "", nil
}
ifAddr := privateIfs[0]
ip := *ToIPAddr(ifAddr.SockAddr)
return ip.NetIP().String(), nil
}
// GetPrivateIPs returns a string with all IP addresses that are part of RFC
// 6890 (regardless of whether or not there is a default route, unlike
// GetPublicIP). If the system can't find any RFC 6890 IP addresses, an empty
// string will be returned instead. This function is the `eval` equivalent of:
//
// ```
// $ sockaddr eval -r '{{GetAllInterfaces | include "RFC" "6890" | join "address" " "}}'
/// ```
func GetPrivateIPs() (string, error) {
ifAddrs, err := GetAllInterfaces()
if err != nil {
return "", err
} else if len(ifAddrs) < 1 {
return "", nil
}
ifAddrs, _ = FilterIfByType(ifAddrs, TypeIP)
if len(ifAddrs) == 0 {
return "", nil
}
OrderedIfAddrBy(AscIfType, AscIfNetworkSize).Sort(ifAddrs)
ifAddrs, _, err = IfByRFC("6890", ifAddrs)
if err != nil {
return "", err
} else if len(ifAddrs) == 0 {
return "", nil
}
_, ifAddrs, err = IfByRFC(ForwardingBlacklistRFC, ifAddrs)
if err != nil {
return "", err
} else if len(ifAddrs) == 0 {
return "", nil
}
ips := make([]string, 0, len(ifAddrs))
for _, ifAddr := range ifAddrs {
ip := *ToIPAddr(ifAddr.SockAddr)
s := ip.NetIP().String()
ips = append(ips, s)
}
return strings.Join(ips, " "), nil
}
// GetPublicIP returns a string with a single IP address that is NOT part of RFC
// 6890 and has a default route. If the system can't determine its IP address
// or find a non RFC 6890 IP address, an empty string will be returned instead.
// This function is the `eval` equivalent of:
//
// ```
// $ sockaddr eval -r '{{GetPublicInterfaces | attr "address"}}'
/// ```
func GetPublicIP() (string, error) {
publicIfs, err := GetPublicInterfaces()
if err != nil {
return "", err
} else if len(publicIfs) < 1 {
return "", nil
}
ifAddr := publicIfs[0]
ip := *ToIPAddr(ifAddr.SockAddr)
return ip.NetIP().String(), nil
}
// GetPublicIPs returns a string with all IP addresses that are NOT part of RFC
// 6890 (regardless of whether or not there is a default route, unlike
// GetPublicIP). If the system can't find any non RFC 6890 IP addresses, an
// empty string will be returned instead. This function is the `eval`
// equivalent of:
//
// ```
// $ sockaddr eval -r '{{GetAllInterfaces | exclude "RFC" "6890" | join "address" " "}}'
/// ```
func GetPublicIPs() (string, error) {
ifAddrs, err := GetAllInterfaces()
if err != nil {
return "", err
} else if len(ifAddrs) < 1 {
return "", nil
}
ifAddrs, _ = FilterIfByType(ifAddrs, TypeIP)
if len(ifAddrs) == 0 {
return "", nil
}
OrderedIfAddrBy(AscIfType, AscIfNetworkSize).Sort(ifAddrs)
_, ifAddrs, err = IfByRFC("6890", ifAddrs)
if err != nil {
return "", err
} else if len(ifAddrs) == 0 {
return "", nil
}
ips := make([]string, 0, len(ifAddrs))
for _, ifAddr := range ifAddrs {
ip := *ToIPAddr(ifAddr.SockAddr)
s := ip.NetIP().String()
ips = append(ips, s)
}
return strings.Join(ips, " "), nil
}
// GetInterfaceIP returns a string with a single IP address sorted by the size
// of the network (i.e. IP addresses with a smaller netmask, larger network
// size, are sorted first). This function is the `eval` equivalent of:
//
// ```
// $ sockaddr eval -r '{{GetAllInterfaces | include "name" <<ARG>> | sort "type,size" | include "flag" "forwardable" | attr "address" }}'
/// ```
func GetInterfaceIP(namedIfRE string) (string, error) {
ifAddrs, err := GetAllInterfaces()
if err != nil {
return "", err
}
ifAddrs, _, err = IfByName(namedIfRE, ifAddrs)
if err != nil {
return "", err
}
ifAddrs, _, err = IfByFlag("forwardable", ifAddrs)
if err != nil {
return "", err
}
ifAddrs, err = SortIfBy("+type,+size", ifAddrs)
if err != nil {
return "", err
}
if len(ifAddrs) == 0 {
return "", err
}
ip := ToIPAddr(ifAddrs[0].SockAddr)
if ip == nil {
return "", err
}
return IPAddrAttr(*ip, "address"), nil
}
// GetInterfaceIPs returns a string with all IPs, sorted by the size of the
// network (i.e. IP addresses with a smaller netmask, larger network size, are
// sorted first), on a named interface. This function is the `eval` equivalent
// of:
//
// ```
// $ sockaddr eval -r '{{GetAllInterfaces | include "name" <<ARG>> | sort "type,size" | join "address" " "}}'
/// ```
func GetInterfaceIPs(namedIfRE string) (string, error) {
ifAddrs, err := GetAllInterfaces()
if err != nil {
return "", err
}
ifAddrs, _, err = IfByName(namedIfRE, ifAddrs)
if err != nil {
return "", err
}
ifAddrs, err = SortIfBy("+type,+size", ifAddrs)
if err != nil {
return "", err
}
if len(ifAddrs) == 0 {
return "", err
}
ips := make([]string, 0, len(ifAddrs))
for _, ifAddr := range ifAddrs {
ip := *ToIPAddr(ifAddr.SockAddr)
s := ip.NetIP().String()
ips = append(ips, s)
}
return strings.Join(ips, " "), nil
}
// IfAddrAttrs returns a list of attributes supported by the IfAddr type
func IfAddrAttrs() []AttrName {
return ifAddrAttrs
}
// IfAddrAttr returns a string representation of an attribute for the given
// IfAddr.
func IfAddrAttr(ifAddr IfAddr, attrName AttrName) string {
fn, found := ifAddrAttrMap[attrName]
if !found {
return ""
}
return fn(ifAddr)
}
// ifAddrAttrInit is called once at init()
func ifAddrAttrInit() {
// Sorted for human readability
ifAddrAttrs = []AttrName{
"flags",
"name",
}
ifAddrAttrMap = map[AttrName]func(ifAddr IfAddr) string{
"flags": func(ifAddr IfAddr) string {
return ifAddr.Interface.Flags.String()
},
"name": func(ifAddr IfAddr) string {
return ifAddr.Interface.Name
},
}
}

1281
vendor/github.com/hashicorp/go-sockaddr/ifaddrs.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

65
vendor/github.com/hashicorp/go-sockaddr/ifattr.go generated vendored Normal file
View File

@@ -0,0 +1,65 @@
package sockaddr
import (
"fmt"
"net"
)
// IfAddr is a union of a SockAddr and a net.Interface.
type IfAddr struct {
SockAddr
net.Interface
}
// Attr returns the named attribute as a string
func (ifAddr IfAddr) Attr(attrName AttrName) (string, error) {
val := IfAddrAttr(ifAddr, attrName)
if val != "" {
return val, nil
}
return Attr(ifAddr.SockAddr, attrName)
}
// Attr returns the named attribute as a string
func Attr(sa SockAddr, attrName AttrName) (string, error) {
switch sockType := sa.Type(); {
case sockType&TypeIP != 0:
ip := *ToIPAddr(sa)
attrVal := IPAddrAttr(ip, attrName)
if attrVal != "" {
return attrVal, nil
}
if sockType == TypeIPv4 {
ipv4 := *ToIPv4Addr(sa)
attrVal := IPv4AddrAttr(ipv4, attrName)
if attrVal != "" {
return attrVal, nil
}
} else if sockType == TypeIPv6 {
ipv6 := *ToIPv6Addr(sa)
attrVal := IPv6AddrAttr(ipv6, attrName)
if attrVal != "" {
return attrVal, nil
}
}
case sockType == TypeUnix:
us := *ToUnixSock(sa)
attrVal := UnixSockAttr(us, attrName)
if attrVal != "" {
return attrVal, nil
}
}
// Non type-specific attributes
switch attrName {
case "string":
return sa.String(), nil
case "type":
return sa.Type().String(), nil
}
return "", fmt.Errorf("unsupported attribute name %q", attrName)
}

169
vendor/github.com/hashicorp/go-sockaddr/ipaddr.go generated vendored Normal file
View File

@@ -0,0 +1,169 @@
package sockaddr
import (
"fmt"
"math/big"
"net"
"strings"
)
// Constants for the sizes of IPv3, IPv4, and IPv6 address types.
const (
IPv3len = 6
IPv4len = 4
IPv6len = 16
)
// IPAddr is a generic IP address interface for IPv4 and IPv6 addresses,
// networks, and socket endpoints.
type IPAddr interface {
SockAddr
AddressBinString() string
AddressHexString() string
Cmp(SockAddr) int
CmpAddress(SockAddr) int
CmpPort(SockAddr) int
FirstUsable() IPAddr
Host() IPAddr
IPPort() IPPort
LastUsable() IPAddr
Maskbits() int
NetIP() *net.IP
NetIPMask() *net.IPMask
NetIPNet() *net.IPNet
Network() IPAddr
Octets() []int
}
// IPPort is the type for an IP port number for the TCP and UDP IP transports.
type IPPort uint16
// IPPrefixLen is a typed integer representing the prefix length for a given
// IPAddr.
type IPPrefixLen byte
// ipAddrAttrMap is a map of the IPAddr type-specific attributes.
var ipAddrAttrMap map[AttrName]func(IPAddr) string
var ipAddrAttrs []AttrName
func init() {
ipAddrInit()
}
// NewIPAddr creates a new IPAddr from a string. Returns nil if the string is
// not an IPv4 or an IPv6 address.
func NewIPAddr(addr string) (IPAddr, error) {
ipv4Addr, err := NewIPv4Addr(addr)
if err == nil {
return ipv4Addr, nil
}
ipv6Addr, err := NewIPv6Addr(addr)
if err == nil {
return ipv6Addr, nil
}
return nil, fmt.Errorf("invalid IPAddr %v", addr)
}
// IPAddrAttr returns a string representation of an attribute for the given
// IPAddr.
func IPAddrAttr(ip IPAddr, selector AttrName) string {
fn, found := ipAddrAttrMap[selector]
if !found {
return ""
}
return fn(ip)
}
// IPAttrs returns a list of attributes supported by the IPAddr type
func IPAttrs() []AttrName {
return ipAddrAttrs
}
// MustIPAddr is a helper method that must return an IPAddr or panic on invalid
// input.
func MustIPAddr(addr string) IPAddr {
ip, err := NewIPAddr(addr)
if err != nil {
panic(fmt.Sprintf("Unable to create an IPAddr from %+q: %v", addr, err))
}
return ip
}
// ipAddrInit is called once at init()
func ipAddrInit() {
// Sorted for human readability
ipAddrAttrs = []AttrName{
"host",
"address",
"port",
"netmask",
"network",
"mask_bits",
"binary",
"hex",
"first_usable",
"last_usable",
"octets",
}
ipAddrAttrMap = map[AttrName]func(ip IPAddr) string{
"address": func(ip IPAddr) string {
return ip.NetIP().String()
},
"binary": func(ip IPAddr) string {
return ip.AddressBinString()
},
"first_usable": func(ip IPAddr) string {
return ip.FirstUsable().String()
},
"hex": func(ip IPAddr) string {
return ip.AddressHexString()
},
"host": func(ip IPAddr) string {
return ip.Host().String()
},
"last_usable": func(ip IPAddr) string {
return ip.LastUsable().String()
},
"mask_bits": func(ip IPAddr) string {
return fmt.Sprintf("%d", ip.Maskbits())
},
"netmask": func(ip IPAddr) string {
switch v := ip.(type) {
case IPv4Addr:
ipv4Mask := IPv4Addr{
Address: IPv4Address(v.Mask),
Mask: IPv4HostMask,
}
return ipv4Mask.String()
case IPv6Addr:
ipv6Mask := new(big.Int)
ipv6Mask.Set(v.Mask)
ipv6MaskAddr := IPv6Addr{
Address: IPv6Address(ipv6Mask),
Mask: ipv6HostMask,
}
return ipv6MaskAddr.String()
default:
return fmt.Sprintf("<unsupported type: %T>", ip)
}
},
"network": func(ip IPAddr) string {
return ip.Network().NetIP().String()
},
"octets": func(ip IPAddr) string {
octets := ip.Octets()
octetStrs := make([]string, 0, len(octets))
for _, octet := range octets {
octetStrs = append(octetStrs, fmt.Sprintf("%d", octet))
}
return strings.Join(octetStrs, " ")
},
"port": func(ip IPAddr) string {
return fmt.Sprintf("%d", ip.IPPort())
},
}
}

98
vendor/github.com/hashicorp/go-sockaddr/ipaddrs.go generated vendored Normal file
View File

@@ -0,0 +1,98 @@
package sockaddr
import "bytes"
type IPAddrs []IPAddr
func (s IPAddrs) Len() int { return len(s) }
func (s IPAddrs) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// // SortIPAddrsByCmp is a type that satisfies sort.Interface and can be used
// // by the routines in this package. The SortIPAddrsByCmp type is used to
// // sort IPAddrs by Cmp()
// type SortIPAddrsByCmp struct{ IPAddrs }
// // Less reports whether the element with index i should sort before the
// // element with index j.
// func (s SortIPAddrsByCmp) Less(i, j int) bool {
// // Sort by Type, then address, then port number.
// return Less(s.IPAddrs[i], s.IPAddrs[j])
// }
// SortIPAddrsBySpecificMaskLen is a type that satisfies sort.Interface and
// can be used by the routines in this package. The
// SortIPAddrsBySpecificMaskLen type is used to sort IPAddrs by smallest
// network (most specific to largest network).
type SortIPAddrsByNetworkSize struct{ IPAddrs }
// Less reports whether the element with index i should sort before the
// element with index j.
func (s SortIPAddrsByNetworkSize) Less(i, j int) bool {
// Sort masks with a larger binary value (i.e. fewer hosts per network
// prefix) after masks with a smaller value (larger number of hosts per
// prefix).
switch bytes.Compare([]byte(*s.IPAddrs[i].NetIPMask()), []byte(*s.IPAddrs[j].NetIPMask())) {
case 0:
// Fall through to the second test if the net.IPMasks are the
// same.
break
case 1:
return true
case -1:
return false
default:
panic("bad, m'kay?")
}
// Sort IPs based on the length (i.e. prefer IPv4 over IPv6).
iLen := len(*s.IPAddrs[i].NetIP())
jLen := len(*s.IPAddrs[j].NetIP())
if iLen != jLen {
return iLen > jLen
}
// Sort IPs based on their network address from lowest to highest.
switch bytes.Compare(s.IPAddrs[i].NetIPNet().IP, s.IPAddrs[j].NetIPNet().IP) {
case 0:
break
case 1:
return false
case -1:
return true
default:
panic("lol wut?")
}
// If a host does not have a port set, it always sorts after hosts
// that have a port (e.g. a host with a /32 and port number is more
// specific and should sort first over a host with a /32 but no port
// set).
if s.IPAddrs[i].IPPort() == 0 || s.IPAddrs[j].IPPort() == 0 {
return false
}
return s.IPAddrs[i].IPPort() < s.IPAddrs[j].IPPort()
}
// SortIPAddrsBySpecificMaskLen is a type that satisfies sort.Interface and
// can be used by the routines in this package. The
// SortIPAddrsBySpecificMaskLen type is used to sort IPAddrs by smallest
// network (most specific to largest network).
type SortIPAddrsBySpecificMaskLen struct{ IPAddrs }
// Less reports whether the element with index i should sort before the
// element with index j.
func (s SortIPAddrsBySpecificMaskLen) Less(i, j int) bool {
return s.IPAddrs[i].Maskbits() > s.IPAddrs[j].Maskbits()
}
// SortIPAddrsByBroadMaskLen is a type that satisfies sort.Interface and can
// be used by the routines in this package. The SortIPAddrsByBroadMaskLen
// type is used to sort IPAddrs by largest network (i.e. largest subnets
// first).
type SortIPAddrsByBroadMaskLen struct{ IPAddrs }
// Less reports whether the element with index i should sort before the
// element with index j.
func (s SortIPAddrsByBroadMaskLen) Less(i, j int) bool {
return s.IPAddrs[i].Maskbits() < s.IPAddrs[j].Maskbits()
}

516
vendor/github.com/hashicorp/go-sockaddr/ipv4addr.go generated vendored Normal file
View File

@@ -0,0 +1,516 @@
package sockaddr
import (
"encoding/binary"
"fmt"
"net"
"regexp"
"strconv"
"strings"
)
type (
// IPv4Address is a named type representing an IPv4 address.
IPv4Address uint32
// IPv4Network is a named type representing an IPv4 network.
IPv4Network uint32
// IPv4Mask is a named type representing an IPv4 network mask.
IPv4Mask uint32
)
// IPv4HostMask is a constant represents a /32 IPv4 Address
// (i.e. 255.255.255.255).
const IPv4HostMask = IPv4Mask(0xffffffff)
// ipv4AddrAttrMap is a map of the IPv4Addr type-specific attributes.
var ipv4AddrAttrMap map[AttrName]func(IPv4Addr) string
var ipv4AddrAttrs []AttrName
var trailingHexNetmaskRE *regexp.Regexp
// IPv4Addr implements a convenience wrapper around the union of Go's
// built-in net.IP and net.IPNet types. In UNIX-speak, IPv4Addr implements
// `sockaddr` when the the address family is set to AF_INET
// (i.e. `sockaddr_in`).
type IPv4Addr struct {
IPAddr
Address IPv4Address
Mask IPv4Mask
Port IPPort
}
func init() {
ipv4AddrInit()
trailingHexNetmaskRE = regexp.MustCompile(`/([0f]{8})$`)
}
// NewIPv4Addr creates an IPv4Addr from a string. String can be in the form
// of either an IPv4:port (e.g. `1.2.3.4:80`, in which case the mask is
// assumed to be a `/32`), an IPv4 address (e.g. `1.2.3.4`, also with a `/32`
// mask), or an IPv4 CIDR (e.g. `1.2.3.4/24`, which has its IP port
// initialized to zero). ipv4Str can not be a hostname.
//
// NOTE: Many net.*() routines will initialize and return an IPv6 address.
// To create uint32 values from net.IP, always test to make sure the address
// returned can be converted to a 4 byte array using To4().
func NewIPv4Addr(ipv4Str string) (IPv4Addr, error) {
// Strip off any bogus hex-encoded netmasks that will be mis-parsed by Go. In
// particular, clients with the Barracuda VPN client will see something like:
// `192.168.3.51/00ffffff` as their IP address.
trailingHexNetmaskRe := trailingHexNetmaskRE.Copy()
if match := trailingHexNetmaskRe.FindStringIndex(ipv4Str); match != nil {
ipv4Str = ipv4Str[:match[0]]
}
// Parse as an IPv4 CIDR
ipAddr, network, err := net.ParseCIDR(ipv4Str)
if err == nil {
ipv4 := ipAddr.To4()
if ipv4 == nil {
return IPv4Addr{}, fmt.Errorf("Unable to convert %s to an IPv4 address", ipv4Str)
}
// If we see an IPv6 netmask, convert it to an IPv4 mask.
netmaskSepPos := strings.LastIndexByte(ipv4Str, '/')
if netmaskSepPos != -1 && netmaskSepPos+1 < len(ipv4Str) {
netMask, err := strconv.ParseUint(ipv4Str[netmaskSepPos+1:], 10, 8)
if err != nil {
return IPv4Addr{}, fmt.Errorf("Unable to convert %s to an IPv4 address: unable to parse CIDR netmask: %v", ipv4Str, err)
} else if netMask > 128 {
return IPv4Addr{}, fmt.Errorf("Unable to convert %s to an IPv4 address: invalid CIDR netmask", ipv4Str)
}
if netMask >= 96 {
// Convert the IPv6 netmask to an IPv4 netmask
network.Mask = net.CIDRMask(int(netMask-96), IPv4len*8)
}
}
ipv4Addr := IPv4Addr{
Address: IPv4Address(binary.BigEndian.Uint32(ipv4)),
Mask: IPv4Mask(binary.BigEndian.Uint32(network.Mask)),
}
return ipv4Addr, nil
}
// Attempt to parse ipv4Str as a /32 host with a port number.
tcpAddr, err := net.ResolveTCPAddr("tcp4", ipv4Str)
if err == nil {
ipv4 := tcpAddr.IP.To4()
if ipv4 == nil {
return IPv4Addr{}, fmt.Errorf("Unable to resolve %+q as an IPv4 address", ipv4Str)
}
ipv4Uint32 := binary.BigEndian.Uint32(ipv4)
ipv4Addr := IPv4Addr{
Address: IPv4Address(ipv4Uint32),
Mask: IPv4HostMask,
Port: IPPort(tcpAddr.Port),
}
return ipv4Addr, nil
}
// Parse as a naked IPv4 address
ip := net.ParseIP(ipv4Str)
if ip != nil {
ipv4 := ip.To4()
if ipv4 == nil {
return IPv4Addr{}, fmt.Errorf("Unable to string convert %+q to an IPv4 address", ipv4Str)
}
ipv4Uint32 := binary.BigEndian.Uint32(ipv4)
ipv4Addr := IPv4Addr{
Address: IPv4Address(ipv4Uint32),
Mask: IPv4HostMask,
}
return ipv4Addr, nil
}
return IPv4Addr{}, fmt.Errorf("Unable to parse %+q to an IPv4 address: %v", ipv4Str, err)
}
// AddressBinString returns a string with the IPv4Addr's Address represented
// as a sequence of '0' and '1' characters. This method is useful for
// debugging or by operators who want to inspect an address.
func (ipv4 IPv4Addr) AddressBinString() string {
return fmt.Sprintf("%032s", strconv.FormatUint(uint64(ipv4.Address), 2))
}
// AddressHexString returns a string with the IPv4Addr address represented as
// a sequence of hex characters. This method is useful for debugging or by
// operators who want to inspect an address.
func (ipv4 IPv4Addr) AddressHexString() string {
return fmt.Sprintf("%08s", strconv.FormatUint(uint64(ipv4.Address), 16))
}
// Broadcast is an IPv4Addr-only method that returns the broadcast address of
// the network.
//
// NOTE: IPv6 only supports multicast, so this method only exists for
// IPv4Addr.
func (ipv4 IPv4Addr) Broadcast() IPAddr {
// Nothing should listen on a broadcast address.
return IPv4Addr{
Address: IPv4Address(ipv4.BroadcastAddress()),
Mask: IPv4HostMask,
}
}
// BroadcastAddress returns a IPv4Network of the IPv4Addr's broadcast
// address.
func (ipv4 IPv4Addr) BroadcastAddress() IPv4Network {
return IPv4Network(uint32(ipv4.Address)&uint32(ipv4.Mask) | ^uint32(ipv4.Mask))
}
// CmpAddress follows the Cmp() standard protocol and returns:
//
// - -1 If the receiver should sort first because its address is lower than arg
// - 0 if the SockAddr arg is equal to the receiving IPv4Addr or the argument is
// of a different type.
// - 1 If the argument should sort first.
func (ipv4 IPv4Addr) CmpAddress(sa SockAddr) int {
ipv4b, ok := sa.(IPv4Addr)
if !ok {
return sortDeferDecision
}
switch {
case ipv4.Address == ipv4b.Address:
return sortDeferDecision
case ipv4.Address < ipv4b.Address:
return sortReceiverBeforeArg
default:
return sortArgBeforeReceiver
}
}
// CmpPort follows the Cmp() standard protocol and returns:
//
// - -1 If the receiver should sort first because its port is lower than arg
// - 0 if the SockAddr arg's port number is equal to the receiving IPv4Addr,
// regardless of type.
// - 1 If the argument should sort first.
func (ipv4 IPv4Addr) CmpPort(sa SockAddr) int {
var saPort IPPort
switch v := sa.(type) {
case IPv4Addr:
saPort = v.Port
case IPv6Addr:
saPort = v.Port
default:
return sortDeferDecision
}
switch {
case ipv4.Port == saPort:
return sortDeferDecision
case ipv4.Port < saPort:
return sortReceiverBeforeArg
default:
return sortArgBeforeReceiver
}
}
// CmpRFC follows the Cmp() standard protocol and returns:
//
// - -1 If the receiver should sort first because it belongs to the RFC and its
// arg does not
// - 0 if the receiver and arg both belong to the same RFC or neither do.
// - 1 If the arg belongs to the RFC but receiver does not.
func (ipv4 IPv4Addr) CmpRFC(rfcNum uint, sa SockAddr) int {
recvInRFC := IsRFC(rfcNum, ipv4)
ipv4b, ok := sa.(IPv4Addr)
if !ok {
// If the receiver is part of the desired RFC and the SockAddr
// argument is not, return -1 so that the receiver sorts before
// the non-IPv4 SockAddr. Conversely, if the receiver is not
// part of the RFC, punt on sorting and leave it for the next
// sorter.
if recvInRFC {
return sortReceiverBeforeArg
} else {
return sortDeferDecision
}
}
argInRFC := IsRFC(rfcNum, ipv4b)
switch {
case (recvInRFC && argInRFC), (!recvInRFC && !argInRFC):
// If a and b both belong to the RFC, or neither belong to
// rfcNum, defer sorting to the next sorter.
return sortDeferDecision
case recvInRFC && !argInRFC:
return sortReceiverBeforeArg
default:
return sortArgBeforeReceiver
}
}
// Contains returns true if the SockAddr is contained within the receiver.
func (ipv4 IPv4Addr) Contains(sa SockAddr) bool {
ipv4b, ok := sa.(IPv4Addr)
if !ok {
return false
}
return ipv4.ContainsNetwork(ipv4b)
}
// ContainsAddress returns true if the IPv4Address is contained within the
// receiver.
func (ipv4 IPv4Addr) ContainsAddress(x IPv4Address) bool {
return IPv4Address(ipv4.NetworkAddress()) <= x &&
IPv4Address(ipv4.BroadcastAddress()) >= x
}
// ContainsNetwork returns true if the network from IPv4Addr is contained
// within the receiver.
func (ipv4 IPv4Addr) ContainsNetwork(x IPv4Addr) bool {
return ipv4.NetworkAddress() <= x.NetworkAddress() &&
ipv4.BroadcastAddress() >= x.BroadcastAddress()
}
// DialPacketArgs returns the arguments required to be passed to
// net.DialUDP(). If the Mask of ipv4 is not a /32 or the Port is 0,
// DialPacketArgs() will fail. See Host() to create an IPv4Addr with its
// mask set to /32.
func (ipv4 IPv4Addr) DialPacketArgs() (network, dialArgs string) {
if ipv4.Mask != IPv4HostMask || ipv4.Port == 0 {
return "udp4", ""
}
return "udp4", fmt.Sprintf("%s:%d", ipv4.NetIP().String(), ipv4.Port)
}
// DialStreamArgs returns the arguments required to be passed to
// net.DialTCP(). If the Mask of ipv4 is not a /32 or the Port is 0,
// DialStreamArgs() will fail. See Host() to create an IPv4Addr with its
// mask set to /32.
func (ipv4 IPv4Addr) DialStreamArgs() (network, dialArgs string) {
if ipv4.Mask != IPv4HostMask || ipv4.Port == 0 {
return "tcp4", ""
}
return "tcp4", fmt.Sprintf("%s:%d", ipv4.NetIP().String(), ipv4.Port)
}
// Equal returns true if a SockAddr is equal to the receiving IPv4Addr.
func (ipv4 IPv4Addr) Equal(sa SockAddr) bool {
ipv4b, ok := sa.(IPv4Addr)
if !ok {
return false
}
if ipv4.Port != ipv4b.Port {
return false
}
if ipv4.Address != ipv4b.Address {
return false
}
if ipv4.NetIPNet().String() != ipv4b.NetIPNet().String() {
return false
}
return true
}
// FirstUsable returns an IPv4Addr set to the first address following the
// network prefix. The first usable address in a network is normally the
// gateway and should not be used except by devices forwarding packets
// between two administratively distinct networks (i.e. a router). This
// function does not discriminate against first usable vs "first address that
// should be used." For example, FirstUsable() on "192.168.1.10/24" would
// return the address "192.168.1.1/24".
func (ipv4 IPv4Addr) FirstUsable() IPAddr {
addr := ipv4.NetworkAddress()
// If /32, return the address itself. If /31 assume a point-to-point
// link and return the lower address.
if ipv4.Maskbits() < 31 {
addr++
}
return IPv4Addr{
Address: IPv4Address(addr),
Mask: IPv4HostMask,
}
}
// Host returns a copy of ipv4 with its mask set to /32 so that it can be
// used by DialPacketArgs(), DialStreamArgs(), ListenPacketArgs(), or
// ListenStreamArgs().
func (ipv4 IPv4Addr) Host() IPAddr {
// Nothing should listen on a broadcast address.
return IPv4Addr{
Address: ipv4.Address,
Mask: IPv4HostMask,
Port: ipv4.Port,
}
}
// IPPort returns the Port number attached to the IPv4Addr
func (ipv4 IPv4Addr) IPPort() IPPort {
return ipv4.Port
}
// LastUsable returns the last address before the broadcast address in a
// given network.
func (ipv4 IPv4Addr) LastUsable() IPAddr {
addr := ipv4.BroadcastAddress()
// If /32, return the address itself. If /31 assume a point-to-point
// link and return the upper address.
if ipv4.Maskbits() < 31 {
addr--
}
return IPv4Addr{
Address: IPv4Address(addr),
Mask: IPv4HostMask,
}
}
// ListenPacketArgs returns the arguments required to be passed to
// net.ListenUDP(). If the Mask of ipv4 is not a /32, ListenPacketArgs()
// will fail. See Host() to create an IPv4Addr with its mask set to /32.
func (ipv4 IPv4Addr) ListenPacketArgs() (network, listenArgs string) {
if ipv4.Mask != IPv4HostMask {
return "udp4", ""
}
return "udp4", fmt.Sprintf("%s:%d", ipv4.NetIP().String(), ipv4.Port)
}
// ListenStreamArgs returns the arguments required to be passed to
// net.ListenTCP(). If the Mask of ipv4 is not a /32, ListenStreamArgs()
// will fail. See Host() to create an IPv4Addr with its mask set to /32.
func (ipv4 IPv4Addr) ListenStreamArgs() (network, listenArgs string) {
if ipv4.Mask != IPv4HostMask {
return "tcp4", ""
}
return "tcp4", fmt.Sprintf("%s:%d", ipv4.NetIP().String(), ipv4.Port)
}
// Maskbits returns the number of network mask bits in a given IPv4Addr. For
// example, the Maskbits() of "192.168.1.1/24" would return 24.
func (ipv4 IPv4Addr) Maskbits() int {
mask := make(net.IPMask, IPv4len)
binary.BigEndian.PutUint32(mask, uint32(ipv4.Mask))
maskOnes, _ := mask.Size()
return maskOnes
}
// MustIPv4Addr is a helper method that must return an IPv4Addr or panic on
// invalid input.
func MustIPv4Addr(addr string) IPv4Addr {
ipv4, err := NewIPv4Addr(addr)
if err != nil {
panic(fmt.Sprintf("Unable to create an IPv4Addr from %+q: %v", addr, err))
}
return ipv4
}
// NetIP returns the address as a net.IP (address is always presized to
// IPv4).
func (ipv4 IPv4Addr) NetIP() *net.IP {
x := make(net.IP, IPv4len)
binary.BigEndian.PutUint32(x, uint32(ipv4.Address))
return &x
}
// NetIPMask create a new net.IPMask from the IPv4Addr.
func (ipv4 IPv4Addr) NetIPMask() *net.IPMask {
ipv4Mask := net.IPMask{}
ipv4Mask = make(net.IPMask, IPv4len)
binary.BigEndian.PutUint32(ipv4Mask, uint32(ipv4.Mask))
return &ipv4Mask
}
// NetIPNet create a new net.IPNet from the IPv4Addr.
func (ipv4 IPv4Addr) NetIPNet() *net.IPNet {
ipv4net := &net.IPNet{}
ipv4net.IP = make(net.IP, IPv4len)
binary.BigEndian.PutUint32(ipv4net.IP, uint32(ipv4.NetworkAddress()))
ipv4net.Mask = *ipv4.NetIPMask()
return ipv4net
}
// Network returns the network prefix or network address for a given network.
func (ipv4 IPv4Addr) Network() IPAddr {
return IPv4Addr{
Address: IPv4Address(ipv4.NetworkAddress()),
Mask: ipv4.Mask,
}
}
// NetworkAddress returns an IPv4Network of the IPv4Addr's network address.
func (ipv4 IPv4Addr) NetworkAddress() IPv4Network {
return IPv4Network(uint32(ipv4.Address) & uint32(ipv4.Mask))
}
// Octets returns a slice of the four octets in an IPv4Addr's Address. The
// order of the bytes is big endian.
func (ipv4 IPv4Addr) Octets() []int {
return []int{
int(ipv4.Address >> 24),
int((ipv4.Address >> 16) & 0xff),
int((ipv4.Address >> 8) & 0xff),
int(ipv4.Address & 0xff),
}
}
// String returns a string representation of the IPv4Addr
func (ipv4 IPv4Addr) String() string {
if ipv4.Port != 0 {
return fmt.Sprintf("%s:%d", ipv4.NetIP().String(), ipv4.Port)
}
if ipv4.Maskbits() == 32 {
return ipv4.NetIP().String()
}
return fmt.Sprintf("%s/%d", ipv4.NetIP().String(), ipv4.Maskbits())
}
// Type is used as a type switch and returns TypeIPv4
func (IPv4Addr) Type() SockAddrType {
return TypeIPv4
}
// IPv4AddrAttr returns a string representation of an attribute for the given
// IPv4Addr.
func IPv4AddrAttr(ipv4 IPv4Addr, selector AttrName) string {
fn, found := ipv4AddrAttrMap[selector]
if !found {
return ""
}
return fn(ipv4)
}
// IPv4Attrs returns a list of attributes supported by the IPv4Addr type
func IPv4Attrs() []AttrName {
return ipv4AddrAttrs
}
// ipv4AddrInit is called once at init()
func ipv4AddrInit() {
// Sorted for human readability
ipv4AddrAttrs = []AttrName{
"size", // Same position as in IPv6 for output consistency
"broadcast",
"uint32",
}
ipv4AddrAttrMap = map[AttrName]func(ipv4 IPv4Addr) string{
"broadcast": func(ipv4 IPv4Addr) string {
return ipv4.Broadcast().String()
},
"size": func(ipv4 IPv4Addr) string {
return fmt.Sprintf("%d", 1<<uint(IPv4len*8-ipv4.Maskbits()))
},
"uint32": func(ipv4 IPv4Addr) string {
return fmt.Sprintf("%d", uint32(ipv4.Address))
},
}
}

591
vendor/github.com/hashicorp/go-sockaddr/ipv6addr.go generated vendored Normal file
View File

@@ -0,0 +1,591 @@
package sockaddr
import (
"bytes"
"encoding/binary"
"fmt"
"math/big"
"net"
)
type (
// IPv6Address is a named type representing an IPv6 address.
IPv6Address *big.Int
// IPv6Network is a named type representing an IPv6 network.
IPv6Network *big.Int
// IPv6Mask is a named type representing an IPv6 network mask.
IPv6Mask *big.Int
)
// IPv6HostPrefix is a constant represents a /128 IPv6 Prefix.
const IPv6HostPrefix = IPPrefixLen(128)
// ipv6HostMask is an unexported big.Int representing a /128 IPv6 address.
// This value must be a constant and always set to all ones.
var ipv6HostMask IPv6Mask
// ipv6AddrAttrMap is a map of the IPv6Addr type-specific attributes.
var ipv6AddrAttrMap map[AttrName]func(IPv6Addr) string
var ipv6AddrAttrs []AttrName
func init() {
biMask := new(big.Int)
biMask.SetBytes([]byte{
0xff, 0xff,
0xff, 0xff,
0xff, 0xff,
0xff, 0xff,
0xff, 0xff,
0xff, 0xff,
0xff, 0xff,
0xff, 0xff,
},
)
ipv6HostMask = IPv6Mask(biMask)
ipv6AddrInit()
}
// IPv6Addr implements a convenience wrapper around the union of Go's
// built-in net.IP and net.IPNet types. In UNIX-speak, IPv6Addr implements
// `sockaddr` when the the address family is set to AF_INET6
// (i.e. `sockaddr_in6`).
type IPv6Addr struct {
IPAddr
Address IPv6Address
Mask IPv6Mask
Port IPPort
}
// NewIPv6Addr creates an IPv6Addr from a string. String can be in the form of
// an an IPv6:port (e.g. `[2001:4860:0:2001::68]:80`, in which case the mask is
// assumed to be a /128), an IPv6 address (e.g. `2001:4860:0:2001::68`, also
// with a `/128` mask), an IPv6 CIDR (e.g. `2001:4860:0:2001::68/64`, which has
// its IP port initialized to zero). ipv6Str can not be a hostname.
//
// NOTE: Many net.*() routines will initialize and return an IPv4 address.
// Always test to make sure the address returned cannot be converted to a 4 byte
// array using To4().
func NewIPv6Addr(ipv6Str string) (IPv6Addr, error) {
v6Addr := false
LOOP:
for i := 0; i < len(ipv6Str); i++ {
switch ipv6Str[i] {
case '.':
break LOOP
case ':':
v6Addr = true
break LOOP
}
}
if !v6Addr {
return IPv6Addr{}, fmt.Errorf("Unable to resolve %+q as an IPv6 address, appears to be an IPv4 address", ipv6Str)
}
// Attempt to parse ipv6Str as a /128 host with a port number.
tcpAddr, err := net.ResolveTCPAddr("tcp6", ipv6Str)
if err == nil {
ipv6 := tcpAddr.IP.To16()
if ipv6 == nil {
return IPv6Addr{}, fmt.Errorf("Unable to resolve %+q as a 16byte IPv6 address", ipv6Str)
}
ipv6BigIntAddr := new(big.Int)
ipv6BigIntAddr.SetBytes(ipv6)
ipv6BigIntMask := new(big.Int)
ipv6BigIntMask.Set(ipv6HostMask)
ipv6Addr := IPv6Addr{
Address: IPv6Address(ipv6BigIntAddr),
Mask: IPv6Mask(ipv6BigIntMask),
Port: IPPort(tcpAddr.Port),
}
return ipv6Addr, nil
}
// Parse as a naked IPv6 address. Trim square brackets if present.
if len(ipv6Str) > 2 && ipv6Str[0] == '[' && ipv6Str[len(ipv6Str)-1] == ']' {
ipv6Str = ipv6Str[1 : len(ipv6Str)-1]
}
ip := net.ParseIP(ipv6Str)
if ip != nil {
ipv6 := ip.To16()
if ipv6 == nil {
return IPv6Addr{}, fmt.Errorf("Unable to string convert %+q to a 16byte IPv6 address", ipv6Str)
}
ipv6BigIntAddr := new(big.Int)
ipv6BigIntAddr.SetBytes(ipv6)
ipv6BigIntMask := new(big.Int)
ipv6BigIntMask.Set(ipv6HostMask)
return IPv6Addr{
Address: IPv6Address(ipv6BigIntAddr),
Mask: IPv6Mask(ipv6BigIntMask),
}, nil
}
// Parse as an IPv6 CIDR
ipAddr, network, err := net.ParseCIDR(ipv6Str)
if err == nil {
ipv6 := ipAddr.To16()
if ipv6 == nil {
return IPv6Addr{}, fmt.Errorf("Unable to convert %+q to a 16byte IPv6 address", ipv6Str)
}
ipv6BigIntAddr := new(big.Int)
ipv6BigIntAddr.SetBytes(ipv6)
ipv6BigIntMask := new(big.Int)
ipv6BigIntMask.SetBytes(network.Mask)
ipv6Addr := IPv6Addr{
Address: IPv6Address(ipv6BigIntAddr),
Mask: IPv6Mask(ipv6BigIntMask),
}
return ipv6Addr, nil
}
return IPv6Addr{}, fmt.Errorf("Unable to parse %+q to an IPv6 address: %v", ipv6Str, err)
}
// AddressBinString returns a string with the IPv6Addr's Address represented
// as a sequence of '0' and '1' characters. This method is useful for
// debugging or by operators who want to inspect an address.
func (ipv6 IPv6Addr) AddressBinString() string {
bi := big.Int(*ipv6.Address)
return fmt.Sprintf("%0128s", bi.Text(2))
}
// AddressHexString returns a string with the IPv6Addr address represented as
// a sequence of hex characters. This method is useful for debugging or by
// operators who want to inspect an address.
func (ipv6 IPv6Addr) AddressHexString() string {
bi := big.Int(*ipv6.Address)
return fmt.Sprintf("%032s", bi.Text(16))
}
// CmpAddress follows the Cmp() standard protocol and returns:
//
// - -1 If the receiver should sort first because its address is lower than arg
// - 0 if the SockAddr arg equal to the receiving IPv6Addr or the argument is of a
// different type.
// - 1 If the argument should sort first.
func (ipv6 IPv6Addr) CmpAddress(sa SockAddr) int {
ipv6b, ok := sa.(IPv6Addr)
if !ok {
return sortDeferDecision
}
ipv6aBigInt := new(big.Int)
ipv6aBigInt.Set(ipv6.Address)
ipv6bBigInt := new(big.Int)
ipv6bBigInt.Set(ipv6b.Address)
return ipv6aBigInt.Cmp(ipv6bBigInt)
}
// CmpPort follows the Cmp() standard protocol and returns:
//
// - -1 If the receiver should sort first because its port is lower than arg
// - 0 if the SockAddr arg's port number is equal to the receiving IPv6Addr,
// regardless of type.
// - 1 If the argument should sort first.
func (ipv6 IPv6Addr) CmpPort(sa SockAddr) int {
var saPort IPPort
switch v := sa.(type) {
case IPv4Addr:
saPort = v.Port
case IPv6Addr:
saPort = v.Port
default:
return sortDeferDecision
}
switch {
case ipv6.Port == saPort:
return sortDeferDecision
case ipv6.Port < saPort:
return sortReceiverBeforeArg
default:
return sortArgBeforeReceiver
}
}
// CmpRFC follows the Cmp() standard protocol and returns:
//
// - -1 If the receiver should sort first because it belongs to the RFC and its
// arg does not
// - 0 if the receiver and arg both belong to the same RFC or neither do.
// - 1 If the arg belongs to the RFC but receiver does not.
func (ipv6 IPv6Addr) CmpRFC(rfcNum uint, sa SockAddr) int {
recvInRFC := IsRFC(rfcNum, ipv6)
ipv6b, ok := sa.(IPv6Addr)
if !ok {
// If the receiver is part of the desired RFC and the SockAddr
// argument is not, sort receiver before the non-IPv6 SockAddr.
// Conversely, if the receiver is not part of the RFC, punt on
// sorting and leave it for the next sorter.
if recvInRFC {
return sortReceiverBeforeArg
} else {
return sortDeferDecision
}
}
argInRFC := IsRFC(rfcNum, ipv6b)
switch {
case (recvInRFC && argInRFC), (!recvInRFC && !argInRFC):
// If a and b both belong to the RFC, or neither belong to
// rfcNum, defer sorting to the next sorter.
return sortDeferDecision
case recvInRFC && !argInRFC:
return sortReceiverBeforeArg
default:
return sortArgBeforeReceiver
}
}
// Contains returns true if the SockAddr is contained within the receiver.
func (ipv6 IPv6Addr) Contains(sa SockAddr) bool {
ipv6b, ok := sa.(IPv6Addr)
if !ok {
return false
}
return ipv6.ContainsNetwork(ipv6b)
}
// ContainsAddress returns true if the IPv6Address is contained within the
// receiver.
func (ipv6 IPv6Addr) ContainsAddress(x IPv6Address) bool {
xAddr := IPv6Addr{
Address: x,
Mask: ipv6HostMask,
}
{
xIPv6 := xAddr.FirstUsable().(IPv6Addr)
yIPv6 := ipv6.FirstUsable().(IPv6Addr)
if xIPv6.CmpAddress(yIPv6) >= 1 {
return false
}
}
{
xIPv6 := xAddr.LastUsable().(IPv6Addr)
yIPv6 := ipv6.LastUsable().(IPv6Addr)
if xIPv6.CmpAddress(yIPv6) <= -1 {
return false
}
}
return true
}
// ContainsNetwork returns true if the network from IPv6Addr is contained within
// the receiver.
func (x IPv6Addr) ContainsNetwork(y IPv6Addr) bool {
{
xIPv6 := x.FirstUsable().(IPv6Addr)
yIPv6 := y.FirstUsable().(IPv6Addr)
if ret := xIPv6.CmpAddress(yIPv6); ret >= 1 {
return false
}
}
{
xIPv6 := x.LastUsable().(IPv6Addr)
yIPv6 := y.LastUsable().(IPv6Addr)
if ret := xIPv6.CmpAddress(yIPv6); ret <= -1 {
return false
}
}
return true
}
// DialPacketArgs returns the arguments required to be passed to
// net.DialUDP(). If the Mask of ipv6 is not a /128 or the Port is 0,
// DialPacketArgs() will fail. See Host() to create an IPv6Addr with its
// mask set to /128.
func (ipv6 IPv6Addr) DialPacketArgs() (network, dialArgs string) {
ipv6Mask := big.Int(*ipv6.Mask)
if ipv6Mask.Cmp(ipv6HostMask) != 0 || ipv6.Port == 0 {
return "udp6", ""
}
return "udp6", fmt.Sprintf("[%s]:%d", ipv6.NetIP().String(), ipv6.Port)
}
// DialStreamArgs returns the arguments required to be passed to
// net.DialTCP(). If the Mask of ipv6 is not a /128 or the Port is 0,
// DialStreamArgs() will fail. See Host() to create an IPv6Addr with its
// mask set to /128.
func (ipv6 IPv6Addr) DialStreamArgs() (network, dialArgs string) {
ipv6Mask := big.Int(*ipv6.Mask)
if ipv6Mask.Cmp(ipv6HostMask) != 0 || ipv6.Port == 0 {
return "tcp6", ""
}
return "tcp6", fmt.Sprintf("[%s]:%d", ipv6.NetIP().String(), ipv6.Port)
}
// Equal returns true if a SockAddr is equal to the receiving IPv4Addr.
func (ipv6a IPv6Addr) Equal(sa SockAddr) bool {
ipv6b, ok := sa.(IPv6Addr)
if !ok {
return false
}
if ipv6a.NetIP().String() != ipv6b.NetIP().String() {
return false
}
if ipv6a.NetIPNet().String() != ipv6b.NetIPNet().String() {
return false
}
if ipv6a.Port != ipv6b.Port {
return false
}
return true
}
// FirstUsable returns an IPv6Addr set to the first address following the
// network prefix. The first usable address in a network is normally the
// gateway and should not be used except by devices forwarding packets
// between two administratively distinct networks (i.e. a router). This
// function does not discriminate against first usable vs "first address that
// should be used." For example, FirstUsable() on "2001:0db8::0003/64" would
// return "2001:0db8::00011".
func (ipv6 IPv6Addr) FirstUsable() IPAddr {
return IPv6Addr{
Address: IPv6Address(ipv6.NetworkAddress()),
Mask: ipv6HostMask,
}
}
// Host returns a copy of ipv6 with its mask set to /128 so that it can be
// used by DialPacketArgs(), DialStreamArgs(), ListenPacketArgs(), or
// ListenStreamArgs().
func (ipv6 IPv6Addr) Host() IPAddr {
// Nothing should listen on a broadcast address.
return IPv6Addr{
Address: ipv6.Address,
Mask: ipv6HostMask,
Port: ipv6.Port,
}
}
// IPPort returns the Port number attached to the IPv6Addr
func (ipv6 IPv6Addr) IPPort() IPPort {
return ipv6.Port
}
// LastUsable returns the last address in a given network.
func (ipv6 IPv6Addr) LastUsable() IPAddr {
addr := new(big.Int)
addr.Set(ipv6.Address)
mask := new(big.Int)
mask.Set(ipv6.Mask)
negMask := new(big.Int)
negMask.Xor(ipv6HostMask, mask)
lastAddr := new(big.Int)
lastAddr.And(addr, mask)
lastAddr.Or(lastAddr, negMask)
return IPv6Addr{
Address: IPv6Address(lastAddr),
Mask: ipv6HostMask,
}
}
// ListenPacketArgs returns the arguments required to be passed to
// net.ListenUDP(). If the Mask of ipv6 is not a /128, ListenPacketArgs()
// will fail. See Host() to create an IPv6Addr with its mask set to /128.
func (ipv6 IPv6Addr) ListenPacketArgs() (network, listenArgs string) {
ipv6Mask := big.Int(*ipv6.Mask)
if ipv6Mask.Cmp(ipv6HostMask) != 0 {
return "udp6", ""
}
return "udp6", fmt.Sprintf("[%s]:%d", ipv6.NetIP().String(), ipv6.Port)
}
// ListenStreamArgs returns the arguments required to be passed to
// net.ListenTCP(). If the Mask of ipv6 is not a /128, ListenStreamArgs()
// will fail. See Host() to create an IPv6Addr with its mask set to /128.
func (ipv6 IPv6Addr) ListenStreamArgs() (network, listenArgs string) {
ipv6Mask := big.Int(*ipv6.Mask)
if ipv6Mask.Cmp(ipv6HostMask) != 0 {
return "tcp6", ""
}
return "tcp6", fmt.Sprintf("[%s]:%d", ipv6.NetIP().String(), ipv6.Port)
}
// Maskbits returns the number of network mask bits in a given IPv6Addr. For
// example, the Maskbits() of "2001:0db8::0003/64" would return 64.
func (ipv6 IPv6Addr) Maskbits() int {
maskOnes, _ := ipv6.NetIPNet().Mask.Size()
return maskOnes
}
// MustIPv6Addr is a helper method that must return an IPv6Addr or panic on
// invalid input.
func MustIPv6Addr(addr string) IPv6Addr {
ipv6, err := NewIPv6Addr(addr)
if err != nil {
panic(fmt.Sprintf("Unable to create an IPv6Addr from %+q: %v", addr, err))
}
return ipv6
}
// NetIP returns the address as a net.IP.
func (ipv6 IPv6Addr) NetIP() *net.IP {
return bigIntToNetIPv6(ipv6.Address)
}
// NetIPMask create a new net.IPMask from the IPv6Addr.
func (ipv6 IPv6Addr) NetIPMask() *net.IPMask {
ipv6Mask := make(net.IPMask, IPv6len)
m := big.Int(*ipv6.Mask)
copy(ipv6Mask, m.Bytes())
return &ipv6Mask
}
// Network returns a pointer to the net.IPNet within IPv4Addr receiver.
func (ipv6 IPv6Addr) NetIPNet() *net.IPNet {
ipv6net := &net.IPNet{}
ipv6net.IP = make(net.IP, IPv6len)
copy(ipv6net.IP, *ipv6.NetIP())
ipv6net.Mask = *ipv6.NetIPMask()
return ipv6net
}
// Network returns the network prefix or network address for a given network.
func (ipv6 IPv6Addr) Network() IPAddr {
return IPv6Addr{
Address: IPv6Address(ipv6.NetworkAddress()),
Mask: ipv6.Mask,
}
}
// NetworkAddress returns an IPv6Network of the IPv6Addr's network address.
func (ipv6 IPv6Addr) NetworkAddress() IPv6Network {
addr := new(big.Int)
addr.SetBytes((*ipv6.Address).Bytes())
mask := new(big.Int)
mask.SetBytes(*ipv6.NetIPMask())
netAddr := new(big.Int)
netAddr.And(addr, mask)
return IPv6Network(netAddr)
}
// Octets returns a slice of the 16 octets in an IPv6Addr's Address. The
// order of the bytes is big endian.
func (ipv6 IPv6Addr) Octets() []int {
x := make([]int, IPv6len)
for i, b := range *bigIntToNetIPv6(ipv6.Address) {
x[i] = int(b)
}
return x
}
// String returns a string representation of the IPv6Addr
func (ipv6 IPv6Addr) String() string {
if ipv6.Port != 0 {
return fmt.Sprintf("[%s]:%d", ipv6.NetIP().String(), ipv6.Port)
}
if ipv6.Maskbits() == 128 {
return ipv6.NetIP().String()
}
return fmt.Sprintf("%s/%d", ipv6.NetIP().String(), ipv6.Maskbits())
}
// Type is used as a type switch and returns TypeIPv6
func (IPv6Addr) Type() SockAddrType {
return TypeIPv6
}
// IPv6Attrs returns a list of attributes supported by the IPv6Addr type
func IPv6Attrs() []AttrName {
return ipv6AddrAttrs
}
// IPv6AddrAttr returns a string representation of an attribute for the given
// IPv6Addr.
func IPv6AddrAttr(ipv6 IPv6Addr, selector AttrName) string {
fn, found := ipv6AddrAttrMap[selector]
if !found {
return ""
}
return fn(ipv6)
}
// ipv6AddrInit is called once at init()
func ipv6AddrInit() {
// Sorted for human readability
ipv6AddrAttrs = []AttrName{
"size", // Same position as in IPv6 for output consistency
"uint128",
}
ipv6AddrAttrMap = map[AttrName]func(ipv6 IPv6Addr) string{
"size": func(ipv6 IPv6Addr) string {
netSize := big.NewInt(1)
netSize = netSize.Lsh(netSize, uint(IPv6len*8-ipv6.Maskbits()))
return netSize.Text(10)
},
"uint128": func(ipv6 IPv6Addr) string {
b := big.Int(*ipv6.Address)
return b.Text(10)
},
}
}
// bigIntToNetIPv6 is a helper function that correctly returns a net.IP with the
// correctly padded values.
func bigIntToNetIPv6(bi *big.Int) *net.IP {
x := make(net.IP, IPv6len)
ipv6Bytes := bi.Bytes()
// It's possibe for ipv6Bytes to be less than IPv6len bytes in size. If
// they are different sizes we to pad the size of response.
if len(ipv6Bytes) < IPv6len {
buf := new(bytes.Buffer)
buf.Grow(IPv6len)
for i := len(ipv6Bytes); i < IPv6len; i++ {
if err := binary.Write(buf, binary.BigEndian, byte(0)); err != nil {
panic(fmt.Sprintf("Unable to pad byte %d of input %v: %v", i, bi, err))
}
}
for _, b := range ipv6Bytes {
if err := binary.Write(buf, binary.BigEndian, b); err != nil {
panic(fmt.Sprintf("Unable to preserve endianness of input %v: %v", bi, err))
}
}
ipv6Bytes = buf.Bytes()
}
i := copy(x, ipv6Bytes)
if i != IPv6len {
panic("IPv6 wrong size")
}
return &x
}

948
vendor/github.com/hashicorp/go-sockaddr/rfc.go generated vendored Normal file
View File

@@ -0,0 +1,948 @@
package sockaddr
// ForwardingBlacklist is a faux RFC that includes a list of non-forwardable IP
// blocks.
const ForwardingBlacklist = 4294967295
const ForwardingBlacklistRFC = "4294967295"
// IsRFC tests to see if an SockAddr matches the specified RFC
func IsRFC(rfcNum uint, sa SockAddr) bool {
rfcNetMap := KnownRFCs()
rfcNets, ok := rfcNetMap[rfcNum]
if !ok {
return false
}
var contained bool
for _, rfcNet := range rfcNets {
if rfcNet.Contains(sa) {
contained = true
break
}
}
return contained
}
// KnownRFCs returns an initial set of known RFCs.
//
// NOTE (sean@): As this list evolves over time, please submit patches to keep
// this list current. If something isn't right, inquire, as it may just be a
// bug on my part. Some of the inclusions were based on my judgement as to what
// would be a useful value (e.g. RFC3330).
//
// Useful resources:
//
// * https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
// * https://www.iana.org/assignments/ipv6-unicast-address-assignments/ipv6-unicast-address-assignments.xhtml
// * https://www.iana.org/assignments/ipv6-address-space/ipv6-address-space.xhtml
func KnownRFCs() map[uint]SockAddrs {
// NOTE(sean@): Multiple SockAddrs per RFC lend themselves well to a
// RADIX tree, but `ENOTIME`. Patches welcome.
return map[uint]SockAddrs{
919: {
// [RFC919] Broadcasting Internet Datagrams
MustIPv4Addr("255.255.255.255/32"), // [RFC1122], §7 Broadcast IP Addressing - Proposed Standards
},
1122: {
// [RFC1122] Requirements for Internet Hosts -- Communication Layers
MustIPv4Addr("0.0.0.0/8"), // [RFC1122], §3.2.1.3
MustIPv4Addr("127.0.0.0/8"), // [RFC1122], §3.2.1.3
},
1112: {
// [RFC1112] Host Extensions for IP Multicasting
MustIPv4Addr("224.0.0.0/4"), // [RFC1112], §4 Host Group Addresses
},
1918: {
// [RFC1918] Address Allocation for Private Internets
MustIPv4Addr("10.0.0.0/8"),
MustIPv4Addr("172.16.0.0/12"),
MustIPv4Addr("192.168.0.0/16"),
},
2544: {
// [RFC2544] Benchmarking Methodology for Network
// Interconnect Devices
MustIPv4Addr("198.18.0.0/15"),
},
2765: {
// [RFC2765] Stateless IP/ICMP Translation Algorithm
// (SIIT) (obsoleted by RFCs 6145, which itself was
// later obsoleted by 7915).
// [RFC2765], §2.1 Addresses
MustIPv6Addr("0:0:0:0:0:ffff:0:0/96"),
},
2928: {
// [RFC2928] Initial IPv6 Sub-TLA ID Assignments
MustIPv6Addr("2001::/16"), // Superblock
//MustIPv6Addr("2001:0000::/23"), // IANA
//MustIPv6Addr("2001:0200::/23"), // APNIC
//MustIPv6Addr("2001:0400::/23"), // ARIN
//MustIPv6Addr("2001:0600::/23"), // RIPE NCC
//MustIPv6Addr("2001:0800::/23"), // (future assignment)
// ...
//MustIPv6Addr("2001:FE00::/23"), // (future assignment)
},
3056: { // 6to4 address
// [RFC3056] Connection of IPv6 Domains via IPv4 Clouds
// [RFC3056], §2 IPv6 Prefix Allocation
MustIPv6Addr("2002::/16"),
},
3068: {
// [RFC3068] An Anycast Prefix for 6to4 Relay Routers
// (obsolete by RFC7526)
// [RFC3068], § 6to4 Relay anycast address
MustIPv4Addr("192.88.99.0/24"),
// [RFC3068], §2.5 6to4 IPv6 relay anycast address
//
// NOTE: /120 == 128-(32-24)
MustIPv6Addr("2002:c058:6301::/120"),
},
3171: {
// [RFC3171] IANA Guidelines for IPv4 Multicast Address Assignments
MustIPv4Addr("224.0.0.0/4"),
},
3330: {
// [RFC3330] Special-Use IPv4 Addresses
// Addresses in this block refer to source hosts on
// "this" network. Address 0.0.0.0/32 may be used as a
// source address for this host on this network; other
// addresses within 0.0.0.0/8 may be used to refer to
// specified hosts on this network [RFC1700, page 4].
MustIPv4Addr("0.0.0.0/8"),
// 10.0.0.0/8 - This block is set aside for use in
// private networks. Its intended use is documented in
// [RFC1918]. Addresses within this block should not
// appear on the public Internet.
MustIPv4Addr("10.0.0.0/8"),
// 14.0.0.0/8 - This block is set aside for assignments
// to the international system of Public Data Networks
// [RFC1700, page 181]. The registry of assignments
// within this block can be accessed from the "Public
// Data Network Numbers" link on the web page at
// http://www.iana.org/numbers.html. Addresses within
// this block are assigned to users and should be
// treated as such.
// 24.0.0.0/8 - This block was allocated in early 1996
// for use in provisioning IP service over cable
// television systems. Although the IANA initially was
// involved in making assignments to cable operators,
// this responsibility was transferred to American
// Registry for Internet Numbers (ARIN) in May 2001.
// Addresses within this block are assigned in the
// normal manner and should be treated as such.
// 39.0.0.0/8 - This block was used in the "Class A
// Subnet Experiment" that commenced in May 1995, as
// documented in [RFC1797]. The experiment has been
// completed and this block has been returned to the
// pool of addresses reserved for future allocation or
// assignment. This block therefore no longer has a
// special use and is subject to allocation to a
// Regional Internet Registry for assignment in the
// normal manner.
// 127.0.0.0/8 - This block is assigned for use as the Internet host
// loopback address. A datagram sent by a higher level protocol to an
// address anywhere within this block should loop back inside the host.
// This is ordinarily implemented using only 127.0.0.1/32 for loopback,
// but no addresses within this block should ever appear on any network
// anywhere [RFC1700, page 5].
MustIPv4Addr("127.0.0.0/8"),
// 128.0.0.0/16 - This block, corresponding to the
// numerically lowest of the former Class B addresses,
// was initially and is still reserved by the IANA.
// Given the present classless nature of the IP address
// space, the basis for the reservation no longer
// applies and addresses in this block are subject to
// future allocation to a Regional Internet Registry for
// assignment in the normal manner.
// 169.254.0.0/16 - This is the "link local" block. It
// is allocated for communication between hosts on a
// single link. Hosts obtain these addresses by
// auto-configuration, such as when a DHCP server may
// not be found.
MustIPv4Addr("169.254.0.0/16"),
// 172.16.0.0/12 - This block is set aside for use in
// private networks. Its intended use is documented in
// [RFC1918]. Addresses within this block should not
// appear on the public Internet.
MustIPv4Addr("172.16.0.0/12"),
// 191.255.0.0/16 - This block, corresponding to the numerically highest
// to the former Class B addresses, was initially and is still reserved
// by the IANA. Given the present classless nature of the IP address
// space, the basis for the reservation no longer applies and addresses
// in this block are subject to future allocation to a Regional Internet
// Registry for assignment in the normal manner.
// 192.0.0.0/24 - This block, corresponding to the
// numerically lowest of the former Class C addresses,
// was initially and is still reserved by the IANA.
// Given the present classless nature of the IP address
// space, the basis for the reservation no longer
// applies and addresses in this block are subject to
// future allocation to a Regional Internet Registry for
// assignment in the normal manner.
// 192.0.2.0/24 - This block is assigned as "TEST-NET" for use in
// documentation and example code. It is often used in conjunction with
// domain names example.com or example.net in vendor and protocol
// documentation. Addresses within this block should not appear on the
// public Internet.
MustIPv4Addr("192.0.2.0/24"),
// 192.88.99.0/24 - This block is allocated for use as 6to4 relay
// anycast addresses, according to [RFC3068].
MustIPv4Addr("192.88.99.0/24"),
// 192.168.0.0/16 - This block is set aside for use in private networks.
// Its intended use is documented in [RFC1918]. Addresses within this
// block should not appear on the public Internet.
MustIPv4Addr("192.168.0.0/16"),
// 198.18.0.0/15 - This block has been allocated for use
// in benchmark tests of network interconnect devices.
// Its use is documented in [RFC2544].
MustIPv4Addr("198.18.0.0/15"),
// 223.255.255.0/24 - This block, corresponding to the
// numerically highest of the former Class C addresses,
// was initially and is still reserved by the IANA.
// Given the present classless nature of the IP address
// space, the basis for the reservation no longer
// applies and addresses in this block are subject to
// future allocation to a Regional Internet Registry for
// assignment in the normal manner.
// 224.0.0.0/4 - This block, formerly known as the Class
// D address space, is allocated for use in IPv4
// multicast address assignments. The IANA guidelines
// for assignments from this space are described in
// [RFC3171].
MustIPv4Addr("224.0.0.0/4"),
// 240.0.0.0/4 - This block, formerly known as the Class E address
// space, is reserved. The "limited broadcast" destination address
// 255.255.255.255 should never be forwarded outside the (sub-)net of
// the source. The remainder of this space is reserved
// for future use. [RFC1700, page 4]
MustIPv4Addr("240.0.0.0/4"),
},
3849: {
// [RFC3849] IPv6 Address Prefix Reserved for Documentation
MustIPv6Addr("2001:db8::/32"), // [RFC3849], §4 IANA Considerations
},
3927: {
// [RFC3927] Dynamic Configuration of IPv4 Link-Local Addresses
MustIPv4Addr("169.254.0.0/16"), // [RFC3927], §2.1 Link-Local Address Selection
},
4038: {
// [RFC4038] Application Aspects of IPv6 Transition
// [RFC4038], §4.2. IPv6 Applications in a Dual-Stack Node
MustIPv6Addr("0:0:0:0:0:ffff::/96"),
},
4193: {
// [RFC4193] Unique Local IPv6 Unicast Addresses
MustIPv6Addr("fc00::/7"),
},
4291: {
// [RFC4291] IP Version 6 Addressing Architecture
// [RFC4291], §2.5.2 The Unspecified Address
MustIPv6Addr("::/128"),
// [RFC4291], §2.5.3 The Loopback Address
MustIPv6Addr("::1/128"),
// [RFC4291], §2.5.5.1. IPv4-Compatible IPv6 Address
MustIPv6Addr("::/96"),
// [RFC4291], §2.5.5.2. IPv4-Mapped IPv6 Address
MustIPv6Addr("::ffff:0:0/96"),
// [RFC4291], §2.5.6 Link-Local IPv6 Unicast Addresses
MustIPv6Addr("fe80::/10"),
// [RFC4291], §2.5.7 Site-Local IPv6 Unicast Addresses
// (depreciated)
MustIPv6Addr("fec0::/10"),
// [RFC4291], §2.7 Multicast Addresses
MustIPv6Addr("ff00::/8"),
// IPv6 Multicast Information.
//
// In the following "table" below, `ff0x` is replaced
// with the following values depending on the scope of
// the query:
//
// IPv6 Multicast Scopes:
// * ff00/9 // reserved
// * ff01/9 // interface-local
// * ff02/9 // link-local
// * ff03/9 // realm-local
// * ff04/9 // admin-local
// * ff05/9 // site-local
// * ff08/9 // organization-local
// * ff0e/9 // global
// * ff0f/9 // reserved
//
// IPv6 Multicast Addresses:
// * ff0x::2 // All routers
// * ff02::5 // OSPFIGP
// * ff02::6 // OSPFIGP Designated Routers
// * ff02::9 // RIP Routers
// * ff02::a // EIGRP Routers
// * ff02::d // All PIM Routers
// * ff02::1a // All RPL Routers
// * ff0x::fb // mDNSv6
// * ff0x::101 // All Network Time Protocol (NTP) servers
// * ff02::1:1 // Link Name
// * ff02::1:2 // All-dhcp-agents
// * ff02::1:3 // Link-local Multicast Name Resolution
// * ff05::1:3 // All-dhcp-servers
// * ff02::1:ff00:0/104 // Solicited-node multicast address.
// * ff02::2:ff00:0/104 // Node Information Queries
},
4380: {
// [RFC4380] Teredo: Tunneling IPv6 over UDP through
// Network Address Translations (NATs)
// [RFC4380], §2.6 Global Teredo IPv6 Service Prefix
MustIPv6Addr("2001:0000::/32"),
},
4773: {
// [RFC4773] Administration of the IANA Special Purpose IPv6 Address Block
MustIPv6Addr("2001:0000::/23"), // IANA
},
4843: {
// [RFC4843] An IPv6 Prefix for Overlay Routable Cryptographic Hash Identifiers (ORCHID)
MustIPv6Addr("2001:10::/28"), // [RFC4843], §7 IANA Considerations
},
5180: {
// [RFC5180] IPv6 Benchmarking Methodology for Network Interconnect Devices
MustIPv6Addr("2001:0200::/48"), // [RFC5180], §8 IANA Considerations
},
5735: {
// [RFC5735] Special Use IPv4 Addresses
MustIPv4Addr("192.0.2.0/24"), // TEST-NET-1
MustIPv4Addr("198.51.100.0/24"), // TEST-NET-2
MustIPv4Addr("203.0.113.0/24"), // TEST-NET-3
MustIPv4Addr("198.18.0.0/15"), // Benchmarks
},
5737: {
// [RFC5737] IPv4 Address Blocks Reserved for Documentation
MustIPv4Addr("192.0.2.0/24"), // TEST-NET-1
MustIPv4Addr("198.51.100.0/24"), // TEST-NET-2
MustIPv4Addr("203.0.113.0/24"), // TEST-NET-3
},
6052: {
// [RFC6052] IPv6 Addressing of IPv4/IPv6 Translators
MustIPv6Addr("64:ff9b::/96"), // [RFC6052], §2.1. Well-Known Prefix
},
6333: {
// [RFC6333] Dual-Stack Lite Broadband Deployments Following IPv4 Exhaustion
MustIPv4Addr("192.0.0.0/29"), // [RFC6333], §5.7 Well-Known IPv4 Address
},
6598: {
// [RFC6598] IANA-Reserved IPv4 Prefix for Shared Address Space
MustIPv4Addr("100.64.0.0/10"),
},
6666: {
// [RFC6666] A Discard Prefix for IPv6
MustIPv6Addr("0100::/64"),
},
6890: {
// [RFC6890] Special-Purpose IP Address Registries
// From "RFC6890 §2.2.1 Information Requirements":
/*
The IPv4 and IPv6 Special-Purpose Address Registries maintain the
following information regarding each entry:
o Address Block - A block of IPv4 or IPv6 addresses that has been
registered for a special purpose.
o Name - A descriptive name for the special-purpose address block.
o RFC - The RFC through which the special-purpose address block was
requested.
o Allocation Date - The date upon which the special-purpose address
block was allocated.
o Termination Date - The date upon which the allocation is to be
terminated. This field is applicable for limited-use allocations
only.
o Source - A boolean value indicating whether an address from the
allocated special-purpose address block is valid when used as the
source address of an IP datagram that transits two devices.
o Destination - A boolean value indicating whether an address from
the allocated special-purpose address block is valid when used as
the destination address of an IP datagram that transits two
devices.
o Forwardable - A boolean value indicating whether a router may
forward an IP datagram whose destination address is drawn from the
allocated special-purpose address block between external
interfaces.
o Global - A boolean value indicating whether an IP datagram whose
destination address is drawn from the allocated special-purpose
address block is forwardable beyond a specified administrative
domain.
o Reserved-by-Protocol - A boolean value indicating whether the
special-purpose address block is reserved by IP, itself. This
value is "TRUE" if the RFC that created the special-purpose
address block requires all compliant IP implementations to behave
in a special way when processing packets either to or from
addresses contained by the address block.
If the value of "Destination" is FALSE, the values of "Forwardable"
and "Global" must also be false.
*/
/*+----------------------+----------------------------+
* | Attribute | Value |
* +----------------------+----------------------------+
* | Address Block | 0.0.0.0/8 |
* | Name | "This host on this network"|
* | RFC | [RFC1122], Section 3.2.1.3 |
* | Allocation Date | September 1981 |
* | Termination Date | N/A |
* | Source | True |
* | Destination | False |
* | Forwardable | False |
* | Global | False |
* | Reserved-by-Protocol | True |
* +----------------------+----------------------------+*/
MustIPv4Addr("0.0.0.0/8"),
/*+----------------------+---------------+
* | Attribute | Value |
* +----------------------+---------------+
* | Address Block | 10.0.0.0/8 |
* | Name | Private-Use |
* | RFC | [RFC1918] |
* | Allocation Date | February 1996 |
* | Termination Date | N/A |
* | Source | True |
* | Destination | True |
* | Forwardable | True |
* | Global | False |
* | Reserved-by-Protocol | False |
* +----------------------+---------------+ */
MustIPv4Addr("10.0.0.0/8"),
/*+----------------------+----------------------+
| Attribute | Value |
+----------------------+----------------------+
| Address Block | 100.64.0.0/10 |
| Name | Shared Address Space |
| RFC | [RFC6598] |
| Allocation Date | April 2012 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------------+*/
MustIPv4Addr("100.64.0.0/10"),
/*+----------------------+----------------------------+
| Attribute | Value |
+----------------------+----------------------------+
| Address Block | 127.0.0.0/8 |
| Name | Loopback |
| RFC | [RFC1122], Section 3.2.1.3 |
| Allocation Date | September 1981 |
| Termination Date | N/A |
| Source | False [1] |
| Destination | False [1] |
| Forwardable | False [1] |
| Global | False [1] |
| Reserved-by-Protocol | True |
+----------------------+----------------------------+*/
// [1] Several protocols have been granted exceptions to
// this rule. For examples, see [RFC4379] and
// [RFC5884].
MustIPv4Addr("127.0.0.0/8"),
/*+----------------------+----------------+
| Attribute | Value |
+----------------------+----------------+
| Address Block | 169.254.0.0/16 |
| Name | Link Local |
| RFC | [RFC3927] |
| Allocation Date | May 2005 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | True |
+----------------------+----------------+*/
MustIPv4Addr("169.254.0.0/16"),
/*+----------------------+---------------+
| Attribute | Value |
+----------------------+---------------+
| Address Block | 172.16.0.0/12 |
| Name | Private-Use |
| RFC | [RFC1918] |
| Allocation Date | February 1996 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+---------------+*/
MustIPv4Addr("172.16.0.0/12"),
/*+----------------------+---------------------------------+
| Attribute | Value |
+----------------------+---------------------------------+
| Address Block | 192.0.0.0/24 [2] |
| Name | IETF Protocol Assignments |
| RFC | Section 2.1 of this document |
| Allocation Date | January 2010 |
| Termination Date | N/A |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+---------------------------------+*/
// [2] Not usable unless by virtue of a more specific
// reservation.
MustIPv4Addr("192.0.0.0/24"),
/*+----------------------+--------------------------------+
| Attribute | Value |
+----------------------+--------------------------------+
| Address Block | 192.0.0.0/29 |
| Name | IPv4 Service Continuity Prefix |
| RFC | [RFC6333], [RFC7335] |
| Allocation Date | June 2011 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+--------------------------------+*/
MustIPv4Addr("192.0.0.0/29"),
/*+----------------------+----------------------------+
| Attribute | Value |
+----------------------+----------------------------+
| Address Block | 192.0.2.0/24 |
| Name | Documentation (TEST-NET-1) |
| RFC | [RFC5737] |
| Allocation Date | January 2010 |
| Termination Date | N/A |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------------------+*/
MustIPv4Addr("192.0.2.0/24"),
/*+----------------------+--------------------+
| Attribute | Value |
+----------------------+--------------------+
| Address Block | 192.88.99.0/24 |
| Name | 6to4 Relay Anycast |
| RFC | [RFC3068] |
| Allocation Date | June 2001 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | True |
| Reserved-by-Protocol | False |
+----------------------+--------------------+*/
MustIPv4Addr("192.88.99.0/24"),
/*+----------------------+----------------+
| Attribute | Value |
+----------------------+----------------+
| Address Block | 192.168.0.0/16 |
| Name | Private-Use |
| RFC | [RFC1918] |
| Allocation Date | February 1996 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------+*/
MustIPv4Addr("192.168.0.0/16"),
/*+----------------------+---------------+
| Attribute | Value |
+----------------------+---------------+
| Address Block | 198.18.0.0/15 |
| Name | Benchmarking |
| RFC | [RFC2544] |
| Allocation Date | March 1999 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+---------------+*/
MustIPv4Addr("198.18.0.0/15"),
/*+----------------------+----------------------------+
| Attribute | Value |
+----------------------+----------------------------+
| Address Block | 198.51.100.0/24 |
| Name | Documentation (TEST-NET-2) |
| RFC | [RFC5737] |
| Allocation Date | January 2010 |
| Termination Date | N/A |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------------------+*/
MustIPv4Addr("198.51.100.0/24"),
/*+----------------------+----------------------------+
| Attribute | Value |
+----------------------+----------------------------+
| Address Block | 203.0.113.0/24 |
| Name | Documentation (TEST-NET-3) |
| RFC | [RFC5737] |
| Allocation Date | January 2010 |
| Termination Date | N/A |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------------------+*/
MustIPv4Addr("203.0.113.0/24"),
/*+----------------------+----------------------+
| Attribute | Value |
+----------------------+----------------------+
| Address Block | 240.0.0.0/4 |
| Name | Reserved |
| RFC | [RFC1112], Section 4 |
| Allocation Date | August 1989 |
| Termination Date | N/A |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | True |
+----------------------+----------------------+*/
MustIPv4Addr("240.0.0.0/4"),
/*+----------------------+----------------------+
| Attribute | Value |
+----------------------+----------------------+
| Address Block | 255.255.255.255/32 |
| Name | Limited Broadcast |
| RFC | [RFC0919], Section 7 |
| Allocation Date | October 1984 |
| Termination Date | N/A |
| Source | False |
| Destination | True |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------------+*/
MustIPv4Addr("255.255.255.255/32"),
/*+----------------------+------------------+
| Attribute | Value |
+----------------------+------------------+
| Address Block | ::1/128 |
| Name | Loopback Address |
| RFC | [RFC4291] |
| Allocation Date | February 2006 |
| Termination Date | N/A |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | True |
+----------------------+------------------+*/
MustIPv6Addr("::1/128"),
/*+----------------------+---------------------+
| Attribute | Value |
+----------------------+---------------------+
| Address Block | ::/128 |
| Name | Unspecified Address |
| RFC | [RFC4291] |
| Allocation Date | February 2006 |
| Termination Date | N/A |
| Source | True |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | True |
+----------------------+---------------------+*/
MustIPv6Addr("::/128"),
/*+----------------------+---------------------+
| Attribute | Value |
+----------------------+---------------------+
| Address Block | 64:ff9b::/96 |
| Name | IPv4-IPv6 Translat. |
| RFC | [RFC6052] |
| Allocation Date | October 2010 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | True |
| Reserved-by-Protocol | False |
+----------------------+---------------------+*/
MustIPv6Addr("64:ff9b::/96"),
/*+----------------------+---------------------+
| Attribute | Value |
+----------------------+---------------------+
| Address Block | ::ffff:0:0/96 |
| Name | IPv4-mapped Address |
| RFC | [RFC4291] |
| Allocation Date | February 2006 |
| Termination Date | N/A |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | True |
+----------------------+---------------------+*/
MustIPv6Addr("::ffff:0:0/96"),
/*+----------------------+----------------------------+
| Attribute | Value |
+----------------------+----------------------------+
| Address Block | 100::/64 |
| Name | Discard-Only Address Block |
| RFC | [RFC6666] |
| Allocation Date | June 2012 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------------------+*/
MustIPv6Addr("100::/64"),
/*+----------------------+---------------------------+
| Attribute | Value |
+----------------------+---------------------------+
| Address Block | 2001::/23 |
| Name | IETF Protocol Assignments |
| RFC | [RFC2928] |
| Allocation Date | September 2000 |
| Termination Date | N/A |
| Source | False[1] |
| Destination | False[1] |
| Forwardable | False[1] |
| Global | False[1] |
| Reserved-by-Protocol | False |
+----------------------+---------------------------+*/
// [1] Unless allowed by a more specific allocation.
MustIPv6Addr("2001::/16"),
/*+----------------------+----------------+
| Attribute | Value |
+----------------------+----------------+
| Address Block | 2001::/32 |
| Name | TEREDO |
| RFC | [RFC4380] |
| Allocation Date | January 2006 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------+*/
// Covered by previous entry, included for completeness.
//
// MustIPv6Addr("2001::/16"),
/*+----------------------+----------------+
| Attribute | Value |
+----------------------+----------------+
| Address Block | 2001:2::/48 |
| Name | Benchmarking |
| RFC | [RFC5180] |
| Allocation Date | April 2008 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+----------------+*/
// Covered by previous entry, included for completeness.
//
// MustIPv6Addr("2001:2::/48"),
/*+----------------------+---------------+
| Attribute | Value |
+----------------------+---------------+
| Address Block | 2001:db8::/32 |
| Name | Documentation |
| RFC | [RFC3849] |
| Allocation Date | July 2004 |
| Termination Date | N/A |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+---------------+*/
// Covered by previous entry, included for completeness.
//
// MustIPv6Addr("2001:db8::/32"),
/*+----------------------+--------------+
| Attribute | Value |
+----------------------+--------------+
| Address Block | 2001:10::/28 |
| Name | ORCHID |
| RFC | [RFC4843] |
| Allocation Date | March 2007 |
| Termination Date | March 2014 |
| Source | False |
| Destination | False |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+--------------+*/
// Covered by previous entry, included for completeness.
//
// MustIPv6Addr("2001:10::/28"),
/*+----------------------+---------------+
| Attribute | Value |
+----------------------+---------------+
| Address Block | 2002::/16 [2] |
| Name | 6to4 |
| RFC | [RFC3056] |
| Allocation Date | February 2001 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | N/A [2] |
| Reserved-by-Protocol | False |
+----------------------+---------------+*/
// [2] See [RFC3056] for details.
MustIPv6Addr("2002::/16"),
/*+----------------------+--------------+
| Attribute | Value |
+----------------------+--------------+
| Address Block | fc00::/7 |
| Name | Unique-Local |
| RFC | [RFC4193] |
| Allocation Date | October 2005 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | True |
| Global | False |
| Reserved-by-Protocol | False |
+----------------------+--------------+*/
MustIPv6Addr("fc00::/7"),
/*+----------------------+-----------------------+
| Attribute | Value |
+----------------------+-----------------------+
| Address Block | fe80::/10 |
| Name | Linked-Scoped Unicast |
| RFC | [RFC4291] |
| Allocation Date | February 2006 |
| Termination Date | N/A |
| Source | True |
| Destination | True |
| Forwardable | False |
| Global | False |
| Reserved-by-Protocol | True |
+----------------------+-----------------------+*/
MustIPv6Addr("fe80::/10"),
},
7335: {
// [RFC7335] IPv4 Service Continuity Prefix
MustIPv4Addr("192.0.0.0/29"), // [RFC7335], §6 IANA Considerations
},
ForwardingBlacklist: { // Pseudo-RFC
// Blacklist of non-forwardable IP blocks taken from RFC6890
//
// TODO: the attributes for forwardable should be
// searcahble and embedded in the main list of RFCs
// above.
MustIPv4Addr("0.0.0.0/8"),
MustIPv4Addr("127.0.0.0/8"),
MustIPv4Addr("169.254.0.0/16"),
MustIPv4Addr("192.0.0.0/24"),
MustIPv4Addr("192.0.2.0/24"),
MustIPv4Addr("198.51.100.0/24"),
MustIPv4Addr("203.0.113.0/24"),
MustIPv4Addr("240.0.0.0/4"),
MustIPv4Addr("255.255.255.255/32"),
MustIPv6Addr("::1/128"),
MustIPv6Addr("::/128"),
MustIPv6Addr("::ffff:0:0/96"),
// There is no way of expressing a whitelist per RFC2928
// atm without creating a negative mask, which I don't
// want to do atm.
//MustIPv6Addr("2001::/23"),
MustIPv6Addr("2001:db8::/32"),
MustIPv6Addr("2001:10::/28"),
MustIPv6Addr("fe80::/10"),
},
}
}
// VisitAllRFCs iterates over all known RFCs and calls the visitor
func VisitAllRFCs(fn func(rfcNum uint, sockaddrs SockAddrs)) {
rfcNetMap := KnownRFCs()
// Blacklist of faux-RFCs. Don't show the world that we're abusing the
// RFC system in this library.
rfcBlacklist := map[uint]struct{}{
ForwardingBlacklist: {},
}
for rfcNum, sas := range rfcNetMap {
if _, found := rfcBlacklist[rfcNum]; !found {
fn(rfcNum, sas)
}
}
}

19
vendor/github.com/hashicorp/go-sockaddr/route_info.go generated vendored Normal file
View File

@@ -0,0 +1,19 @@
package sockaddr
// RouteInterface specifies an interface for obtaining memoized route table and
// network information from a given OS.
type RouteInterface interface {
// GetDefaultInterfaceName returns the name of the interface that has a
// default route or an error and an empty string if a problem was
// encountered.
GetDefaultInterfaceName() (string, error)
}
// VisitCommands visits each command used by the platform-specific RouteInfo
// implementation.
func (ri routeInfo) VisitCommands(fn func(name string, cmd []string)) {
for k, v := range ri.cmds {
cmds := append([]string(nil), v...)
fn(k, cmds)
}
}

View File

@@ -0,0 +1,36 @@
// +build darwin dragonfly freebsd netbsd openbsd
package sockaddr
import "os/exec"
var cmds map[string][]string = map[string][]string{
"route": {"/sbin/route", "-n", "get", "default"},
}
type routeInfo struct {
cmds map[string][]string
}
// NewRouteInfo returns a BSD-specific implementation of the RouteInfo
// interface.
func NewRouteInfo() (routeInfo, error) {
return routeInfo{
cmds: cmds,
}, nil
}
// GetDefaultInterfaceName returns the interface name attached to the default
// route on the default interface.
func (ri routeInfo) GetDefaultInterfaceName() (string, error) {
out, err := exec.Command(cmds["route"][0], cmds["route"][1:]...).Output()
if err != nil {
return "", err
}
var ifName string
if ifName, err = parseDefaultIfNameFromRoute(string(out)); err != nil {
return "", err
}
return ifName, nil
}

View File

@@ -0,0 +1,10 @@
// +build android nacl plan9
package sockaddr
import "errors"
// getDefaultIfName is the default interface function for unsupported platforms.
func getDefaultIfName() (string, error) {
return "", errors.New("No default interface found (unsupported platform)")
}

View File

@@ -0,0 +1,40 @@
package sockaddr
import (
"errors"
"os/exec"
)
type routeInfo struct {
cmds map[string][]string
}
// NewRouteInfo returns a Linux-specific implementation of the RouteInfo
// interface.
func NewRouteInfo() (routeInfo, error) {
// CoreOS Container Linux moved ip to /usr/bin/ip, so look it up on
// $PATH and fallback to /sbin/ip on error.
path, _ := exec.LookPath("ip")
if path == "" {
path = "/sbin/ip"
}
return routeInfo{
cmds: map[string][]string{"ip": {path, "route"}},
}, nil
}
// GetDefaultInterfaceName returns the interface name attached to the default
// route on the default interface.
func (ri routeInfo) GetDefaultInterfaceName() (string, error) {
out, err := exec.Command(ri.cmds["ip"][0], ri.cmds["ip"][1:]...).Output()
if err != nil {
return "", err
}
var ifName string
if ifName, err = parseDefaultIfNameFromIPCmd(string(out)); err != nil {
return "", errors.New("No default interface found")
}
return ifName, nil
}

View File

@@ -0,0 +1,37 @@
package sockaddr
import (
"errors"
"os/exec"
)
var cmds map[string][]string = map[string][]string{
"route": {"/usr/sbin/route", "-n", "get", "default"},
}
type routeInfo struct {
cmds map[string][]string
}
// NewRouteInfo returns a BSD-specific implementation of the RouteInfo
// interface.
func NewRouteInfo() (routeInfo, error) {
return routeInfo{
cmds: cmds,
}, nil
}
// GetDefaultInterfaceName returns the interface name attached to the default
// route on the default interface.
func (ri routeInfo) GetDefaultInterfaceName() (string, error) {
out, err := exec.Command(cmds["route"][0], cmds["route"][1:]...).Output()
if err != nil {
return "", err
}
var ifName string
if ifName, err = parseDefaultIfNameFromRoute(string(out)); err != nil {
return "", errors.New("No default interface found")
}
return ifName, nil
}

View File

@@ -0,0 +1,41 @@
package sockaddr
import "os/exec"
var cmds map[string][]string = map[string][]string{
"netstat": {"netstat", "-rn"},
"ipconfig": {"ipconfig"},
}
type routeInfo struct {
cmds map[string][]string
}
// NewRouteInfo returns a BSD-specific implementation of the RouteInfo
// interface.
func NewRouteInfo() (routeInfo, error) {
return routeInfo{
cmds: cmds,
}, nil
}
// GetDefaultInterfaceName returns the interface name attached to the default
// route on the default interface.
func (ri routeInfo) GetDefaultInterfaceName() (string, error) {
ifNameOut, err := exec.Command(cmds["netstat"][0], cmds["netstat"][1:]...).Output()
if err != nil {
return "", err
}
ipconfigOut, err := exec.Command(cmds["ipconfig"][0], cmds["ipconfig"][1:]...).Output()
if err != nil {
return "", err
}
ifName, err := parseDefaultIfNameWindows(string(ifNameOut), string(ipconfigOut))
if err != nil {
return "", err
}
return ifName, nil
}

206
vendor/github.com/hashicorp/go-sockaddr/sockaddr.go generated vendored Normal file
View File

@@ -0,0 +1,206 @@
package sockaddr
import (
"encoding/json"
"fmt"
"strings"
)
type SockAddrType int
type AttrName string
const (
TypeUnknown SockAddrType = 0x0
TypeUnix = 0x1
TypeIPv4 = 0x2
TypeIPv6 = 0x4
// TypeIP is the union of TypeIPv4 and TypeIPv6
TypeIP = 0x6
)
type SockAddr interface {
// CmpRFC returns 0 if SockAddr exactly matches one of the matched RFC
// networks, -1 if the receiver is contained within the RFC network, or
// 1 if the address is not contained within the RFC.
CmpRFC(rfcNum uint, sa SockAddr) int
// Contains returns true if the SockAddr arg is contained within the
// receiver
Contains(SockAddr) bool
// Equal allows for the comparison of two SockAddrs
Equal(SockAddr) bool
DialPacketArgs() (string, string)
DialStreamArgs() (string, string)
ListenPacketArgs() (string, string)
ListenStreamArgs() (string, string)
// String returns the string representation of SockAddr
String() string
// Type returns the SockAddrType
Type() SockAddrType
}
// sockAddrAttrMap is a map of the SockAddr type-specific attributes.
var sockAddrAttrMap map[AttrName]func(SockAddr) string
var sockAddrAttrs []AttrName
func init() {
sockAddrInit()
}
// New creates a new SockAddr from the string. The order in which New()
// attempts to construct a SockAddr is: IPv4Addr, IPv6Addr, SockAddrUnix.
//
// NOTE: New() relies on the heuristic wherein if the path begins with either a
// '.' or '/' character before creating a new UnixSock. For UNIX sockets that
// are absolute paths or are nested within a sub-directory, this works as
// expected, however if the UNIX socket is contained in the current working
// directory, this will fail unless the path begins with "./"
// (e.g. "./my-local-socket"). Calls directly to NewUnixSock() do not suffer
// this limitation. Invalid IP addresses such as "256.0.0.0/-1" will run afoul
// of this heuristic and be assumed to be a valid UNIX socket path (which they
// are, but it is probably not what you want and you won't realize it until you
// stat(2) the file system to discover it doesn't exist).
func NewSockAddr(s string) (SockAddr, error) {
ipv4Addr, err := NewIPv4Addr(s)
if err == nil {
return ipv4Addr, nil
}
ipv6Addr, err := NewIPv6Addr(s)
if err == nil {
return ipv6Addr, nil
}
// Check to make sure the string begins with either a '.' or '/', or
// contains a '/'.
if len(s) > 1 && (strings.IndexAny(s[0:1], "./") != -1 || strings.IndexByte(s, '/') != -1) {
unixSock, err := NewUnixSock(s)
if err == nil {
return unixSock, nil
}
}
return nil, fmt.Errorf("Unable to convert %q to an IPv4 or IPv6 address, or a UNIX Socket", s)
}
// ToIPAddr returns an IPAddr type or nil if the type conversion fails.
func ToIPAddr(sa SockAddr) *IPAddr {
ipa, ok := sa.(IPAddr)
if !ok {
return nil
}
return &ipa
}
// ToIPv4Addr returns an IPv4Addr type or nil if the type conversion fails.
func ToIPv4Addr(sa SockAddr) *IPv4Addr {
switch v := sa.(type) {
case IPv4Addr:
return &v
default:
return nil
}
}
// ToIPv6Addr returns an IPv6Addr type or nil if the type conversion fails.
func ToIPv6Addr(sa SockAddr) *IPv6Addr {
switch v := sa.(type) {
case IPv6Addr:
return &v
default:
return nil
}
}
// ToUnixSock returns a UnixSock type or nil if the type conversion fails.
func ToUnixSock(sa SockAddr) *UnixSock {
switch v := sa.(type) {
case UnixSock:
return &v
default:
return nil
}
}
// SockAddrAttr returns a string representation of an attribute for the given
// SockAddr.
func SockAddrAttr(sa SockAddr, selector AttrName) string {
fn, found := sockAddrAttrMap[selector]
if !found {
return ""
}
return fn(sa)
}
// String() for SockAddrType returns a string representation of the
// SockAddrType (e.g. "IPv4", "IPv6", "UNIX", "IP", or "unknown").
func (sat SockAddrType) String() string {
switch sat {
case TypeIPv4:
return "IPv4"
case TypeIPv6:
return "IPv6"
// There is no concrete "IP" type. Leaving here as a reminder.
// case TypeIP:
// return "IP"
case TypeUnix:
return "UNIX"
default:
panic("unsupported type")
}
}
// sockAddrInit is called once at init()
func sockAddrInit() {
sockAddrAttrs = []AttrName{
"type", // type should be first
"string",
}
sockAddrAttrMap = map[AttrName]func(sa SockAddr) string{
"string": func(sa SockAddr) string {
return sa.String()
},
"type": func(sa SockAddr) string {
return sa.Type().String()
},
}
}
// UnixSockAttrs returns a list of attributes supported by the UnixSock type
func SockAddrAttrs() []AttrName {
return sockAddrAttrs
}
// Although this is pretty trivial to do in a program, having the logic here is
// useful all around. Note that this marshals into a *string* -- the underlying
// string representation of the sockaddr. If you then unmarshal into this type
// in Go, all will work as expected, but externally you can take what comes out
// and use the string value directly.
type SockAddrMarshaler struct {
SockAddr
}
func (s *SockAddrMarshaler) MarshalJSON() ([]byte, error) {
return json.Marshal(s.SockAddr.String())
}
func (s *SockAddrMarshaler) UnmarshalJSON(in []byte) error {
var str string
err := json.Unmarshal(in, &str)
if err != nil {
return err
}
sa, err := NewSockAddr(str)
if err != nil {
return err
}
s.SockAddr = sa
return nil
}

193
vendor/github.com/hashicorp/go-sockaddr/sockaddrs.go generated vendored Normal file
View File

@@ -0,0 +1,193 @@
package sockaddr
import (
"bytes"
"sort"
)
// SockAddrs is a slice of SockAddrs
type SockAddrs []SockAddr
func (s SockAddrs) Len() int { return len(s) }
func (s SockAddrs) Swap(i, j int) { s[i], s[j] = s[j], s[i] }
// CmpAddrFunc is the function signature that must be met to be used in the
// OrderedAddrBy multiAddrSorter
type CmpAddrFunc func(p1, p2 *SockAddr) int
// multiAddrSorter implements the Sort interface, sorting the SockAddrs within.
type multiAddrSorter struct {
addrs SockAddrs
cmp []CmpAddrFunc
}
// Sort sorts the argument slice according to the Cmp functions passed to
// OrderedAddrBy.
func (ms *multiAddrSorter) Sort(sockAddrs SockAddrs) {
ms.addrs = sockAddrs
sort.Sort(ms)
}
// OrderedAddrBy sorts SockAddr by the list of sort function pointers.
func OrderedAddrBy(cmpFuncs ...CmpAddrFunc) *multiAddrSorter {
return &multiAddrSorter{
cmp: cmpFuncs,
}
}
// Len is part of sort.Interface.
func (ms *multiAddrSorter) Len() int {
return len(ms.addrs)
}
// Less is part of sort.Interface. It is implemented by looping along the
// Cmp() functions until it finds a comparison that is either less than,
// equal to, or greater than.
func (ms *multiAddrSorter) Less(i, j int) bool {
p, q := &ms.addrs[i], &ms.addrs[j]
// Try all but the last comparison.
var k int
for k = 0; k < len(ms.cmp)-1; k++ {
cmp := ms.cmp[k]
x := cmp(p, q)
switch x {
case -1:
// p < q, so we have a decision.
return true
case 1:
// p > q, so we have a decision.
return false
}
// p == q; try the next comparison.
}
// All comparisons to here said "equal", so just return whatever the
// final comparison reports.
switch ms.cmp[k](p, q) {
case -1:
return true
case 1:
return false
default:
// Still a tie! Now what?
return false
}
}
// Swap is part of sort.Interface.
func (ms *multiAddrSorter) Swap(i, j int) {
ms.addrs[i], ms.addrs[j] = ms.addrs[j], ms.addrs[i]
}
const (
// NOTE (sean@): These constants are here for code readability only and
// are sprucing up the code for readability purposes. Some of the
// Cmp*() variants have confusing logic (especially when dealing with
// mixed-type comparisons) and this, I think, has made it easier to grok
// the code faster.
sortReceiverBeforeArg = -1
sortDeferDecision = 0
sortArgBeforeReceiver = 1
)
// AscAddress is a sorting function to sort SockAddrs by their respective
// address type. Non-equal types are deferred in the sort.
func AscAddress(p1Ptr, p2Ptr *SockAddr) int {
p1 := *p1Ptr
p2 := *p2Ptr
switch v := p1.(type) {
case IPv4Addr:
return v.CmpAddress(p2)
case IPv6Addr:
return v.CmpAddress(p2)
case UnixSock:
return v.CmpAddress(p2)
default:
return sortDeferDecision
}
}
// AscPort is a sorting function to sort SockAddrs by their respective address
// type. Non-equal types are deferred in the sort.
func AscPort(p1Ptr, p2Ptr *SockAddr) int {
p1 := *p1Ptr
p2 := *p2Ptr
switch v := p1.(type) {
case IPv4Addr:
return v.CmpPort(p2)
case IPv6Addr:
return v.CmpPort(p2)
default:
return sortDeferDecision
}
}
// AscPrivate is a sorting function to sort "more secure" private values before
// "more public" values. Both IPv4 and IPv6 are compared against RFC6890
// (RFC6890 includes, and is not limited to, RFC1918 and RFC6598 for IPv4, and
// IPv6 includes RFC4193).
func AscPrivate(p1Ptr, p2Ptr *SockAddr) int {
p1 := *p1Ptr
p2 := *p2Ptr
switch v := p1.(type) {
case IPv4Addr, IPv6Addr:
return v.CmpRFC(6890, p2)
default:
return sortDeferDecision
}
}
// AscNetworkSize is a sorting function to sort SockAddrs based on their network
// size. Non-equal types are deferred in the sort.
func AscNetworkSize(p1Ptr, p2Ptr *SockAddr) int {
p1 := *p1Ptr
p2 := *p2Ptr
p1Type := p1.Type()
p2Type := p2.Type()
// Network size operations on non-IP types make no sense
if p1Type != p2Type && p1Type != TypeIP {
return sortDeferDecision
}
ipA := p1.(IPAddr)
ipB := p2.(IPAddr)
return bytes.Compare([]byte(*ipA.NetIPMask()), []byte(*ipB.NetIPMask()))
}
// AscType is a sorting function to sort "more secure" types before
// "less-secure" types.
func AscType(p1Ptr, p2Ptr *SockAddr) int {
p1 := *p1Ptr
p2 := *p2Ptr
p1Type := p1.Type()
p2Type := p2.Type()
switch {
case p1Type < p2Type:
return sortReceiverBeforeArg
case p1Type == p2Type:
return sortDeferDecision
case p1Type > p2Type:
return sortArgBeforeReceiver
default:
return sortDeferDecision
}
}
// FilterByType returns two lists: a list of matched and unmatched SockAddrs
func (sas SockAddrs) FilterByType(type_ SockAddrType) (matched, excluded SockAddrs) {
matched = make(SockAddrs, 0, len(sas))
excluded = make(SockAddrs, 0, len(sas))
for _, sa := range sas {
if sa.Type()&type_ != 0 {
matched = append(matched, sa)
} else {
excluded = append(excluded, sa)
}
}
return matched, excluded
}

135
vendor/github.com/hashicorp/go-sockaddr/unixsock.go generated vendored Normal file
View File

@@ -0,0 +1,135 @@
package sockaddr
import (
"fmt"
"strings"
)
type UnixSock struct {
SockAddr
path string
}
type UnixSocks []*UnixSock
// unixAttrMap is a map of the UnixSockAddr type-specific attributes.
var unixAttrMap map[AttrName]func(UnixSock) string
var unixAttrs []AttrName
func init() {
unixAttrInit()
}
// NewUnixSock creates an UnixSock from a string path. String can be in the
// form of either URI-based string (e.g. `file:///etc/passwd`), an absolute
// path (e.g. `/etc/passwd`), or a relative path (e.g. `./foo`).
func NewUnixSock(s string) (ret UnixSock, err error) {
ret.path = s
return ret, nil
}
// CmpAddress follows the Cmp() standard protocol and returns:
//
// - -1 If the receiver should sort first because its name lexically sorts before arg
// - 0 if the SockAddr arg is not a UnixSock, or is a UnixSock with the same path.
// - 1 If the argument should sort first.
func (us UnixSock) CmpAddress(sa SockAddr) int {
usb, ok := sa.(UnixSock)
if !ok {
return sortDeferDecision
}
return strings.Compare(us.Path(), usb.Path())
}
// DialPacketArgs returns the arguments required to be passed to net.DialUnix()
// with the `unixgram` network type.
func (us UnixSock) DialPacketArgs() (network, dialArgs string) {
return "unixgram", us.path
}
// DialStreamArgs returns the arguments required to be passed to net.DialUnix()
// with the `unix` network type.
func (us UnixSock) DialStreamArgs() (network, dialArgs string) {
return "unix", us.path
}
// Equal returns true if a SockAddr is equal to the receiving UnixSock.
func (us UnixSock) Equal(sa SockAddr) bool {
usb, ok := sa.(UnixSock)
if !ok {
return false
}
if us.Path() != usb.Path() {
return false
}
return true
}
// ListenPacketArgs returns the arguments required to be passed to
// net.ListenUnixgram() with the `unixgram` network type.
func (us UnixSock) ListenPacketArgs() (network, dialArgs string) {
return "unixgram", us.path
}
// ListenStreamArgs returns the arguments required to be passed to
// net.ListenUnix() with the `unix` network type.
func (us UnixSock) ListenStreamArgs() (network, dialArgs string) {
return "unix", us.path
}
// MustUnixSock is a helper method that must return an UnixSock or panic on
// invalid input.
func MustUnixSock(addr string) UnixSock {
us, err := NewUnixSock(addr)
if err != nil {
panic(fmt.Sprintf("Unable to create a UnixSock from %+q: %v", addr, err))
}
return us
}
// Path returns the given path of the UnixSock
func (us UnixSock) Path() string {
return us.path
}
// String returns the path of the UnixSock
func (us UnixSock) String() string {
return fmt.Sprintf("%+q", us.path)
}
// Type is used as a type switch and returns TypeUnix
func (UnixSock) Type() SockAddrType {
return TypeUnix
}
// UnixSockAttrs returns a list of attributes supported by the UnixSockAddr type
func UnixSockAttrs() []AttrName {
return unixAttrs
}
// UnixSockAttr returns a string representation of an attribute for the given
// UnixSock.
func UnixSockAttr(us UnixSock, attrName AttrName) string {
fn, found := unixAttrMap[attrName]
if !found {
return ""
}
return fn(us)
}
// unixAttrInit is called once at init()
func unixAttrInit() {
// Sorted for human readability
unixAttrs = []AttrName{
"path",
}
unixAttrMap = map[AttrName]func(us UnixSock) string{
"path": func(us UnixSock) string {
return us.Path()
},
}
}

25
vendor/github.com/hashicorp/memberlist/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,25 @@
# Compiled Object files, Static and Dynamic libs (Shared Objects)
*.o
*.a
*.so
# Folders
_obj
_test
# Architecture specific extensions/prefixes
*.[568vq]
[568vq].out
*.cgo1.go
*.cgo2.c
_cgo_defun.c
_cgo_gotypes.go
_cgo_export.*
_testmain.go
*.exe
*.test
.vagrant/

80
vendor/github.com/hashicorp/memberlist/.golangci.yml generated vendored Normal file
View File

@@ -0,0 +1,80 @@
linters:
disable-all: true
enable:
# (TODO) uncomment after fixing the lint issues
# - gofmt
- govet
# - unconvert
# - staticcheck
# - ineffassign
# - unparam
- forbidigo
issues:
# Disable the default exclude list so that all excludes are explicitly
# defined in this file.
exclude-use-default: false
exclude-rules:
# Temp Ignore SA9004: only the first constant in this group has an explicit type
# https://staticcheck.io/docs/checks#SA9004
- linters: [staticcheck]
text: 'SA9004:'
- linters: [staticcheck]
text: 'SA1019: Package github.com/golang/protobuf/jsonpb is deprecated'
- linters: [staticcheck]
text: 'SA1019: Package github.com/golang/protobuf/proto is deprecated'
- linters: [staticcheck]
text: 'SA1019: ptypes.MarshalAny is deprecated'
- linters: [staticcheck]
text: 'SA1019: ptypes.UnmarshalAny is deprecated'
- linters: [staticcheck]
text: 'SA1019: package github.com/golang/protobuf/ptypes is deprecated'
# An argument that always receives the same value is often not a problem.
- linters: [unparam]
text: 'always receives'
# Often functions will implement an interface that returns an error without
# needing to return an error. Sometimes the error return value is unnecessary
# but a linter can not tell the difference.
- linters: [unparam]
text: 'result \d+ \(error\) is always nil'
# Allow unused parameters to start with an underscore. Arguments with a name
# of '_' are already ignored.
# Ignoring longer names that start with underscore allow for better
# self-documentation than a single underscore by itself. Underscore arguments
# should generally only be used when a function is implementing an interface.
- linters: [unparam]
text: '`_[^`]*` is unused'
# Temp ignore some common unused parameters so that unparam can be added
# incrementally.
- linters: [unparam]
text: '`(t|resp|req|entMeta)` is unused'
linters-settings:
gofmt:
simplify: true
forbidigo:
# Forbid the following identifiers (list of regexp).
forbid:
- '\brequire\.New\b(# Use package-level functions with explicit TestingT)?'
- '\bassert\.New\b(# Use package-level functions with explicit TestingT)?'
- '\bmetrics\.IncrCounter\b(# Use labeled metrics)?'
- '\bmetrics\.AddSample\b(# Use labeled metrics)?'
- '\bmetrics\.MeasureSince\b(# Use labeled metrics)?'
- '\bmetrics\.SetGauge\b(# Use labeled metrics)?'
# Exclude godoc examples from forbidigo checks.
# Default: true
exclude_godoc_examples: false
run:
timeout: 10m
concurrency: 4

354
vendor/github.com/hashicorp/memberlist/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,354 @@
Mozilla Public License, version 2.0
1. Definitions
1.1. “Contributor”
means each individual or legal entity that creates, contributes to the
creation of, or owns Covered Software.
1.2. “Contributor Version”
means the combination of the Contributions of others (if any) used by a
Contributor and that particular Contributors Contribution.
1.3. “Contribution”
means Covered Software of a particular Contributor.
1.4. “Covered Software”
means Source Code Form to which the initial Contributor has attached the
notice in Exhibit A, the Executable Form of such Source Code Form, and
Modifications of such Source Code Form, in each case including portions
thereof.
1.5. “Incompatible With Secondary Licenses”
means
a. that the initial Contributor has attached the notice described in
Exhibit B to the Covered Software; or
b. that the Covered Software was made available under the terms of version
1.1 or earlier of the License, but not also under the terms of a
Secondary License.
1.6. “Executable Form”
means any form of the work other than Source Code Form.
1.7. “Larger Work”
means a work that combines Covered Software with other material, in a separate
file or files, that is not Covered Software.
1.8. “License”
means this document.
1.9. “Licensable”
means having the right to grant, to the maximum extent possible, whether at the
time of the initial grant or subsequently, any and all of the rights conveyed by
this License.
1.10. “Modifications”
means any of the following:
a. any file in Source Code Form that results from an addition to, deletion
from, or modification of the contents of Covered Software; or
b. any new file in Source Code Form that contains any Covered Software.
1.11. “Patent Claims” of a Contributor
means any patent claim(s), including without limitation, method, process,
and apparatus claims, in any patent Licensable by such Contributor that
would be infringed, but for the grant of the License, by the making,
using, selling, offering for sale, having made, import, or transfer of
either its Contributions or its Contributor Version.
1.12. “Secondary License”
means either the GNU General Public License, Version 2.0, the GNU Lesser
General Public License, Version 2.1, the GNU Affero General Public
License, Version 3.0, or any later versions of those licenses.
1.13. “Source Code Form”
means the form of the work preferred for making modifications.
1.14. “You” (or “Your”)
means an individual or a legal entity exercising rights under this
License. For legal entities, “You” includes any entity that controls, is
controlled by, or is under common control with You. For purposes of this
definition, “control” means (a) the power, direct or indirect, to cause
the direction or management of such entity, whether by contract or
otherwise, or (b) ownership of more than fifty percent (50%) of the
outstanding shares or beneficial ownership of such entity.
2. License Grants and Conditions
2.1. Grants
Each Contributor hereby grants You a world-wide, royalty-free,
non-exclusive license:
a. under intellectual property rights (other than patent or trademark)
Licensable by such Contributor to use, reproduce, make available,
modify, display, perform, distribute, and otherwise exploit its
Contributions, either on an unmodified basis, with Modifications, or as
part of a Larger Work; and
b. under Patent Claims of such Contributor to make, use, sell, offer for
sale, have made, import, and otherwise transfer either its Contributions
or its Contributor Version.
2.2. Effective Date
The licenses granted in Section 2.1 with respect to any Contribution become
effective for each Contribution on the date the Contributor first distributes
such Contribution.
2.3. Limitations on Grant Scope
The licenses granted in this Section 2 are the only rights granted under this
License. No additional rights or licenses will be implied from the distribution
or licensing of Covered Software under this License. Notwithstanding Section
2.1(b) above, no patent license is granted by a Contributor:
a. for any code that a Contributor has removed from Covered Software; or
b. for infringements caused by: (i) Your and any other third partys
modifications of Covered Software, or (ii) the combination of its
Contributions with other software (except as part of its Contributor
Version); or
c. under Patent Claims infringed by Covered Software in the absence of its
Contributions.
This License does not grant any rights in the trademarks, service marks, or
logos of any Contributor (except as may be necessary to comply with the
notice requirements in Section 3.4).
2.4. Subsequent Licenses
No Contributor makes additional grants as a result of Your choice to
distribute the Covered Software under a subsequent version of this License
(see Section 10.2) or under the terms of a Secondary License (if permitted
under the terms of Section 3.3).
2.5. Representation
Each Contributor represents that the Contributor believes its Contributions
are its original creation(s) or it has sufficient rights to grant the
rights to its Contributions conveyed by this License.
2.6. Fair Use
This License is not intended to limit any rights You have under applicable
copyright doctrines of fair use, fair dealing, or other equivalents.
2.7. Conditions
Sections 3.1, 3.2, 3.3, and 3.4 are conditions of the licenses granted in
Section 2.1.
3. Responsibilities
3.1. Distribution of Source Form
All distribution of Covered Software in Source Code Form, including any
Modifications that You create or to which You contribute, must be under the
terms of this License. You must inform recipients that the Source Code Form
of the Covered Software is governed by the terms of this License, and how
they can obtain a copy of this License. You may not attempt to alter or
restrict the recipients rights in the Source Code Form.
3.2. Distribution of Executable Form
If You distribute Covered Software in Executable Form then:
a. such Covered Software must also be made available in Source Code Form,
as described in Section 3.1, and You must inform recipients of the
Executable Form how they can obtain a copy of such Source Code Form by
reasonable means in a timely manner, at a charge no more than the cost
of distribution to the recipient; and
b. You may distribute such Executable Form under the terms of this License,
or sublicense it under different terms, provided that the license for
the Executable Form does not attempt to limit or alter the recipients
rights in the Source Code Form under this License.
3.3. Distribution of a Larger Work
You may create and distribute a Larger Work under terms of Your choice,
provided that You also comply with the requirements of this License for the
Covered Software. If the Larger Work is a combination of Covered Software
with a work governed by one or more Secondary Licenses, and the Covered
Software is not Incompatible With Secondary Licenses, this License permits
You to additionally distribute such Covered Software under the terms of
such Secondary License(s), so that the recipient of the Larger Work may, at
their option, further distribute the Covered Software under the terms of
either this License or such Secondary License(s).
3.4. Notices
You may not remove or alter the substance of any license notices (including
copyright notices, patent notices, disclaimers of warranty, or limitations
of liability) contained within the Source Code Form of the Covered
Software, except that You may alter any license notices to the extent
required to remedy known factual inaccuracies.
3.5. Application of Additional Terms
You may choose to offer, and to charge a fee for, warranty, support,
indemnity or liability obligations to one or more recipients of Covered
Software. However, You may do so only on Your own behalf, and not on behalf
of any Contributor. You must make it absolutely clear that any such
warranty, support, indemnity, or liability obligation is offered by You
alone, and You hereby agree to indemnify every Contributor for any
liability incurred by such Contributor as a result of warranty, support,
indemnity or liability terms You offer. You may include additional
disclaimers of warranty and limitations of liability specific to any
jurisdiction.
4. Inability to Comply Due to Statute or Regulation
If it is impossible for You to comply with any of the terms of this License
with respect to some or all of the Covered Software due to statute, judicial
order, or regulation then You must: (a) comply with the terms of this License
to the maximum extent possible; and (b) describe the limitations and the code
they affect. Such description must be placed in a text file included with all
distributions of the Covered Software under this License. Except to the
extent prohibited by statute or regulation, such description must be
sufficiently detailed for a recipient of ordinary skill to be able to
understand it.
5. Termination
5.1. The rights granted under this License will terminate automatically if You
fail to comply with any of its terms. However, if You become compliant,
then the rights granted under this License from a particular Contributor
are reinstated (a) provisionally, unless and until such Contributor
explicitly and finally terminates Your grants, and (b) on an ongoing basis,
if such Contributor fails to notify You of the non-compliance by some
reasonable means prior to 60 days after You have come back into compliance.
Moreover, Your grants from a particular Contributor are reinstated on an
ongoing basis if such Contributor notifies You of the non-compliance by
some reasonable means, this is the first time You have received notice of
non-compliance with this License from such Contributor, and You become
compliant prior to 30 days after Your receipt of the notice.
5.2. If You initiate litigation against any entity by asserting a patent
infringement claim (excluding declaratory judgment actions, counter-claims,
and cross-claims) alleging that a Contributor Version directly or
indirectly infringes any patent, then the rights granted to You by any and
all Contributors for the Covered Software under Section 2.1 of this License
shall terminate.
5.3. In the event of termination under Sections 5.1 or 5.2 above, all end user
license agreements (excluding distributors and resellers) which have been
validly granted by You or Your distributors under this License prior to
termination shall survive termination.
6. Disclaimer of Warranty
Covered Software is provided under this License on an “as is” basis, without
warranty of any kind, either expressed, implied, or statutory, including,
without limitation, warranties that the Covered Software is free of defects,
merchantable, fit for a particular purpose or non-infringing. The entire
risk as to the quality and performance of the Covered Software is with You.
Should any Covered Software prove defective in any respect, You (not any
Contributor) assume the cost of any necessary servicing, repair, or
correction. This disclaimer of warranty constitutes an essential part of this
License. No use of any Covered Software is authorized under this License
except under this disclaimer.
7. Limitation of Liability
Under no circumstances and under no legal theory, whether tort (including
negligence), contract, or otherwise, shall any Contributor, or anyone who
distributes Covered Software as permitted above, be liable to You for any
direct, indirect, special, incidental, or consequential damages of any
character including, without limitation, damages for lost profits, loss of
goodwill, work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses, even if such party shall have been
informed of the possibility of such damages. This limitation of liability
shall not apply to liability for death or personal injury resulting from such
partys negligence to the extent applicable law prohibits such limitation.
Some jurisdictions do not allow the exclusion or limitation of incidental or
consequential damages, so this exclusion and limitation may not apply to You.
8. Litigation
Any litigation relating to this License may be brought only in the courts of
a jurisdiction where the defendant maintains its principal place of business
and such litigation shall be governed by laws of that jurisdiction, without
reference to its conflict-of-law provisions. Nothing in this Section shall
prevent a partys ability to bring cross-claims or counter-claims.
9. Miscellaneous
This License represents the complete agreement concerning the subject matter
hereof. If any provision of this License is held to be unenforceable, such
provision shall be reformed only to the extent necessary to make it
enforceable. Any law or regulation which provides that the language of a
contract shall be construed against the drafter shall not be used to construe
this License against a Contributor.
10. Versions of the License
10.1. New Versions
Mozilla Foundation is the license steward. Except as provided in Section
10.3, no one other than the license steward has the right to modify or
publish new versions of this License. Each version will be given a
distinguishing version number.
10.2. Effect of New Versions
You may distribute the Covered Software under the terms of the version of
the License under which You originally received the Covered Software, or
under the terms of any subsequent version published by the license
steward.
10.3. Modified Versions
If you create software not governed by this License, and you want to
create a new license for such software, you may create and use a modified
version of this License if you rename the license and remove any
references to the name of the license steward (except to note that such
modified license differs from this License).
10.4. Distributing Source Code Form that is Incompatible With Secondary Licenses
If You choose to distribute Source Code Form that is Incompatible With
Secondary Licenses under the terms of this version of the License, the
notice described in Exhibit B of this License must be attached.
Exhibit A - Source Code Form License Notice
This Source Code Form is subject to the
terms of the Mozilla Public License, v.
2.0. If a copy of the MPL was not
distributed with this file, You can
obtain one at
http://mozilla.org/MPL/2.0/.
If it is not possible or desirable to put the notice in a particular file, then
You may include the notice in a location (such as a LICENSE file in a relevant
directory) where a recipient would be likely to look for such a notice.
You may add additional accurate notices of copyright ownership.
Exhibit B - “Incompatible With Secondary Licenses” Notice
This Source Code Form is “Incompatible
With Secondary Licenses”, as defined by
the Mozilla Public License, v. 2.0.

33
vendor/github.com/hashicorp/memberlist/Makefile generated vendored Normal file
View File

@@ -0,0 +1,33 @@
SHELL := bash
GOFILES ?= $(shell go list ./... | grep -v /vendor/)
default: test
test: vet subnet
go test ./...
integ: subnet
INTEG_TESTS=yes go test ./...
subnet:
./test/setup_subnet.sh
cov:
go test ./... -coverprofile=coverage.out
go tool cover -html=coverage.out
format:
@echo "--> Running go fmt"
@go fmt $(GOFILES)
vet:
@echo "--> Running go vet"
@go vet -tags '$(GOTAGS)' $(GOFILES); if [ $$? -eq 1 ]; then \
echo ""; \
echo "Vet found suspicious constructs. Please check the reported constructs"; \
echo "and fix them if necessary before submitting the code for review."; \
exit 1; \
fi
.PHONY: default test integ subnet cov format vet

73
vendor/github.com/hashicorp/memberlist/README.md generated vendored Normal file
View File

@@ -0,0 +1,73 @@
# memberlist [![GoDoc](https://godoc.org/github.com/hashicorp/memberlist?status.png)](https://godoc.org/github.com/hashicorp/memberlist) [![CircleCI](https://circleci.com/gh/hashicorp/memberlist.svg?style=svg)](https://circleci.com/gh/hashicorp/memberlist)
memberlist is a [Go](http://www.golang.org) library that manages cluster
membership and member failure detection using a gossip based protocol.
The use cases for such a library are far-reaching: all distributed systems
require membership, and memberlist is a re-usable solution to managing
cluster membership and node failure detection.
memberlist is eventually consistent but converges quickly on average.
The speed at which it converges can be heavily tuned via various knobs
on the protocol. Node failures are detected and network partitions are partially
tolerated by attempting to communicate to potentially dead nodes through
multiple routes.
## Building
If you wish to build memberlist you'll need Go version 1.2+ installed.
Please check your installation with:
```
go version
```
## Usage
Memberlist is surprisingly simple to use. An example is shown below:
```go
/* Create the initial memberlist from a safe configuration.
Please reference the godoc for other default config types.
http://godoc.org/github.com/hashicorp/memberlist#Config
*/
list, err := memberlist.Create(memberlist.DefaultLocalConfig())
if err != nil {
panic("Failed to create memberlist: " + err.Error())
}
// Join an existing cluster by specifying at least one known member.
n, err := list.Join([]string{"1.2.3.4"})
if err != nil {
panic("Failed to join cluster: " + err.Error())
}
// Ask for members of the cluster
for _, member := range list.Members() {
fmt.Printf("Member: %s %s\n", member.Name, member.Addr)
}
// Continue doing whatever you need, memberlist will maintain membership
// information in the background. Delegates can be used for receiving
// events when members join or leave.
```
The most difficult part of memberlist is configuring it since it has many
available knobs in order to tune state propagation delay and convergence times.
Memberlist provides a default configuration that offers a good starting point,
but errs on the side of caution, choosing values that are optimized for
higher convergence at the cost of higher bandwidth usage.
For complete documentation, see the associated [Godoc](http://godoc.org/github.com/hashicorp/memberlist).
## Protocol
memberlist is based on ["SWIM: Scalable Weakly-consistent Infection-style Process Group Membership Protocol"](http://ieeexplore.ieee.org/document/1028914/). However, we extend the protocol in a number of ways:
* Several extensions are made to increase propagation speed and
convergence rate.
* Another set of extensions, that we call Lifeguard, are made to make memberlist more robust in the presence of slow message processing (due to factors such as CPU starvation, and network delay or loss).
For details on all of these extensions, please read our paper "[Lifeguard : SWIM-ing with Situational Awareness](https://arxiv.org/abs/1707.00788)", along with the memberlist source. We welcome any questions related
to the protocol on our issue tracker.

View File

@@ -0,0 +1,14 @@
package memberlist
// AliveDelegate is used to involve a client in processing
// a node "alive" message. When a node joins, either through
// a UDP gossip or TCP push/pull, we update the state of
// that node via an alive message. This can be used to filter
// a node out and prevent it from being considered a peer
// using application specific logic.
type AliveDelegate interface {
// NotifyAlive is invoked when a message about a live
// node is received from the network. Returning a non-nil
// error prevents the node from being considered a peer.
NotifyAlive(peer *Node) error
}

73
vendor/github.com/hashicorp/memberlist/awareness.go generated vendored Normal file
View File

@@ -0,0 +1,73 @@
package memberlist
import (
"sync"
"time"
"github.com/armon/go-metrics"
)
// awareness manages a simple metric for tracking the estimated health of the
// local node. Health is primary the node's ability to respond in the soft
// real-time manner required for correct health checking of other nodes in the
// cluster.
type awareness struct {
sync.RWMutex
// max is the upper threshold for the timeout scale (the score will be
// constrained to be from 0 <= score < max).
max int
// score is the current awareness score. Lower values are healthier and
// zero is the minimum value.
score int
// metricLabels is the slice of labels to put on all emitted metrics
metricLabels []metrics.Label
}
// newAwareness returns a new awareness object.
func newAwareness(max int, metricLabels []metrics.Label) *awareness {
return &awareness{
max: max,
score: 0,
metricLabels: metricLabels,
}
}
// ApplyDelta takes the given delta and applies it to the score in a thread-safe
// manner. It also enforces a floor of zero and a max of max, so deltas may not
// change the overall score if it's railed at one of the extremes.
func (a *awareness) ApplyDelta(delta int) {
a.Lock()
initial := a.score
a.score += delta
if a.score < 0 {
a.score = 0
} else if a.score > (a.max - 1) {
a.score = (a.max - 1)
}
final := a.score
a.Unlock()
if initial != final {
metrics.SetGaugeWithLabels([]string{"memberlist", "health", "score"}, float32(final), a.metricLabels)
}
}
// GetHealthScore returns the raw health score.
func (a *awareness) GetHealthScore() int {
a.RLock()
score := a.score
a.RUnlock()
return score
}
// ScaleTimeout takes the given duration and scales it based on the current
// score. Less healthyness will lead to longer timeouts.
func (a *awareness) ScaleTimeout(timeout time.Duration) time.Duration {
a.RLock()
score := a.score
a.RUnlock()
return timeout * (time.Duration(score) + 1)
}

105
vendor/github.com/hashicorp/memberlist/broadcast.go generated vendored Normal file
View File

@@ -0,0 +1,105 @@
package memberlist
/*
The broadcast mechanism works by maintaining a sorted list of messages to be
sent out. When a message is to be broadcast, the retransmit count
is set to zero and appended to the queue. The retransmit count serves
as the "priority", ensuring that newer messages get sent first. Once
a message hits the retransmit limit, it is removed from the queue.
Additionally, older entries can be invalidated by new messages that
are contradictory. For example, if we send "{suspect M1 inc: 1},
then a following {alive M1 inc: 2} will invalidate that message
*/
type memberlistBroadcast struct {
node string
msg []byte
notify chan struct{}
}
func (b *memberlistBroadcast) Invalidates(other Broadcast) bool {
// Check if that broadcast is a memberlist type
mb, ok := other.(*memberlistBroadcast)
if !ok {
return false
}
// Invalidates any message about the same node
return b.node == mb.node
}
// memberlist.NamedBroadcast optional interface
func (b *memberlistBroadcast) Name() string {
return b.node
}
func (b *memberlistBroadcast) Message() []byte {
return b.msg
}
func (b *memberlistBroadcast) Finished() {
select {
case b.notify <- struct{}{}:
default:
}
}
// encodeAndBroadcast encodes a message and enqueues it for broadcast. Fails
// silently if there is an encoding error.
func (m *Memberlist) encodeAndBroadcast(node string, msgType messageType, msg interface{}) {
m.encodeBroadcastNotify(node, msgType, msg, nil)
}
// encodeBroadcastNotify encodes a message and enqueues it for broadcast
// and notifies the given channel when transmission is finished. Fails
// silently if there is an encoding error.
func (m *Memberlist) encodeBroadcastNotify(node string, msgType messageType, msg interface{}, notify chan struct{}) {
buf, err := encode(msgType, msg)
if err != nil {
m.logger.Printf("[ERR] memberlist: Failed to encode message for broadcast: %s", err)
} else {
m.queueBroadcast(node, buf.Bytes(), notify)
}
}
// queueBroadcast is used to start dissemination of a message. It will be
// sent up to a configured number of times. The message could potentially
// be invalidated by a future message about the same node
func (m *Memberlist) queueBroadcast(node string, msg []byte, notify chan struct{}) {
b := &memberlistBroadcast{node, msg, notify}
m.broadcasts.QueueBroadcast(b)
}
// getBroadcasts is used to return a slice of broadcasts to send up to
// a maximum byte size, while imposing a per-broadcast overhead. This is used
// to fill a UDP packet with piggybacked data
func (m *Memberlist) getBroadcasts(overhead, limit int) [][]byte {
// Get memberlist messages first
toSend := m.broadcasts.GetBroadcasts(overhead, limit)
// Check if the user has anything to broadcast
d := m.config.Delegate
if d != nil {
// Determine the bytes used already
bytesUsed := 0
for _, msg := range toSend {
bytesUsed += len(msg) + overhead
}
// Check space remaining for user messages
avail := limit - bytesUsed
if avail > overhead+userMsgOverhead {
userMsgs := d.GetBroadcasts(overhead+userMsgOverhead, avail)
// Frame each user message
for _, msg := range userMsgs {
buf := make([]byte, 1, len(msg)+1)
buf[0] = byte(userMsg)
buf = append(buf, msg...)
toSend = append(toSend, buf)
}
}
}
return toSend
}

388
vendor/github.com/hashicorp/memberlist/config.go generated vendored Normal file
View File

@@ -0,0 +1,388 @@
package memberlist
import (
"fmt"
"io"
"log"
"net"
"os"
"strings"
"time"
"github.com/armon/go-metrics"
multierror "github.com/hashicorp/go-multierror"
)
type Config struct {
// The name of this node. This must be unique in the cluster.
Name string
// Transport is a hook for providing custom code to communicate with
// other nodes. If this is left nil, then memberlist will by default
// make a NetTransport using BindAddr and BindPort from this structure.
Transport Transport
// Label is an optional set of bytes to include on the outside of each
// packet and stream.
//
// If gossip encryption is enabled and this is set it is treated as GCM
// authenticated data.
Label string
// SkipInboundLabelCheck skips the check that inbound packets and gossip
// streams need to be label prefixed.
SkipInboundLabelCheck bool
// Configuration related to what address to bind to and ports to
// listen on. The port is used for both UDP and TCP gossip. It is
// assumed other nodes are running on this port, but they do not need
// to.
BindAddr string
BindPort int
// Configuration related to what address to advertise to other
// cluster members. Used for nat traversal.
AdvertiseAddr string
AdvertisePort int
// ProtocolVersion is the configured protocol version that we
// will _speak_. This must be between ProtocolVersionMin and
// ProtocolVersionMax.
ProtocolVersion uint8
// TCPTimeout is the timeout for establishing a stream connection with
// a remote node for a full state sync, and for stream read and write
// operations. This is a legacy name for backwards compatibility, but
// should really be called StreamTimeout now that we have generalized
// the transport.
TCPTimeout time.Duration
// IndirectChecks is the number of nodes that will be asked to perform
// an indirect probe of a node in the case a direct probe fails. Memberlist
// waits for an ack from any single indirect node, so increasing this
// number will increase the likelihood that an indirect probe will succeed
// at the expense of bandwidth.
IndirectChecks int
// RetransmitMult is the multiplier for the number of retransmissions
// that are attempted for messages broadcasted over gossip. The actual
// count of retransmissions is calculated using the formula:
//
// Retransmits = RetransmitMult * log(N+1)
//
// This allows the retransmits to scale properly with cluster size. The
// higher the multiplier, the more likely a failed broadcast is to converge
// at the expense of increased bandwidth.
RetransmitMult int
// SuspicionMult is the multiplier for determining the time an
// inaccessible node is considered suspect before declaring it dead.
// The actual timeout is calculated using the formula:
//
// SuspicionTimeout = SuspicionMult * log(N+1) * ProbeInterval
//
// This allows the timeout to scale properly with expected propagation
// delay with a larger cluster size. The higher the multiplier, the longer
// an inaccessible node is considered part of the cluster before declaring
// it dead, giving that suspect node more time to refute if it is indeed
// still alive.
SuspicionMult int
// SuspicionMaxTimeoutMult is the multiplier applied to the
// SuspicionTimeout used as an upper bound on detection time. This max
// timeout is calculated using the formula:
//
// SuspicionMaxTimeout = SuspicionMaxTimeoutMult * SuspicionTimeout
//
// If everything is working properly, confirmations from other nodes will
// accelerate suspicion timers in a manner which will cause the timeout
// to reach the base SuspicionTimeout before that elapses, so this value
// will typically only come into play if a node is experiencing issues
// communicating with other nodes. It should be set to a something fairly
// large so that a node having problems will have a lot of chances to
// recover before falsely declaring other nodes as failed, but short
// enough for a legitimately isolated node to still make progress marking
// nodes failed in a reasonable amount of time.
SuspicionMaxTimeoutMult int
// PushPullInterval is the interval between complete state syncs.
// Complete state syncs are done with a single node over TCP and are
// quite expensive relative to standard gossiped messages. Setting this
// to zero will disable state push/pull syncs completely.
//
// Setting this interval lower (more frequent) will increase convergence
// speeds across larger clusters at the expense of increased bandwidth
// usage.
PushPullInterval time.Duration
// ProbeInterval and ProbeTimeout are used to configure probing
// behavior for memberlist.
//
// ProbeInterval is the interval between random node probes. Setting
// this lower (more frequent) will cause the memberlist cluster to detect
// failed nodes more quickly at the expense of increased bandwidth usage.
//
// ProbeTimeout is the timeout to wait for an ack from a probed node
// before assuming it is unhealthy. This should be set to 99-percentile
// of RTT (round-trip time) on your network.
ProbeInterval time.Duration
ProbeTimeout time.Duration
// DisableTcpPings will turn off the fallback TCP pings that are attempted
// if the direct UDP ping fails. These get pipelined along with the
// indirect UDP pings.
DisableTcpPings bool
// DisableTcpPingsForNode is like DisableTcpPings, but lets you control
// whether to perform TCP pings on a node-by-node basis.
DisableTcpPingsForNode func(nodeName string) bool
// AwarenessMaxMultiplier will increase the probe interval if the node
// becomes aware that it might be degraded and not meeting the soft real
// time requirements to reliably probe other nodes.
AwarenessMaxMultiplier int
// GossipInterval and GossipNodes are used to configure the gossip
// behavior of memberlist.
//
// GossipInterval is the interval between sending messages that need
// to be gossiped that haven't been able to piggyback on probing messages.
// If this is set to zero, non-piggyback gossip is disabled. By lowering
// this value (more frequent) gossip messages are propagated across
// the cluster more quickly at the expense of increased bandwidth.
//
// GossipNodes is the number of random nodes to send gossip messages to
// per GossipInterval. Increasing this number causes the gossip messages
// to propagate across the cluster more quickly at the expense of
// increased bandwidth.
//
// GossipToTheDeadTime is the interval after which a node has died that
// we will still try to gossip to it. This gives it a chance to refute.
GossipInterval time.Duration
GossipNodes int
GossipToTheDeadTime time.Duration
// GossipVerifyIncoming controls whether to enforce encryption for incoming
// gossip. It is used for upshifting from unencrypted to encrypted gossip on
// a running cluster.
GossipVerifyIncoming bool
// GossipVerifyOutgoing controls whether to enforce encryption for outgoing
// gossip. It is used for upshifting from unencrypted to encrypted gossip on
// a running cluster.
GossipVerifyOutgoing bool
// EnableCompression is used to control message compression. This can
// be used to reduce bandwidth usage at the cost of slightly more CPU
// utilization. This is only available starting at protocol version 1.
EnableCompression bool
// SecretKey is used to initialize the primary encryption key in a keyring.
// The primary encryption key is the only key used to encrypt messages and
// the first key used while attempting to decrypt messages. Providing a
// value for this primary key will enable message-level encryption and
// verification, and automatically install the key onto the keyring.
// The value should be either 16, 24, or 32 bytes to select AES-128,
// AES-192, or AES-256.
SecretKey []byte
// The keyring holds all of the encryption keys used internally. It is
// automatically initialized using the SecretKey and SecretKeys values.
Keyring *Keyring
// Delegate and Events are delegates for receiving and providing
// data to memberlist via callback mechanisms. For Delegate, see
// the Delegate interface. For Events, see the EventDelegate interface.
//
// The DelegateProtocolMin/Max are used to guarantee protocol-compatibility
// for any custom messages that the delegate might do (broadcasts,
// local/remote state, etc.). If you don't set these, then the protocol
// versions will just be zero, and version compliance won't be done.
Delegate Delegate
DelegateProtocolVersion uint8
DelegateProtocolMin uint8
DelegateProtocolMax uint8
Events EventDelegate
Conflict ConflictDelegate
Merge MergeDelegate
Ping PingDelegate
Alive AliveDelegate
// DNSConfigPath points to the system's DNS config file, usually located
// at /etc/resolv.conf. It can be overridden via config for easier testing.
DNSConfigPath string
// LogOutput is the writer where logs should be sent. If this is not
// set, logging will go to stderr by default. You cannot specify both LogOutput
// and Logger at the same time.
LogOutput io.Writer
// Logger is a custom logger which you provide. If Logger is set, it will use
// this for the internal logger. If Logger is not set, it will fall back to the
// behavior for using LogOutput. You cannot specify both LogOutput and Logger
// at the same time.
Logger *log.Logger
// Size of Memberlist's internal channel which handles UDP messages. The
// size of this determines the size of the queue which Memberlist will keep
// while UDP messages are handled.
HandoffQueueDepth int
// Maximum number of bytes that memberlist will put in a packet (this
// will be for UDP packets by default with a NetTransport). A safe value
// for this is typically 1400 bytes (which is the default). However,
// depending on your network's MTU (Maximum Transmission Unit) you may
// be able to increase this to get more content into each gossip packet.
// This is a legacy name for backward compatibility but should really be
// called PacketBufferSize now that we have generalized the transport.
UDPBufferSize int
// DeadNodeReclaimTime controls the time before a dead node's name can be
// reclaimed by one with a different address or port. By default, this is 0,
// meaning nodes cannot be reclaimed this way.
DeadNodeReclaimTime time.Duration
// RequireNodeNames controls if the name of a node is required when sending
// a message to that node.
RequireNodeNames bool
// CIDRsAllowed If nil, allow any connection (default), otherwise specify all networks
// allowed to connect (you must specify IPv6/IPv4 separately)
// Using [] will block all connections.
CIDRsAllowed []net.IPNet
// MetricLabels is a map of optional labels to apply to all metrics emitted.
MetricLabels []metrics.Label
// QueueCheckInterval is the interval at which we check the message
// queue to apply the warning and max depth.
QueueCheckInterval time.Duration
}
// ParseCIDRs return a possible empty list of all Network that have been parsed
// In case of error, it returns succesfully parsed CIDRs and the last error found
func ParseCIDRs(v []string) ([]net.IPNet, error) {
nets := make([]net.IPNet, 0)
if v == nil {
return nets, nil
}
var errs error
hasErrors := false
for _, p := range v {
_, net, err := net.ParseCIDR(strings.TrimSpace(p))
if err != nil {
err = fmt.Errorf("invalid cidr: %s", p)
errs = multierror.Append(errs, err)
hasErrors = true
} else {
nets = append(nets, *net)
}
}
if !hasErrors {
errs = nil
}
return nets, errs
}
// DefaultLANConfig returns a sane set of configurations for Memberlist.
// It uses the hostname as the node name, and otherwise sets very conservative
// values that are sane for most LAN environments. The default configuration
// errs on the side of caution, choosing values that are optimized
// for higher convergence at the cost of higher bandwidth usage. Regardless,
// these values are a good starting point when getting started with memberlist.
func DefaultLANConfig() *Config {
hostname, _ := os.Hostname()
return &Config{
Name: hostname,
BindAddr: "0.0.0.0",
BindPort: 7946,
AdvertiseAddr: "",
AdvertisePort: 7946,
ProtocolVersion: ProtocolVersion2Compatible,
TCPTimeout: 10 * time.Second, // Timeout after 10 seconds
IndirectChecks: 3, // Use 3 nodes for the indirect ping
RetransmitMult: 4, // Retransmit a message 4 * log(N+1) nodes
SuspicionMult: 4, // Suspect a node for 4 * log(N+1) * Interval
SuspicionMaxTimeoutMult: 6, // For 10k nodes this will give a max timeout of 120 seconds
PushPullInterval: 30 * time.Second, // Low frequency
ProbeTimeout: 500 * time.Millisecond, // Reasonable RTT time for LAN
ProbeInterval: 1 * time.Second, // Failure check every second
DisableTcpPings: false, // TCP pings are safe, even with mixed versions
AwarenessMaxMultiplier: 8, // Probe interval backs off to 8 seconds
GossipNodes: 3, // Gossip to 3 nodes
GossipInterval: 200 * time.Millisecond, // Gossip more rapidly
GossipToTheDeadTime: 30 * time.Second, // Same as push/pull
GossipVerifyIncoming: true,
GossipVerifyOutgoing: true,
EnableCompression: true, // Enable compression by default
SecretKey: nil,
Keyring: nil,
DNSConfigPath: "/etc/resolv.conf",
HandoffQueueDepth: 1024,
UDPBufferSize: 1400,
CIDRsAllowed: nil, // same as allow all
QueueCheckInterval: 30 * time.Second,
}
}
// DefaultWANConfig works like DefaultConfig, however it returns a configuration
// that is optimized for most WAN environments. The default configuration is
// still very conservative and errs on the side of caution.
func DefaultWANConfig() *Config {
conf := DefaultLANConfig()
conf.TCPTimeout = 30 * time.Second
conf.SuspicionMult = 6
conf.PushPullInterval = 60 * time.Second
conf.ProbeTimeout = 3 * time.Second
conf.ProbeInterval = 5 * time.Second
conf.GossipNodes = 4 // Gossip less frequently, but to an additional node
conf.GossipInterval = 500 * time.Millisecond
conf.GossipToTheDeadTime = 60 * time.Second
return conf
}
// IPMustBeChecked return true if IPAllowed must be called
func (c *Config) IPMustBeChecked() bool {
return len(c.CIDRsAllowed) > 0
}
// IPAllowed return an error if access to memberlist is denied
func (c *Config) IPAllowed(ip net.IP) error {
if !c.IPMustBeChecked() {
return nil
}
for _, n := range c.CIDRsAllowed {
if n.Contains(ip) {
return nil
}
}
return fmt.Errorf("%s is not allowed", ip)
}
// DefaultLocalConfig works like DefaultConfig, however it returns a configuration
// that is optimized for a local loopback environments. The default configuration is
// still very conservative and errs on the side of caution.
func DefaultLocalConfig() *Config {
conf := DefaultLANConfig()
conf.TCPTimeout = time.Second
conf.IndirectChecks = 1
conf.RetransmitMult = 2
conf.SuspicionMult = 3
conf.PushPullInterval = 15 * time.Second
conf.ProbeTimeout = 200 * time.Millisecond
conf.ProbeInterval = time.Second
conf.GossipInterval = 100 * time.Millisecond
conf.GossipToTheDeadTime = 15 * time.Second
return conf
}
// Returns whether or not encryption is enabled
func (c *Config) EncryptionEnabled() bool {
return c.Keyring != nil && len(c.Keyring.GetKeys()) > 0
}

View File

@@ -0,0 +1,10 @@
package memberlist
// ConflictDelegate is a used to inform a client that
// a node has attempted to join which would result in a
// name conflict. This happens if two clients are configured
// with the same name but different addresses.
type ConflictDelegate interface {
// NotifyConflict is invoked when a name conflict is detected
NotifyConflict(existing, other *Node)
}

37
vendor/github.com/hashicorp/memberlist/delegate.go generated vendored Normal file
View File

@@ -0,0 +1,37 @@
package memberlist
// Delegate is the interface that clients must implement if they want to hook
// into the gossip layer of Memberlist. All the methods must be thread-safe,
// as they can and generally will be called concurrently.
type Delegate interface {
// NodeMeta is used to retrieve meta-data about the current node
// when broadcasting an alive message. It's length is limited to
// the given byte size. This metadata is available in the Node structure.
NodeMeta(limit int) []byte
// NotifyMsg is called when a user-data message is received.
// Care should be taken that this method does not block, since doing
// so would block the entire UDP packet receive loop. Additionally, the byte
// slice may be modified after the call returns, so it should be copied if needed
NotifyMsg([]byte)
// GetBroadcasts is called when user data messages can be broadcast.
// It can return a list of buffers to send. Each buffer should assume an
// overhead as provided with a limit on the total byte size allowed.
// The total byte size of the resulting data to send must not exceed
// the limit. Care should be taken that this method does not block,
// since doing so would block the entire UDP packet receive loop.
GetBroadcasts(overhead, limit int) [][]byte
// LocalState is used for a TCP Push/Pull. This is sent to
// the remote side in addition to the membership information. Any
// data can be sent here. See MergeRemoteState as well. The `join`
// boolean indicates this is for a join instead of a push/pull.
LocalState(join bool) []byte
// MergeRemoteState is invoked after a TCP Push/Pull. This is the
// state received from the remote side and is the result of the
// remote side's LocalState call. The 'join'
// boolean indicates this is for a join instead of a push/pull.
MergeRemoteState(buf []byte, join bool)
}

View File

@@ -0,0 +1,64 @@
package memberlist
// EventDelegate is a simpler delegate that is used only to receive
// notifications about members joining and leaving. The methods in this
// delegate may be called by multiple goroutines, but never concurrently.
// This allows you to reason about ordering.
type EventDelegate interface {
// NotifyJoin is invoked when a node is detected to have joined.
// The Node argument must not be modified.
NotifyJoin(*Node)
// NotifyLeave is invoked when a node is detected to have left.
// The Node argument must not be modified.
NotifyLeave(*Node)
// NotifyUpdate is invoked when a node is detected to have
// updated, usually involving the meta data. The Node argument
// must not be modified.
NotifyUpdate(*Node)
}
// ChannelEventDelegate is used to enable an application to receive
// events about joins and leaves over a channel instead of a direct
// function call.
//
// Care must be taken that events are processed in a timely manner from
// the channel, since this delegate will block until an event can be sent.
type ChannelEventDelegate struct {
Ch chan<- NodeEvent
}
// NodeEventType are the types of events that can be sent from the
// ChannelEventDelegate.
type NodeEventType int
const (
NodeJoin NodeEventType = iota
NodeLeave
NodeUpdate
)
// NodeEvent is a single event related to node activity in the memberlist.
// The Node member of this struct must not be directly modified. It is passed
// as a pointer to avoid unnecessary copies. If you wish to modify the node,
// make a copy first.
type NodeEvent struct {
Event NodeEventType
Node *Node
}
func (c *ChannelEventDelegate) NotifyJoin(n *Node) {
node := *n
c.Ch <- NodeEvent{NodeJoin, &node}
}
func (c *ChannelEventDelegate) NotifyLeave(n *Node) {
node := *n
c.Ch <- NodeEvent{NodeLeave, &node}
}
func (c *ChannelEventDelegate) NotifyUpdate(n *Node) {
node := *n
c.Ch <- NodeEvent{NodeUpdate, &node}
}

160
vendor/github.com/hashicorp/memberlist/keyring.go generated vendored Normal file
View File

@@ -0,0 +1,160 @@
package memberlist
import (
"bytes"
"fmt"
"sync"
)
type Keyring struct {
// Keys stores the key data used during encryption and decryption. It is
// ordered in such a way where the first key (index 0) is the primary key,
// which is used for encrypting messages, and is the first key tried during
// message decryption.
keys [][]byte
// The keyring lock is used while performing IO operations on the keyring.
l sync.Mutex
}
// Init allocates substructures
func (k *Keyring) init() {
k.keys = make([][]byte, 0)
}
// NewKeyring constructs a new container for a set of encryption keys. The
// keyring contains all key data used internally by memberlist.
//
// While creating a new keyring, you must do one of:
// - Omit keys and primary key, effectively disabling encryption
// - Pass a set of keys plus the primary key
// - Pass only a primary key
//
// If only a primary key is passed, then it will be automatically added to the
// keyring. If creating a keyring with multiple keys, one key must be designated
// primary by passing it as the primaryKey. If the primaryKey does not exist in
// the list of secondary keys, it will be automatically added at position 0.
//
// A key should be either 16, 24, or 32 bytes to select AES-128,
// AES-192, or AES-256.
func NewKeyring(keys [][]byte, primaryKey []byte) (*Keyring, error) {
keyring := &Keyring{}
keyring.init()
if len(keys) > 0 || len(primaryKey) > 0 {
if len(primaryKey) == 0 {
return nil, fmt.Errorf("Empty primary key not allowed")
}
if err := keyring.AddKey(primaryKey); err != nil {
return nil, err
}
for _, key := range keys {
if err := keyring.AddKey(key); err != nil {
return nil, err
}
}
}
return keyring, nil
}
// ValidateKey will check to see if the key is valid and returns an error if not.
//
// key should be either 16, 24, or 32 bytes to select AES-128,
// AES-192, or AES-256.
func ValidateKey(key []byte) error {
if l := len(key); l != 16 && l != 24 && l != 32 {
return fmt.Errorf("key size must be 16, 24 or 32 bytes")
}
return nil
}
// AddKey will install a new key on the ring. Adding a key to the ring will make
// it available for use in decryption. If the key already exists on the ring,
// this function will just return noop.
//
// key should be either 16, 24, or 32 bytes to select AES-128,
// AES-192, or AES-256.
func (k *Keyring) AddKey(key []byte) error {
if err := ValidateKey(key); err != nil {
return err
}
// No-op if key is already installed
for _, installedKey := range k.keys {
if bytes.Equal(installedKey, key) {
return nil
}
}
keys := append(k.keys, key)
primaryKey := k.GetPrimaryKey()
if primaryKey == nil {
primaryKey = key
}
k.installKeys(keys, primaryKey)
return nil
}
// UseKey changes the key used to encrypt messages. This is the only key used to
// encrypt messages, so peers should know this key before this method is called.
func (k *Keyring) UseKey(key []byte) error {
for _, installedKey := range k.keys {
if bytes.Equal(key, installedKey) {
k.installKeys(k.keys, key)
return nil
}
}
return fmt.Errorf("Requested key is not in the keyring")
}
// RemoveKey drops a key from the keyring. This will return an error if the key
// requested for removal is currently at position 0 (primary key).
func (k *Keyring) RemoveKey(key []byte) error {
if bytes.Equal(key, k.keys[0]) {
return fmt.Errorf("Removing the primary key is not allowed")
}
for i, installedKey := range k.keys {
if bytes.Equal(key, installedKey) {
keys := append(k.keys[:i], k.keys[i+1:]...)
k.installKeys(keys, k.keys[0])
}
}
return nil
}
// installKeys will take out a lock on the keyring, and replace the keys with a
// new set of keys. The key indicated by primaryKey will be installed as the new
// primary key.
func (k *Keyring) installKeys(keys [][]byte, primaryKey []byte) {
k.l.Lock()
defer k.l.Unlock()
newKeys := [][]byte{primaryKey}
for _, key := range keys {
if !bytes.Equal(key, primaryKey) {
newKeys = append(newKeys, key)
}
}
k.keys = newKeys
}
// GetKeys returns the current set of keys on the ring.
func (k *Keyring) GetKeys() [][]byte {
k.l.Lock()
defer k.l.Unlock()
return k.keys
}
// GetPrimaryKey returns the key on the ring at position 0. This is the key used
// for encrypting messages, and is the first key tried for decrypting messages.
func (k *Keyring) GetPrimaryKey() (key []byte) {
k.l.Lock()
defer k.l.Unlock()
if len(k.keys) > 0 {
key = k.keys[0]
}
return
}

178
vendor/github.com/hashicorp/memberlist/label.go generated vendored Normal file
View File

@@ -0,0 +1,178 @@
package memberlist
import (
"bufio"
"fmt"
"io"
"net"
)
// General approach is to prefix all packets and streams with the same structure:
//
// magic type byte (244): uint8
// length of label name: uint8 (because labels can't be longer than 255 bytes)
// label name: []uint8
// LabelMaxSize is the maximum length of a packet or stream label.
const LabelMaxSize = 255
// AddLabelHeaderToPacket prefixes outgoing packets with the correct header if
// the label is not empty.
func AddLabelHeaderToPacket(buf []byte, label string) ([]byte, error) {
if label == "" {
return buf, nil
}
if len(label) > LabelMaxSize {
return nil, fmt.Errorf("label %q is too long", label)
}
return makeLabelHeader(label, buf), nil
}
// RemoveLabelHeaderFromPacket removes any label header from the provided
// packet and returns it along with the remaining packet contents.
func RemoveLabelHeaderFromPacket(buf []byte) (newBuf []byte, label string, err error) {
if len(buf) == 0 {
return buf, "", nil // can't possibly be labeled
}
// [type:byte] [size:byte] [size bytes]
msgType := messageType(buf[0])
if msgType != hasLabelMsg {
return buf, "", nil
}
if len(buf) < 2 {
return nil, "", fmt.Errorf("cannot decode label; packet has been truncated")
}
size := int(buf[1])
if size < 1 {
return nil, "", fmt.Errorf("label header cannot be empty when present")
}
if len(buf) < 2+size {
return nil, "", fmt.Errorf("cannot decode label; packet has been truncated")
}
label = string(buf[2 : 2+size])
newBuf = buf[2+size:]
return newBuf, label, nil
}
// AddLabelHeaderToStream prefixes outgoing streams with the correct header if
// the label is not empty.
func AddLabelHeaderToStream(conn net.Conn, label string) error {
if label == "" {
return nil
}
if len(label) > LabelMaxSize {
return fmt.Errorf("label %q is too long", label)
}
header := makeLabelHeader(label, nil)
_, err := conn.Write(header)
return err
}
// RemoveLabelHeaderFromStream removes any label header from the beginning of
// the stream if present and returns it along with an updated conn with that
// header removed.
//
// Note that on error it is the caller's responsibility to close the
// connection.
func RemoveLabelHeaderFromStream(conn net.Conn) (net.Conn, string, error) {
br := bufio.NewReader(conn)
// First check for the type byte.
peeked, err := br.Peek(1)
if err != nil {
if err == io.EOF {
// It is safe to return the original net.Conn at this point because
// it never contained any data in the first place so we don't have
// to splice the buffer into the conn because both are empty.
return conn, "", nil
}
return nil, "", err
}
msgType := messageType(peeked[0])
if msgType != hasLabelMsg {
conn, err = newPeekedConnFromBufferedReader(conn, br, 0)
return conn, "", err
}
// We are guaranteed to get a size byte as well.
peeked, err = br.Peek(2)
if err != nil {
if err == io.EOF {
return nil, "", fmt.Errorf("cannot decode label; stream has been truncated")
}
return nil, "", err
}
size := int(peeked[1])
if size < 1 {
return nil, "", fmt.Errorf("label header cannot be empty when present")
}
// NOTE: we don't have to check this against LabelMaxSize because a byte
// already has a max value of 255.
// Once we know the size we can peek the label as well. Note that since we
// are using the default bufio.Reader size of 4096, the entire label header
// fits in the initial buffer fill so this should be free.
peeked, err = br.Peek(2 + size)
if err != nil {
if err == io.EOF {
return nil, "", fmt.Errorf("cannot decode label; stream has been truncated")
}
return nil, "", err
}
label := string(peeked[2 : 2+size])
conn, err = newPeekedConnFromBufferedReader(conn, br, 2+size)
if err != nil {
return nil, "", err
}
return conn, label, nil
}
// newPeekedConnFromBufferedReader will splice the buffer contents after the
// offset into the provided net.Conn and return the result so that the rest of
// the buffer contents are returned first when reading from the returned
// peekedConn before moving on to the unbuffered conn contents.
func newPeekedConnFromBufferedReader(conn net.Conn, br *bufio.Reader, offset int) (*peekedConn, error) {
// Extract any of the readahead buffer.
peeked, err := br.Peek(br.Buffered())
if err != nil {
return nil, err
}
return &peekedConn{
Peeked: peeked[offset:],
Conn: conn,
}, nil
}
func makeLabelHeader(label string, rest []byte) []byte {
newBuf := make([]byte, 2, 2+len(label)+len(rest))
newBuf[0] = byte(hasLabelMsg)
newBuf[1] = byte(len(label))
newBuf = append(newBuf, []byte(label)...)
if len(rest) > 0 {
newBuf = append(newBuf, []byte(rest)...)
}
return newBuf
}
func labelOverhead(label string) int {
if label == "" {
return 0
}
return 2 + len(label)
}

30
vendor/github.com/hashicorp/memberlist/logging.go generated vendored Normal file
View File

@@ -0,0 +1,30 @@
package memberlist
import (
"fmt"
"net"
)
func LogAddress(addr net.Addr) string {
if addr == nil {
return "from=<unknown address>"
}
return fmt.Sprintf("from=%s", addr.String())
}
func LogStringAddress(addr string) string {
if addr == "" {
return "from=<unknown address>"
}
return fmt.Sprintf("from=%s", addr)
}
func LogConn(conn net.Conn) string {
if conn == nil {
return LogAddress(nil)
}
return LogAddress(conn.RemoteAddr())
}

793
vendor/github.com/hashicorp/memberlist/memberlist.go generated vendored Normal file
View File

@@ -0,0 +1,793 @@
/*
memberlist is a library that manages cluster
membership and member failure detection using a gossip based protocol.
The use cases for such a library are far-reaching: all distributed systems
require membership, and memberlist is a re-usable solution to managing
cluster membership and node failure detection.
memberlist is eventually consistent but converges quickly on average.
The speed at which it converges can be heavily tuned via various knobs
on the protocol. Node failures are detected and network partitions are partially
tolerated by attempting to communicate to potentially dead nodes through
multiple routes.
*/
package memberlist
import (
"container/list"
"errors"
"fmt"
"log"
"net"
"os"
"strconv"
"strings"
"sync"
"sync/atomic"
"time"
"github.com/armon/go-metrics"
multierror "github.com/hashicorp/go-multierror"
sockaddr "github.com/hashicorp/go-sockaddr"
"github.com/miekg/dns"
)
var errNodeNamesAreRequired = errors.New("memberlist: node names are required by configuration but one was not provided")
type Memberlist struct {
sequenceNum uint32 // Local sequence number
incarnation uint32 // Local incarnation number
numNodes uint32 // Number of known nodes (estimate)
pushPullReq uint32 // Number of push/pull requests
advertiseLock sync.RWMutex
advertiseAddr net.IP
advertisePort uint16
config *Config
shutdown int32 // Used as an atomic boolean value
shutdownCh chan struct{}
leave int32 // Used as an atomic boolean value
leaveBroadcast chan struct{}
shutdownLock sync.Mutex // Serializes calls to Shutdown
leaveLock sync.Mutex // Serializes calls to Leave
transport NodeAwareTransport
handoffCh chan struct{}
highPriorityMsgQueue *list.List
lowPriorityMsgQueue *list.List
msgQueueLock sync.Mutex
nodeLock sync.RWMutex
nodes []*nodeState // Known nodes
nodeMap map[string]*nodeState // Maps Node.Name -> NodeState
nodeTimers map[string]*suspicion // Maps Node.Name -> suspicion timer
awareness *awareness
tickerLock sync.Mutex
tickers []*time.Ticker
stopTick chan struct{}
probeIndex int
ackLock sync.Mutex
ackHandlers map[uint32]*ackHandler
broadcasts *TransmitLimitedQueue
logger *log.Logger
// metricLabels is the slice of labels to put on all emitted metrics
metricLabels []metrics.Label
}
// BuildVsnArray creates the array of Vsn
func (conf *Config) BuildVsnArray() []uint8 {
return []uint8{
ProtocolVersionMin, ProtocolVersionMax, conf.ProtocolVersion,
conf.DelegateProtocolMin, conf.DelegateProtocolMax,
conf.DelegateProtocolVersion,
}
}
// newMemberlist creates the network listeners.
// Does not schedule execution of background maintenance.
func newMemberlist(conf *Config) (*Memberlist, error) {
if conf.ProtocolVersion < ProtocolVersionMin {
return nil, fmt.Errorf("Protocol version '%d' too low. Must be in range: [%d, %d]",
conf.ProtocolVersion, ProtocolVersionMin, ProtocolVersionMax)
} else if conf.ProtocolVersion > ProtocolVersionMax {
return nil, fmt.Errorf("Protocol version '%d' too high. Must be in range: [%d, %d]",
conf.ProtocolVersion, ProtocolVersionMin, ProtocolVersionMax)
}
if len(conf.SecretKey) > 0 {
if conf.Keyring == nil {
keyring, err := NewKeyring(nil, conf.SecretKey)
if err != nil {
return nil, err
}
conf.Keyring = keyring
} else {
if err := conf.Keyring.AddKey(conf.SecretKey); err != nil {
return nil, err
}
if err := conf.Keyring.UseKey(conf.SecretKey); err != nil {
return nil, err
}
}
}
if conf.LogOutput != nil && conf.Logger != nil {
return nil, fmt.Errorf("Cannot specify both LogOutput and Logger. Please choose a single log configuration setting.")
}
logDest := conf.LogOutput
if logDest == nil {
logDest = os.Stderr
}
logger := conf.Logger
if logger == nil {
logger = log.New(logDest, "", log.LstdFlags)
}
// Set up a network transport by default if a custom one wasn't given
// by the config.
transport := conf.Transport
if transport == nil {
nc := &NetTransportConfig{
BindAddrs: []string{conf.BindAddr},
BindPort: conf.BindPort,
Logger: logger,
MetricLabels: conf.MetricLabels,
}
// See comment below for details about the retry in here.
makeNetRetry := func(limit int) (*NetTransport, error) {
var err error
for try := 0; try < limit; try++ {
var nt *NetTransport
if nt, err = NewNetTransport(nc); err == nil {
return nt, nil
}
if strings.Contains(err.Error(), "address already in use") {
logger.Printf("[DEBUG] memberlist: Got bind error: %v", err)
continue
}
}
return nil, fmt.Errorf("failed to obtain an address: %v", err)
}
// The dynamic bind port operation is inherently racy because
// even though we are using the kernel to find a port for us, we
// are attempting to bind multiple protocols (and potentially
// multiple addresses) with the same port number. We build in a
// few retries here since this often gets transient errors in
// busy unit tests.
limit := 1
if conf.BindPort == 0 {
limit = 10
}
nt, err := makeNetRetry(limit)
if err != nil {
return nil, fmt.Errorf("Could not set up network transport: %v", err)
}
if conf.BindPort == 0 {
port := nt.GetAutoBindPort()
conf.BindPort = port
conf.AdvertisePort = port
logger.Printf("[DEBUG] memberlist: Using dynamic bind port %d", port)
}
transport = nt
}
nodeAwareTransport, ok := transport.(NodeAwareTransport)
if !ok {
logger.Printf("[DEBUG] memberlist: configured Transport is not a NodeAwareTransport and some features may not work as desired")
nodeAwareTransport = &shimNodeAwareTransport{transport}
}
if len(conf.Label) > LabelMaxSize {
return nil, fmt.Errorf("could not use %q as a label: too long", conf.Label)
}
if conf.Label != "" {
nodeAwareTransport = &labelWrappedTransport{
label: conf.Label,
NodeAwareTransport: nodeAwareTransport,
}
}
m := &Memberlist{
config: conf,
shutdownCh: make(chan struct{}),
leaveBroadcast: make(chan struct{}, 1),
transport: nodeAwareTransport,
handoffCh: make(chan struct{}, 1),
highPriorityMsgQueue: list.New(),
lowPriorityMsgQueue: list.New(),
nodeMap: make(map[string]*nodeState),
nodeTimers: make(map[string]*suspicion),
awareness: newAwareness(conf.AwarenessMaxMultiplier, conf.MetricLabels),
ackHandlers: make(map[uint32]*ackHandler),
broadcasts: &TransmitLimitedQueue{RetransmitMult: conf.RetransmitMult},
logger: logger,
metricLabels: conf.MetricLabels,
}
m.broadcasts.NumNodes = func() int {
return m.estNumNodes()
}
// Get the final advertise address from the transport, which may need
// to see which address we bound to. We'll refresh this each time we
// send out an alive message.
if _, _, err := m.refreshAdvertise(); err != nil {
return nil, err
}
go m.streamListen()
go m.packetListen()
go m.packetHandler()
go m.checkBroadcastQueueDepth()
return m, nil
}
// Create will create a new Memberlist using the given configuration.
// This will not connect to any other node (see Join) yet, but will start
// all the listeners to allow other nodes to join this memberlist.
// After creating a Memberlist, the configuration given should not be
// modified by the user anymore.
func Create(conf *Config) (*Memberlist, error) {
m, err := newMemberlist(conf)
if err != nil {
return nil, err
}
if err := m.setAlive(); err != nil {
m.Shutdown()
return nil, err
}
m.schedule()
return m, nil
}
// Join is used to take an existing Memberlist and attempt to join a cluster
// by contacting all the given hosts and performing a state sync. Initially,
// the Memberlist only contains our own state, so doing this will cause
// remote nodes to become aware of the existence of this node, effectively
// joining the cluster.
//
// This returns the number of hosts successfully contacted and an error if
// none could be reached. If an error is returned, the node did not successfully
// join the cluster.
func (m *Memberlist) Join(existing []string) (int, error) {
numSuccess := 0
var errs error
for _, exist := range existing {
addrs, err := m.resolveAddr(exist)
if err != nil {
err = fmt.Errorf("Failed to resolve %s: %v", exist, err)
errs = multierror.Append(errs, err)
m.logger.Printf("[WARN] memberlist: %v", err)
continue
}
for _, addr := range addrs {
hp := joinHostPort(addr.ip.String(), addr.port)
a := Address{Addr: hp, Name: addr.nodeName}
if err := m.pushPullNode(a, true); err != nil {
err = fmt.Errorf("Failed to join %s: %v", a.Addr, err)
errs = multierror.Append(errs, err)
m.logger.Printf("[DEBUG] memberlist: %v", err)
continue
}
numSuccess++
}
}
if numSuccess > 0 {
errs = nil
}
return numSuccess, errs
}
// ipPort holds information about a node we want to try to join.
type ipPort struct {
ip net.IP
port uint16
nodeName string // optional
}
// tcpLookupIP is a helper to initiate a TCP-based DNS lookup for the given host.
// The built-in Go resolver will do a UDP lookup first, and will only use TCP if
// the response has the truncate bit set, which isn't common on DNS servers like
// Consul's. By doing the TCP lookup directly, we get the best chance for the
// largest list of hosts to join. Since joins are relatively rare events, it's ok
// to do this rather expensive operation.
func (m *Memberlist) tcpLookupIP(host string, defaultPort uint16, nodeName string) ([]ipPort, error) {
// Don't attempt any TCP lookups against non-fully qualified domain
// names, since those will likely come from the resolv.conf file.
if !strings.Contains(host, ".") {
return nil, nil
}
// Make sure the domain name is terminated with a dot (we know there's
// at least one character at this point).
dn := host
if dn[len(dn)-1] != '.' {
dn = dn + "."
}
// See if we can find a server to try.
cc, err := dns.ClientConfigFromFile(m.config.DNSConfigPath)
if err != nil {
return nil, err
}
if len(cc.Servers) > 0 {
// We support host:port in the DNS config, but need to add the
// default port if one is not supplied.
server := cc.Servers[0]
if !hasPort(server) {
server = net.JoinHostPort(server, cc.Port)
}
// Do the lookup.
c := new(dns.Client)
c.Net = "tcp"
msg := new(dns.Msg)
msg.SetQuestion(dn, dns.TypeANY)
in, _, err := c.Exchange(msg, server)
if err != nil {
return nil, err
}
// Handle any IPs we get back that we can attempt to join.
var ips []ipPort
for _, r := range in.Answer {
switch rr := r.(type) {
case (*dns.A):
ips = append(ips, ipPort{ip: rr.A, port: defaultPort, nodeName: nodeName})
case (*dns.AAAA):
ips = append(ips, ipPort{ip: rr.AAAA, port: defaultPort, nodeName: nodeName})
case (*dns.CNAME):
m.logger.Printf("[DEBUG] memberlist: Ignoring CNAME RR in TCP-first answer for '%s'", host)
}
}
return ips, nil
}
return nil, nil
}
// resolveAddr is used to resolve the address into an address,
// port, and error. If no port is given, use the default
func (m *Memberlist) resolveAddr(hostStr string) ([]ipPort, error) {
// First peel off any leading node name. This is optional.
nodeName := ""
if slashIdx := strings.Index(hostStr, "/"); slashIdx >= 0 {
if slashIdx == 0 {
return nil, fmt.Errorf("empty node name provided")
}
nodeName = hostStr[0:slashIdx]
hostStr = hostStr[slashIdx+1:]
}
// This captures the supplied port, or the default one.
hostStr = ensurePort(hostStr, m.config.BindPort)
host, sport, err := net.SplitHostPort(hostStr)
if err != nil {
return nil, err
}
lport, err := strconv.ParseUint(sport, 10, 16)
if err != nil {
return nil, err
}
port := uint16(lport)
// If it looks like an IP address we are done. The SplitHostPort() above
// will make sure the host part is in good shape for parsing, even for
// IPv6 addresses.
if ip := net.ParseIP(host); ip != nil {
return []ipPort{
ipPort{ip: ip, port: port, nodeName: nodeName},
}, nil
}
// First try TCP so we have the best chance for the largest list of
// hosts to join. If this fails it's not fatal since this isn't a standard
// way to query DNS, and we have a fallback below.
ips, err := m.tcpLookupIP(host, port, nodeName)
if err != nil {
m.logger.Printf("[DEBUG] memberlist: TCP-first lookup failed for '%s', falling back to UDP: %s", hostStr, err)
}
if len(ips) > 0 {
return ips, nil
}
// If TCP didn't yield anything then use the normal Go resolver which
// will try UDP, then might possibly try TCP again if the UDP response
// indicates it was truncated.
ans, err := net.LookupIP(host)
if err != nil {
return nil, err
}
ips = make([]ipPort, 0, len(ans))
for _, ip := range ans {
ips = append(ips, ipPort{ip: ip, port: port, nodeName: nodeName})
}
return ips, nil
}
// setAlive is used to mark this node as being alive. This is the same
// as if we received an alive notification our own network channel for
// ourself.
func (m *Memberlist) setAlive() error {
// Get the final advertise address from the transport, which may need
// to see which address we bound to.
addr, port, err := m.refreshAdvertise()
if err != nil {
return err
}
// Check if this is a public address without encryption
ipAddr, err := sockaddr.NewIPAddr(addr.String())
if err != nil {
return fmt.Errorf("Failed to parse interface addresses: %v", err)
}
ifAddrs := []sockaddr.IfAddr{
sockaddr.IfAddr{
SockAddr: ipAddr,
},
}
_, publicIfs, err := sockaddr.IfByRFC("6890", ifAddrs)
if len(publicIfs) > 0 && !m.config.EncryptionEnabled() {
m.logger.Printf("[WARN] memberlist: Binding to public address without encryption!")
}
// Set any metadata from the delegate.
var meta []byte
if m.config.Delegate != nil {
meta = m.config.Delegate.NodeMeta(MetaMaxSize)
if len(meta) > MetaMaxSize {
panic("Node meta data provided is longer than the limit")
}
}
a := alive{
Incarnation: m.nextIncarnation(),
Node: m.config.Name,
Addr: addr,
Port: uint16(port),
Meta: meta,
Vsn: m.config.BuildVsnArray(),
}
m.aliveNode(&a, nil, true)
return nil
}
func (m *Memberlist) getAdvertise() (net.IP, uint16) {
m.advertiseLock.RLock()
defer m.advertiseLock.RUnlock()
return m.advertiseAddr, m.advertisePort
}
func (m *Memberlist) setAdvertise(addr net.IP, port int) {
m.advertiseLock.Lock()
defer m.advertiseLock.Unlock()
m.advertiseAddr = addr
m.advertisePort = uint16(port)
}
func (m *Memberlist) refreshAdvertise() (net.IP, int, error) {
addr, port, err := m.transport.FinalAdvertiseAddr(
m.config.AdvertiseAddr, m.config.AdvertisePort)
if err != nil {
return nil, 0, fmt.Errorf("Failed to get final advertise address: %v", err)
}
m.setAdvertise(addr, port)
return addr, port, nil
}
// LocalNode is used to return the local Node
func (m *Memberlist) LocalNode() *Node {
m.nodeLock.RLock()
defer m.nodeLock.RUnlock()
state := m.nodeMap[m.config.Name]
return &state.Node
}
// UpdateNode is used to trigger re-advertising the local node. This is
// primarily used with a Delegate to support dynamic updates to the local
// meta data. This will block until the update message is successfully
// broadcasted to a member of the cluster, if any exist or until a specified
// timeout is reached.
func (m *Memberlist) UpdateNode(timeout time.Duration) error {
// Get the node meta data
var meta []byte
if m.config.Delegate != nil {
meta = m.config.Delegate.NodeMeta(MetaMaxSize)
if len(meta) > MetaMaxSize {
panic("Node meta data provided is longer than the limit")
}
}
// Get the existing node
m.nodeLock.RLock()
state := m.nodeMap[m.config.Name]
m.nodeLock.RUnlock()
// Format a new alive message
a := alive{
Incarnation: m.nextIncarnation(),
Node: m.config.Name,
Addr: state.Addr,
Port: state.Port,
Meta: meta,
Vsn: m.config.BuildVsnArray(),
}
notifyCh := make(chan struct{})
m.aliveNode(&a, notifyCh, true)
// Wait for the broadcast or a timeout
if m.anyAlive() {
var timeoutCh <-chan time.Time
if timeout > 0 {
timeoutCh = time.After(timeout)
}
select {
case <-notifyCh:
case <-timeoutCh:
return fmt.Errorf("timeout waiting for update broadcast")
}
}
return nil
}
// Deprecated: SendTo is deprecated in favor of SendBestEffort, which requires a node to
// target. If you don't have a node then use SendToAddress.
func (m *Memberlist) SendTo(to net.Addr, msg []byte) error {
a := Address{Addr: to.String(), Name: ""}
return m.SendToAddress(a, msg)
}
func (m *Memberlist) SendToAddress(a Address, msg []byte) error {
// Encode as a user message
buf := make([]byte, 1, len(msg)+1)
buf[0] = byte(userMsg)
buf = append(buf, msg...)
// Send the message
return m.rawSendMsgPacket(a, nil, buf)
}
// Deprecated: SendToUDP is deprecated in favor of SendBestEffort.
func (m *Memberlist) SendToUDP(to *Node, msg []byte) error {
return m.SendBestEffort(to, msg)
}
// Deprecated: SendToTCP is deprecated in favor of SendReliable.
func (m *Memberlist) SendToTCP(to *Node, msg []byte) error {
return m.SendReliable(to, msg)
}
// SendBestEffort uses the unreliable packet-oriented interface of the transport
// to target a user message at the given node (this does not use the gossip
// mechanism). The maximum size of the message depends on the configured
// UDPBufferSize for this memberlist instance.
func (m *Memberlist) SendBestEffort(to *Node, msg []byte) error {
// Encode as a user message
buf := make([]byte, 1, len(msg)+1)
buf[0] = byte(userMsg)
buf = append(buf, msg...)
// Send the message
a := Address{Addr: to.Address(), Name: to.Name}
return m.rawSendMsgPacket(a, to, buf)
}
// SendReliable uses the reliable stream-oriented interface of the transport to
// target a user message at the given node (this does not use the gossip
// mechanism). Delivery is guaranteed if no error is returned, and there is no
// limit on the size of the message.
func (m *Memberlist) SendReliable(to *Node, msg []byte) error {
return m.sendUserMsg(to.FullAddress(), msg)
}
// Members returns a list of all known live nodes. The node structures
// returned must not be modified. If you wish to modify a Node, make a
// copy first.
func (m *Memberlist) Members() []*Node {
m.nodeLock.RLock()
defer m.nodeLock.RUnlock()
nodes := make([]*Node, 0, len(m.nodes))
for _, n := range m.nodes {
if !n.DeadOrLeft() {
nodes = append(nodes, &n.Node)
}
}
return nodes
}
// NumMembers returns the number of alive nodes currently known. Between
// the time of calling this and calling Members, the number of alive nodes
// may have changed, so this shouldn't be used to determine how many
// members will be returned by Members.
func (m *Memberlist) NumMembers() (alive int) {
m.nodeLock.RLock()
defer m.nodeLock.RUnlock()
for _, n := range m.nodes {
if !n.DeadOrLeft() {
alive++
}
}
return
}
// Leave will broadcast a leave message but will not shutdown the background
// listeners, meaning the node will continue participating in gossip and state
// updates.
//
// This will block until the leave message is successfully broadcasted to
// a member of the cluster, if any exist or until a specified timeout
// is reached.
//
// This method is safe to call multiple times, but must not be called
// after the cluster is already shut down.
func (m *Memberlist) Leave(timeout time.Duration) error {
m.leaveLock.Lock()
defer m.leaveLock.Unlock()
if m.hasShutdown() {
panic("leave after shutdown")
}
if !m.hasLeft() {
atomic.StoreInt32(&m.leave, 1)
m.nodeLock.Lock()
state, ok := m.nodeMap[m.config.Name]
m.nodeLock.Unlock()
if !ok {
m.logger.Printf("[WARN] memberlist: Leave but we're not in the node map.")
return nil
}
// This dead message is special, because Node and From are the
// same. This helps other nodes figure out that a node left
// intentionally. When Node equals From, other nodes know for
// sure this node is gone.
d := dead{
Incarnation: state.Incarnation,
Node: state.Name,
From: state.Name,
}
m.deadNode(&d)
// Block until the broadcast goes out
if m.anyAlive() {
var timeoutCh <-chan time.Time
if timeout > 0 {
timeoutCh = time.After(timeout)
}
select {
case <-m.leaveBroadcast:
case <-timeoutCh:
return fmt.Errorf("timeout waiting for leave broadcast")
}
}
}
return nil
}
// Check for any other alive node.
func (m *Memberlist) anyAlive() bool {
m.nodeLock.RLock()
defer m.nodeLock.RUnlock()
for _, n := range m.nodes {
if !n.DeadOrLeft() && n.Name != m.config.Name {
return true
}
}
return false
}
// GetHealthScore gives this instance's idea of how well it is meeting the soft
// real-time requirements of the protocol. Lower numbers are better, and zero
// means "totally healthy".
func (m *Memberlist) GetHealthScore() int {
return m.awareness.GetHealthScore()
}
// ProtocolVersion returns the protocol version currently in use by
// this memberlist.
func (m *Memberlist) ProtocolVersion() uint8 {
// NOTE: This method exists so that in the future we can control
// any locking if necessary, if we change the protocol version at
// runtime, etc.
return m.config.ProtocolVersion
}
// Shutdown will stop any background maintenance of network activity
// for this memberlist, causing it to appear "dead". A leave message
// will not be broadcasted prior, so the cluster being left will have
// to detect this node's shutdown using probing. If you wish to more
// gracefully exit the cluster, call Leave prior to shutting down.
//
// This method is safe to call multiple times.
func (m *Memberlist) Shutdown() error {
m.shutdownLock.Lock()
defer m.shutdownLock.Unlock()
if m.hasShutdown() {
return nil
}
// Shut down the transport first, which should block until it's
// completely torn down. If we kill the memberlist-side handlers
// those I/O handlers might get stuck.
if err := m.transport.Shutdown(); err != nil {
m.logger.Printf("[ERR] Failed to shutdown transport: %v", err)
}
// Now tear down everything else.
atomic.StoreInt32(&m.shutdown, 1)
close(m.shutdownCh)
m.deschedule()
return nil
}
func (m *Memberlist) hasShutdown() bool {
return atomic.LoadInt32(&m.shutdown) == 1
}
func (m *Memberlist) hasLeft() bool {
return atomic.LoadInt32(&m.leave) == 1
}
func (m *Memberlist) getNodeState(addr string) NodeStateType {
m.nodeLock.RLock()
defer m.nodeLock.RUnlock()
n := m.nodeMap[addr]
return n.State
}
func (m *Memberlist) getNodeStateChange(addr string) time.Time {
m.nodeLock.RLock()
defer m.nodeLock.RUnlock()
n := m.nodeMap[addr]
return n.StateChange
}
func (m *Memberlist) changeNode(addr string, f func(*nodeState)) {
m.nodeLock.Lock()
defer m.nodeLock.Unlock()
n := m.nodeMap[addr]
f(n)
}
// checkBroadcastQueueDepth periodically checks the size of the broadcast queue
// to see if it is too large
func (m *Memberlist) checkBroadcastQueueDepth() {
for {
select {
case <-time.After(m.config.QueueCheckInterval):
numq := m.broadcasts.NumQueued()
metrics.AddSampleWithLabels([]string{"memberlist", "queue", "broadcasts"}, float32(numq), m.metricLabels)
case <-m.shutdownCh:
return
}
}
}

View File

@@ -0,0 +1,14 @@
package memberlist
// MergeDelegate is used to involve a client in
// a potential cluster merge operation. Namely, when
// a node does a TCP push/pull (as part of a join),
// the delegate is involved and allowed to cancel the join
// based on custom logic. The merge delegate is NOT invoked
// as part of the push-pull anti-entropy.
type MergeDelegate interface {
// NotifyMerge is invoked when a merge could take place.
// Provides a list of the nodes known by the peer. If
// the return value is non-nil, the merge is canceled.
NotifyMerge(peers []*Node) error
}

View File

@@ -0,0 +1,195 @@
package memberlist
import (
"bytes"
"fmt"
"io"
"net"
"strconv"
"time"
)
// MockNetwork is used as a factory that produces MockTransport instances which
// are uniquely addressed and wired up to talk to each other.
type MockNetwork struct {
transportsByAddr map[string]*MockTransport
transportsByName map[string]*MockTransport
port int
}
// NewTransport returns a new MockTransport with a unique address, wired up to
// talk to the other transports in the MockNetwork.
func (n *MockNetwork) NewTransport(name string) *MockTransport {
n.port += 1
addr := fmt.Sprintf("127.0.0.1:%d", n.port)
transport := &MockTransport{
net: n,
addr: &MockAddress{addr, name},
packetCh: make(chan *Packet),
streamCh: make(chan net.Conn),
}
if n.transportsByAddr == nil {
n.transportsByAddr = make(map[string]*MockTransport)
}
n.transportsByAddr[addr] = transport
if n.transportsByName == nil {
n.transportsByName = make(map[string]*MockTransport)
}
n.transportsByName[name] = transport
return transport
}
// MockAddress is a wrapper which adds the net.Addr interface to our mock
// address scheme.
type MockAddress struct {
addr string
name string
}
// See net.Addr.
func (a *MockAddress) Network() string {
return "mock"
}
// See net.Addr.
func (a *MockAddress) String() string {
return a.addr
}
// MockTransport directly plumbs messages to other transports its MockNetwork.
type MockTransport struct {
net *MockNetwork
addr *MockAddress
packetCh chan *Packet
streamCh chan net.Conn
}
var _ NodeAwareTransport = (*MockTransport)(nil)
// See Transport.
func (t *MockTransport) FinalAdvertiseAddr(string, int) (net.IP, int, error) {
host, portStr, err := net.SplitHostPort(t.addr.String())
if err != nil {
return nil, 0, err
}
ip := net.ParseIP(host)
if ip == nil {
return nil, 0, fmt.Errorf("Failed to parse IP %q", host)
}
port, err := strconv.ParseInt(portStr, 10, 16)
if err != nil {
return nil, 0, err
}
return ip, int(port), nil
}
// See Transport.
func (t *MockTransport) WriteTo(b []byte, addr string) (time.Time, error) {
a := Address{Addr: addr, Name: ""}
return t.WriteToAddress(b, a)
}
// See NodeAwareTransport.
func (t *MockTransport) WriteToAddress(b []byte, a Address) (time.Time, error) {
dest, err := t.getPeer(a)
if err != nil {
return time.Time{}, err
}
now := time.Now()
dest.packetCh <- &Packet{
Buf: b,
From: t.addr,
Timestamp: now,
}
return now, nil
}
// See Transport.
func (t *MockTransport) PacketCh() <-chan *Packet {
return t.packetCh
}
// See NodeAwareTransport.
func (t *MockTransport) IngestPacket(conn net.Conn, addr net.Addr, now time.Time, shouldClose bool) error {
if shouldClose {
defer conn.Close()
}
// Copy everything from the stream into packet buffer.
var buf bytes.Buffer
if _, err := io.Copy(&buf, conn); err != nil {
return fmt.Errorf("failed to read packet: %v", err)
}
// Check the length - it needs to have at least one byte to be a proper
// message. This is checked elsewhere for writes coming in directly from
// the UDP socket.
if n := buf.Len(); n < 1 {
return fmt.Errorf("packet too short (%d bytes) %s", n, LogAddress(addr))
}
// Inject the packet.
t.packetCh <- &Packet{
Buf: buf.Bytes(),
From: addr,
Timestamp: now,
}
return nil
}
// See Transport.
func (t *MockTransport) DialTimeout(addr string, timeout time.Duration) (net.Conn, error) {
a := Address{Addr: addr, Name: ""}
return t.DialAddressTimeout(a, timeout)
}
// See NodeAwareTransport.
func (t *MockTransport) DialAddressTimeout(a Address, timeout time.Duration) (net.Conn, error) {
dest, err := t.getPeer(a)
if err != nil {
return nil, err
}
p1, p2 := net.Pipe()
dest.streamCh <- p1
return p2, nil
}
// See Transport.
func (t *MockTransport) StreamCh() <-chan net.Conn {
return t.streamCh
}
// See NodeAwareTransport.
func (t *MockTransport) IngestStream(conn net.Conn) error {
t.streamCh <- conn
return nil
}
// See Transport.
func (t *MockTransport) Shutdown() error {
return nil
}
func (t *MockTransport) getPeer(a Address) (*MockTransport, error) {
var (
dest *MockTransport
ok bool
)
if a.Name != "" {
dest, ok = t.net.transportsByName[a.Name]
} else {
dest, ok = t.net.transportsByAddr[a.Addr]
}
if !ok {
return nil, fmt.Errorf("No route to %s", a)
}
return dest, nil
}

1368
vendor/github.com/hashicorp/memberlist/net.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

373
vendor/github.com/hashicorp/memberlist/net_transport.go generated vendored Normal file
View File

@@ -0,0 +1,373 @@
package memberlist
import (
"bytes"
"fmt"
"io"
"log"
"net"
"sync"
"sync/atomic"
"time"
"github.com/armon/go-metrics"
sockaddr "github.com/hashicorp/go-sockaddr"
)
const (
// udpPacketBufSize is used to buffer incoming packets during read
// operations.
udpPacketBufSize = 65536
// udpRecvBufSize is a large buffer size that we attempt to set UDP
// sockets to in order to handle a large volume of messages.
udpRecvBufSize = 2 * 1024 * 1024
)
// NetTransportConfig is used to configure a net transport.
type NetTransportConfig struct {
// BindAddrs is a list of addresses to bind to for both TCP and UDP
// communications.
BindAddrs []string
// BindPort is the port to listen on, for each address above.
BindPort int
// Logger is a logger for operator messages.
Logger *log.Logger
// MetricLabels is a map of optional labels to apply to all metrics
// emitted by this transport.
MetricLabels []metrics.Label
}
// NetTransport is a Transport implementation that uses connectionless UDP for
// packet operations, and ad-hoc TCP connections for stream operations.
type NetTransport struct {
config *NetTransportConfig
packetCh chan *Packet
streamCh chan net.Conn
logger *log.Logger
wg sync.WaitGroup
tcpListeners []*net.TCPListener
udpListeners []*net.UDPConn
shutdown int32
metricLabels []metrics.Label
}
var _ NodeAwareTransport = (*NetTransport)(nil)
// NewNetTransport returns a net transport with the given configuration. On
// success all the network listeners will be created and listening.
func NewNetTransport(config *NetTransportConfig) (*NetTransport, error) {
// If we reject the empty list outright we can assume that there's at
// least one listener of each type later during operation.
if len(config.BindAddrs) == 0 {
return nil, fmt.Errorf("At least one bind address is required")
}
// Build out the new transport.
var ok bool
t := NetTransport{
config: config,
packetCh: make(chan *Packet),
streamCh: make(chan net.Conn),
logger: config.Logger,
metricLabels: config.MetricLabels,
}
// Clean up listeners if there's an error.
defer func() {
if !ok {
t.Shutdown()
}
}()
// Build all the TCP and UDP listeners.
port := config.BindPort
for _, addr := range config.BindAddrs {
ip := net.ParseIP(addr)
tcpAddr := &net.TCPAddr{IP: ip, Port: port}
tcpLn, err := net.ListenTCP("tcp", tcpAddr)
if err != nil {
return nil, fmt.Errorf("Failed to start TCP listener on %q port %d: %v", addr, port, err)
}
t.tcpListeners = append(t.tcpListeners, tcpLn)
// If the config port given was zero, use the first TCP listener
// to pick an available port and then apply that to everything
// else.
if port == 0 {
port = tcpLn.Addr().(*net.TCPAddr).Port
}
udpAddr := &net.UDPAddr{IP: ip, Port: port}
udpLn, err := net.ListenUDP("udp", udpAddr)
if err != nil {
return nil, fmt.Errorf("Failed to start UDP listener on %q port %d: %v", addr, port, err)
}
if err := setUDPRecvBuf(udpLn); err != nil {
return nil, fmt.Errorf("Failed to resize UDP buffer: %v", err)
}
t.udpListeners = append(t.udpListeners, udpLn)
}
// Fire them up now that we've been able to create them all.
for i := 0; i < len(config.BindAddrs); i++ {
t.wg.Add(2)
go t.tcpListen(t.tcpListeners[i])
go t.udpListen(t.udpListeners[i])
}
ok = true
return &t, nil
}
// GetAutoBindPort returns the bind port that was automatically given by the
// kernel, if a bind port of 0 was given.
func (t *NetTransport) GetAutoBindPort() int {
// We made sure there's at least one TCP listener, and that one's
// port was applied to all the others for the dynamic bind case.
return t.tcpListeners[0].Addr().(*net.TCPAddr).Port
}
// See Transport.
func (t *NetTransport) FinalAdvertiseAddr(ip string, port int) (net.IP, int, error) {
var advertiseAddr net.IP
var advertisePort int
if ip != "" {
// If they've supplied an address, use that.
advertiseAddr = net.ParseIP(ip)
if advertiseAddr == nil {
return nil, 0, fmt.Errorf("Failed to parse advertise address %q", ip)
}
// Ensure IPv4 conversion if necessary.
if ip4 := advertiseAddr.To4(); ip4 != nil {
advertiseAddr = ip4
}
advertisePort = port
} else {
if t.config.BindAddrs[0] == "0.0.0.0" {
// Otherwise, if we're not bound to a specific IP, let's
// use a suitable private IP address.
var err error
ip, err = sockaddr.GetPrivateIP()
if err != nil {
return nil, 0, fmt.Errorf("Failed to get interface addresses: %v", err)
}
if ip == "" {
return nil, 0, fmt.Errorf("No private IP address found, and explicit IP not provided")
}
advertiseAddr = net.ParseIP(ip)
if advertiseAddr == nil {
return nil, 0, fmt.Errorf("Failed to parse advertise address: %q", ip)
}
} else {
// Use the IP that we're bound to, based on the first
// TCP listener, which we already ensure is there.
advertiseAddr = t.tcpListeners[0].Addr().(*net.TCPAddr).IP
}
// Use the port we are bound to.
advertisePort = t.GetAutoBindPort()
}
return advertiseAddr, advertisePort, nil
}
// See Transport.
func (t *NetTransport) WriteTo(b []byte, addr string) (time.Time, error) {
a := Address{Addr: addr, Name: ""}
return t.WriteToAddress(b, a)
}
// See NodeAwareTransport.
func (t *NetTransport) WriteToAddress(b []byte, a Address) (time.Time, error) {
addr := a.Addr
udpAddr, err := net.ResolveUDPAddr("udp", addr)
if err != nil {
return time.Time{}, err
}
// We made sure there's at least one UDP listener, so just use the
// packet sending interface on the first one. Take the time after the
// write call comes back, which will underestimate the time a little,
// but help account for any delays before the write occurs.
_, err = t.udpListeners[0].WriteTo(b, udpAddr)
return time.Now(), err
}
// See Transport.
func (t *NetTransport) PacketCh() <-chan *Packet {
return t.packetCh
}
// See IngestionAwareTransport.
func (t *NetTransport) IngestPacket(conn net.Conn, addr net.Addr, now time.Time, shouldClose bool) error {
if shouldClose {
defer conn.Close()
}
// Copy everything from the stream into packet buffer.
var buf bytes.Buffer
if _, err := io.Copy(&buf, conn); err != nil {
return fmt.Errorf("failed to read packet: %v", err)
}
// Check the length - it needs to have at least one byte to be a proper
// message. This is checked elsewhere for writes coming in directly from
// the UDP socket.
if n := buf.Len(); n < 1 {
return fmt.Errorf("packet too short (%d bytes) %s", n, LogAddress(addr))
}
// Inject the packet.
t.packetCh <- &Packet{
Buf: buf.Bytes(),
From: addr,
Timestamp: now,
}
return nil
}
// See Transport.
func (t *NetTransport) DialTimeout(addr string, timeout time.Duration) (net.Conn, error) {
a := Address{Addr: addr, Name: ""}
return t.DialAddressTimeout(a, timeout)
}
// See NodeAwareTransport.
func (t *NetTransport) DialAddressTimeout(a Address, timeout time.Duration) (net.Conn, error) {
addr := a.Addr
dialer := net.Dialer{Timeout: timeout}
return dialer.Dial("tcp", addr)
}
// See Transport.
func (t *NetTransport) StreamCh() <-chan net.Conn {
return t.streamCh
}
// See IngestionAwareTransport.
func (t *NetTransport) IngestStream(conn net.Conn) error {
t.streamCh <- conn
return nil
}
// See Transport.
func (t *NetTransport) Shutdown() error {
// This will avoid log spam about errors when we shut down.
atomic.StoreInt32(&t.shutdown, 1)
// Rip through all the connections and shut them down.
for _, conn := range t.tcpListeners {
conn.Close()
}
for _, conn := range t.udpListeners {
conn.Close()
}
// Block until all the listener threads have died.
t.wg.Wait()
return nil
}
// tcpListen is a long running goroutine that accepts incoming TCP connections
// and hands them off to the stream channel.
func (t *NetTransport) tcpListen(tcpLn *net.TCPListener) {
defer t.wg.Done()
// baseDelay is the initial delay after an AcceptTCP() error before attempting again
const baseDelay = 5 * time.Millisecond
// maxDelay is the maximum delay after an AcceptTCP() error before attempting again.
// In the case that tcpListen() is error-looping, it will delay the shutdown check.
// Therefore, changes to maxDelay may have an effect on the latency of shutdown.
const maxDelay = 1 * time.Second
var loopDelay time.Duration
for {
conn, err := tcpLn.AcceptTCP()
if err != nil {
if s := atomic.LoadInt32(&t.shutdown); s == 1 {
break
}
if loopDelay == 0 {
loopDelay = baseDelay
} else {
loopDelay *= 2
}
if loopDelay > maxDelay {
loopDelay = maxDelay
}
t.logger.Printf("[ERR] memberlist: Error accepting TCP connection: %v", err)
time.Sleep(loopDelay)
continue
}
// No error, reset loop delay
loopDelay = 0
t.streamCh <- conn
}
}
// udpListen is a long running goroutine that accepts incoming UDP packets and
// hands them off to the packet channel.
func (t *NetTransport) udpListen(udpLn *net.UDPConn) {
defer t.wg.Done()
for {
// Do a blocking read into a fresh buffer. Grab a time stamp as
// close as possible to the I/O.
buf := make([]byte, udpPacketBufSize)
n, addr, err := udpLn.ReadFrom(buf)
ts := time.Now()
if err != nil {
if s := atomic.LoadInt32(&t.shutdown); s == 1 {
break
}
t.logger.Printf("[ERR] memberlist: Error reading UDP packet: %v", err)
continue
}
// Check the length - it needs to have at least one byte to be a
// proper message.
if n < 1 {
t.logger.Printf("[ERR] memberlist: UDP packet too short (%d bytes) %s",
len(buf), LogAddress(addr))
continue
}
// Ingest the packet.
metrics.IncrCounterWithLabels([]string{"memberlist", "udp", "received"}, float32(n), t.metricLabels)
t.packetCh <- &Packet{
Buf: buf[:n],
From: addr,
Timestamp: ts,
}
}
}
// setUDPRecvBuf is used to resize the UDP receive window. The function
// attempts to set the read buffer to `udpRecvBuf` but backs off until
// the read buffer can be set.
func setUDPRecvBuf(c *net.UDPConn) error {
size := udpRecvBufSize
var err error
for size > 0 {
if err = c.SetReadBuffer(size); err == nil {
return nil
}
size = size / 2
}
return err
}

48
vendor/github.com/hashicorp/memberlist/peeked_conn.go generated vendored Normal file
View File

@@ -0,0 +1,48 @@
// Copyright 2017 Google Inc.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Originally from: https://github.com/google/tcpproxy/blob/master/tcpproxy.go
// at f5c09fbedceb69e4b238dec52cdf9f2fe9a815e2
package memberlist
import "net"
// peekedConn is an incoming connection that has had some bytes read from it
// to determine how to route the connection. The Read method stitches
// the peeked bytes and unread bytes back together.
type peekedConn struct {
// Peeked are the bytes that have been read from Conn for the
// purposes of route matching, but have not yet been consumed
// by Read calls. It set to nil by Read when fully consumed.
Peeked []byte
// Conn is the underlying connection.
// It can be type asserted against *net.TCPConn or other types
// as needed. It should not be read from directly unless
// Peeked is nil.
net.Conn
}
func (c *peekedConn) Read(p []byte) (n int, err error) {
if len(c.Peeked) > 0 {
n = copy(p, c.Peeked)
c.Peeked = c.Peeked[n:]
if len(c.Peeked) == 0 {
c.Peeked = nil
}
return n, nil
}
return c.Conn.Read(p)
}

View File

@@ -0,0 +1,14 @@
package memberlist
import "time"
// PingDelegate is used to notify an observer how long it took for a ping message to
// complete a round trip. It can also be used for writing arbitrary byte slices
// into ack messages. Note that in order to be meaningful for RTT estimates, this
// delegate does not apply to indirect pings, nor fallback pings sent over TCP.
type PingDelegate interface {
// AckPayload is invoked when an ack is being sent; the returned bytes will be appended to the ack
AckPayload() []byte
// NotifyPing is invoked when an ack for a ping is received
NotifyPingComplete(other *Node, rtt time.Duration, payload []byte)
}

422
vendor/github.com/hashicorp/memberlist/queue.go generated vendored Normal file
View File

@@ -0,0 +1,422 @@
package memberlist
import (
"math"
"sync"
"github.com/google/btree"
)
// TransmitLimitedQueue is used to queue messages to broadcast to
// the cluster (via gossip) but limits the number of transmits per
// message. It also prioritizes messages with lower transmit counts
// (hence newer messages).
type TransmitLimitedQueue struct {
// NumNodes returns the number of nodes in the cluster. This is
// used to determine the retransmit count, which is calculated
// based on the log of this.
NumNodes func() int
// RetransmitMult is the multiplier used to determine the maximum
// number of retransmissions attempted.
RetransmitMult int
mu sync.Mutex
tq *btree.BTree // stores *limitedBroadcast as btree.Item
tm map[string]*limitedBroadcast
idGen int64
}
type limitedBroadcast struct {
transmits int // btree-key[0]: Number of transmissions attempted.
msgLen int64 // btree-key[1]: copied from len(b.Message())
id int64 // btree-key[2]: unique incrementing id stamped at submission time
b Broadcast
name string // set if Broadcast is a NamedBroadcast
}
// Less tests whether the current item is less than the given argument.
//
// This must provide a strict weak ordering.
// If !a.Less(b) && !b.Less(a), we treat this to mean a == b (i.e. we can only
// hold one of either a or b in the tree).
//
// default ordering is
// - [transmits=0, ..., transmits=inf]
// - [transmits=0:len=999, ..., transmits=0:len=2, ...]
// - [transmits=0:len=999,id=999, ..., transmits=0:len=999:id=1, ...]
func (b *limitedBroadcast) Less(than btree.Item) bool {
o := than.(*limitedBroadcast)
if b.transmits < o.transmits {
return true
} else if b.transmits > o.transmits {
return false
}
if b.msgLen > o.msgLen {
return true
} else if b.msgLen < o.msgLen {
return false
}
return b.id > o.id
}
// for testing; emits in transmit order if reverse=false
func (q *TransmitLimitedQueue) orderedView(reverse bool) []*limitedBroadcast {
q.mu.Lock()
defer q.mu.Unlock()
out := make([]*limitedBroadcast, 0, q.lenLocked())
q.walkReadOnlyLocked(reverse, func(cur *limitedBroadcast) bool {
out = append(out, cur)
return true
})
return out
}
// walkReadOnlyLocked calls f for each item in the queue traversing it in
// natural order (by Less) when reverse=false and the opposite when true. You
// must hold the mutex.
//
// This method panics if you attempt to mutate the item during traversal. The
// underlying btree should also not be mutated during traversal.
func (q *TransmitLimitedQueue) walkReadOnlyLocked(reverse bool, f func(*limitedBroadcast) bool) {
if q.lenLocked() == 0 {
return
}
iter := func(item btree.Item) bool {
cur := item.(*limitedBroadcast)
prevTransmits := cur.transmits
prevMsgLen := cur.msgLen
prevID := cur.id
keepGoing := f(cur)
if prevTransmits != cur.transmits || prevMsgLen != cur.msgLen || prevID != cur.id {
panic("edited queue while walking read only")
}
return keepGoing
}
if reverse {
q.tq.Descend(iter) // end with transmit 0
} else {
q.tq.Ascend(iter) // start with transmit 0
}
}
// Broadcast is something that can be broadcasted via gossip to
// the memberlist cluster.
type Broadcast interface {
// Invalidates checks if enqueuing the current broadcast
// invalidates a previous broadcast
Invalidates(b Broadcast) bool
// Returns a byte form of the message
Message() []byte
// Finished is invoked when the message will no longer
// be broadcast, either due to invalidation or to the
// transmit limit being reached
Finished()
}
// NamedBroadcast is an optional extension of the Broadcast interface that
// gives each message a unique string name, and that is used to optimize
//
// You shoud ensure that Invalidates() checks the same uniqueness as the
// example below:
//
// func (b *foo) Invalidates(other Broadcast) bool {
// nb, ok := other.(NamedBroadcast)
// if !ok {
// return false
// }
// return b.Name() == nb.Name()
// }
//
// Invalidates() isn't currently used for NamedBroadcasts, but that may change
// in the future.
type NamedBroadcast interface {
Broadcast
// The unique identity of this broadcast message.
Name() string
}
// UniqueBroadcast is an optional interface that indicates that each message is
// intrinsically unique and there is no need to scan the broadcast queue for
// duplicates.
//
// You should ensure that Invalidates() always returns false if implementing
// this interface. Invalidates() isn't currently used for UniqueBroadcasts, but
// that may change in the future.
type UniqueBroadcast interface {
Broadcast
// UniqueBroadcast is just a marker method for this interface.
UniqueBroadcast()
}
// QueueBroadcast is used to enqueue a broadcast
func (q *TransmitLimitedQueue) QueueBroadcast(b Broadcast) {
q.queueBroadcast(b, 0)
}
// lazyInit initializes internal data structures the first time they are
// needed. You must already hold the mutex.
func (q *TransmitLimitedQueue) lazyInit() {
if q.tq == nil {
q.tq = btree.New(32)
}
if q.tm == nil {
q.tm = make(map[string]*limitedBroadcast)
}
}
// queueBroadcast is like QueueBroadcast but you can use a nonzero value for
// the initial transmit tier assigned to the message. This is meant to be used
// for unit testing.
func (q *TransmitLimitedQueue) queueBroadcast(b Broadcast, initialTransmits int) {
q.mu.Lock()
defer q.mu.Unlock()
q.lazyInit()
if q.idGen == math.MaxInt64 {
// it's super duper unlikely to wrap around within the retransmit limit
q.idGen = 1
} else {
q.idGen++
}
id := q.idGen
lb := &limitedBroadcast{
transmits: initialTransmits,
msgLen: int64(len(b.Message())),
id: id,
b: b,
}
unique := false
if nb, ok := b.(NamedBroadcast); ok {
lb.name = nb.Name()
} else if _, ok := b.(UniqueBroadcast); ok {
unique = true
}
// Check if this message invalidates another.
if lb.name != "" {
if old, ok := q.tm[lb.name]; ok {
old.b.Finished()
q.deleteItem(old)
}
} else if !unique {
// Slow path, hopefully nothing hot hits this.
var remove []*limitedBroadcast
q.tq.Ascend(func(item btree.Item) bool {
cur := item.(*limitedBroadcast)
// Special Broadcasts can only invalidate each other.
switch cur.b.(type) {
case NamedBroadcast:
// noop
case UniqueBroadcast:
// noop
default:
if b.Invalidates(cur.b) {
cur.b.Finished()
remove = append(remove, cur)
}
}
return true
})
for _, cur := range remove {
q.deleteItem(cur)
}
}
// Append to the relevant queue.
q.addItem(lb)
}
// deleteItem removes the given item from the overall datastructure. You
// must already hold the mutex.
func (q *TransmitLimitedQueue) deleteItem(cur *limitedBroadcast) {
_ = q.tq.Delete(cur)
if cur.name != "" {
delete(q.tm, cur.name)
}
if q.tq.Len() == 0 {
// At idle there's no reason to let the id generator keep going
// indefinitely.
q.idGen = 0
}
}
// addItem adds the given item into the overall datastructure. You must already
// hold the mutex.
func (q *TransmitLimitedQueue) addItem(cur *limitedBroadcast) {
_ = q.tq.ReplaceOrInsert(cur)
if cur.name != "" {
q.tm[cur.name] = cur
}
}
// getTransmitRange returns a pair of min/max values for transmit values
// represented by the current queue contents. Both values represent actual
// transmit values on the interval [0, len). You must already hold the mutex.
func (q *TransmitLimitedQueue) getTransmitRange() (minTransmit, maxTransmit int) {
if q.lenLocked() == 0 {
return 0, 0
}
minItem, maxItem := q.tq.Min(), q.tq.Max()
if minItem == nil || maxItem == nil {
return 0, 0
}
min := minItem.(*limitedBroadcast).transmits
max := maxItem.(*limitedBroadcast).transmits
return min, max
}
// GetBroadcasts is used to get a number of broadcasts, up to a byte limit
// and applying a per-message overhead as provided.
func (q *TransmitLimitedQueue) GetBroadcasts(overhead, limit int) [][]byte {
q.mu.Lock()
defer q.mu.Unlock()
// Fast path the default case
if q.lenLocked() == 0 {
return nil
}
transmitLimit := retransmitLimit(q.RetransmitMult, q.NumNodes())
var (
bytesUsed int
toSend [][]byte
reinsert []*limitedBroadcast
)
// Visit fresher items first, but only look at stuff that will fit.
// We'll go tier by tier, grabbing the largest items first.
minTr, maxTr := q.getTransmitRange()
for transmits := minTr; transmits <= maxTr; /*do not advance automatically*/ {
free := int64(limit - bytesUsed - overhead)
if free <= 0 {
break // bail out early
}
// Search for the least element on a given tier (by transmit count) as
// defined in the limitedBroadcast.Less function that will fit into our
// remaining space.
greaterOrEqual := &limitedBroadcast{
transmits: transmits,
msgLen: free,
id: math.MaxInt64,
}
lessThan := &limitedBroadcast{
transmits: transmits + 1,
msgLen: math.MaxInt64,
id: math.MaxInt64,
}
var keep *limitedBroadcast
q.tq.AscendRange(greaterOrEqual, lessThan, func(item btree.Item) bool {
cur := item.(*limitedBroadcast)
// Check if this is within our limits
if int64(len(cur.b.Message())) > free {
// If this happens it's a bug in the datastructure or
// surrounding use doing something like having len(Message())
// change over time. There's enough going on here that it's
// probably sane to just skip it and move on for now.
return true
}
keep = cur
return false
})
if keep == nil {
// No more items of an appropriate size in the tier.
transmits++
continue
}
msg := keep.b.Message()
// Add to slice to send
bytesUsed += overhead + len(msg)
toSend = append(toSend, msg)
// Check if we should stop transmission
q.deleteItem(keep)
if keep.transmits+1 >= transmitLimit {
keep.b.Finished()
} else {
// We need to bump this item down to another transmit tier, but
// because it would be in the same direction that we're walking the
// tiers, we will have to delay the reinsertion until we are
// finished our search. Otherwise we'll possibly re-add the message
// when we ascend to the next tier.
keep.transmits++
reinsert = append(reinsert, keep)
}
}
for _, cur := range reinsert {
q.addItem(cur)
}
return toSend
}
// NumQueued returns the number of queued messages
func (q *TransmitLimitedQueue) NumQueued() int {
q.mu.Lock()
defer q.mu.Unlock()
return q.lenLocked()
}
// lenLocked returns the length of the overall queue datastructure. You must
// hold the mutex.
func (q *TransmitLimitedQueue) lenLocked() int {
if q.tq == nil {
return 0
}
return q.tq.Len()
}
// Reset clears all the queued messages. Should only be used for tests.
func (q *TransmitLimitedQueue) Reset() {
q.mu.Lock()
defer q.mu.Unlock()
q.walkReadOnlyLocked(false, func(cur *limitedBroadcast) bool {
cur.b.Finished()
return true
})
q.tq = nil
q.tm = nil
q.idGen = 0
}
// Prune will retain the maxRetain latest messages, and the rest
// will be discarded. This can be used to prevent unbounded queue sizes
func (q *TransmitLimitedQueue) Prune(maxRetain int) {
q.mu.Lock()
defer q.mu.Unlock()
// Do nothing if queue size is less than the limit
for q.tq.Len() > maxRetain {
item := q.tq.Max()
if item == nil {
break
}
cur := item.(*limitedBroadcast)
cur.b.Finished()
q.deleteItem(cur)
}
}

220
vendor/github.com/hashicorp/memberlist/security.go generated vendored Normal file
View File

@@ -0,0 +1,220 @@
package memberlist
import (
"bytes"
"crypto/aes"
"crypto/cipher"
"crypto/rand"
"fmt"
"io"
)
/*
Encrypted messages are prefixed with an encryptionVersion byte
that is used for us to be able to properly encode/decode. We
currently support the following versions:
0 - AES-GCM 128, using PKCS7 padding
1 - AES-GCM 128, no padding. Padding not needed, caused bloat.
*/
type encryptionVersion uint8
const (
minEncryptionVersion encryptionVersion = 0
maxEncryptionVersion encryptionVersion = 1
)
const (
versionSize = 1
nonceSize = 12
tagSize = 16
maxPadOverhead = 16
blockSize = aes.BlockSize
)
// pkcs7encode is used to pad a byte buffer to a specific block size using
// the PKCS7 algorithm. "Ignores" some bytes to compensate for IV
func pkcs7encode(buf *bytes.Buffer, ignore, blockSize int) {
n := buf.Len() - ignore
more := blockSize - (n % blockSize)
for i := 0; i < more; i++ {
buf.WriteByte(byte(more))
}
}
// pkcs7decode is used to decode a buffer that has been padded
func pkcs7decode(buf []byte, blockSize int) []byte {
if len(buf) == 0 {
panic("Cannot decode a PKCS7 buffer of zero length")
}
n := len(buf)
last := buf[n-1]
n -= int(last)
return buf[:n]
}
// encryptOverhead returns the maximum possible overhead of encryption by version
func encryptOverhead(vsn encryptionVersion) int {
switch vsn {
case 0:
return 45 // Version: 1, IV: 12, Padding: 16, Tag: 16
case 1:
return 29 // Version: 1, IV: 12, Tag: 16
default:
panic("unsupported version")
}
}
// encryptedLength is used to compute the buffer size needed
// for a message of given length
func encryptedLength(vsn encryptionVersion, inp int) int {
// If we are on version 1, there is no padding
if vsn >= 1 {
return versionSize + nonceSize + inp + tagSize
}
// Determine the padding size
padding := blockSize - (inp % blockSize)
// Sum the extra parts to get total size
return versionSize + nonceSize + inp + padding + tagSize
}
// encryptPayload is used to encrypt a message with a given key.
// We make use of AES-128 in GCM mode. New byte buffer is the version,
// nonce, ciphertext and tag
func encryptPayload(vsn encryptionVersion, key []byte, msg []byte, data []byte, dst *bytes.Buffer) error {
// Get the AES block cipher
aesBlock, err := aes.NewCipher(key)
if err != nil {
return err
}
// Get the GCM cipher mode
gcm, err := cipher.NewGCM(aesBlock)
if err != nil {
return err
}
// Grow the buffer to make room for everything
offset := dst.Len()
dst.Grow(encryptedLength(vsn, len(msg)))
// Write the encryption version
dst.WriteByte(byte(vsn))
// Add a random nonce
_, err = io.CopyN(dst, rand.Reader, nonceSize)
if err != nil {
return err
}
afterNonce := dst.Len()
// Ensure we are correctly padded (only version 0)
if vsn == 0 {
io.Copy(dst, bytes.NewReader(msg))
pkcs7encode(dst, offset+versionSize+nonceSize, aes.BlockSize)
}
// Encrypt message using GCM
slice := dst.Bytes()[offset:]
nonce := slice[versionSize : versionSize+nonceSize]
// Message source depends on the encryption version.
// Version 0 uses padding, version 1 does not
var src []byte
if vsn == 0 {
src = slice[versionSize+nonceSize:]
} else {
src = msg
}
out := gcm.Seal(nil, nonce, src, data)
// Truncate the plaintext, and write the cipher text
dst.Truncate(afterNonce)
dst.Write(out)
return nil
}
// decryptMessage performs the actual decryption of ciphertext. This is in its
// own function to allow it to be called on all keys easily.
func decryptMessage(key, msg []byte, data []byte) ([]byte, error) {
// Get the AES block cipher
aesBlock, err := aes.NewCipher(key)
if err != nil {
return nil, err
}
// Get the GCM cipher mode
gcm, err := cipher.NewGCM(aesBlock)
if err != nil {
return nil, err
}
// Decrypt the message
nonce := msg[versionSize : versionSize+nonceSize]
ciphertext := msg[versionSize+nonceSize:]
plain, err := gcm.Open(nil, nonce, ciphertext, data)
if err != nil {
return nil, err
}
// Success!
return plain, nil
}
// decryptPayload is used to decrypt a message with a given key,
// and verify it's contents. Any padding will be removed, and a
// slice to the plaintext is returned. Decryption is done IN PLACE!
func decryptPayload(keys [][]byte, msg []byte, data []byte) ([]byte, error) {
// Ensure we have at least one byte
if len(msg) == 0 {
return nil, fmt.Errorf("Cannot decrypt empty payload")
}
// Verify the version
vsn := encryptionVersion(msg[0])
if vsn > maxEncryptionVersion {
return nil, fmt.Errorf("Unsupported encryption version %d", msg[0])
}
// Ensure the length is sane
if len(msg) < encryptedLength(vsn, 0) {
return nil, fmt.Errorf("Payload is too small to decrypt: %d", len(msg))
}
for _, key := range keys {
plain, err := decryptMessage(key, msg, data)
if err == nil {
// Remove the PKCS7 padding for vsn 0
if vsn == 0 {
return pkcs7decode(plain, aes.BlockSize), nil
} else {
return plain, nil
}
}
}
return nil, fmt.Errorf("No installed keys could decrypt the message")
}
func appendBytes(first []byte, second []byte) []byte {
hasFirst := len(first) > 0
hasSecond := len(second) > 0
switch {
case hasFirst && hasSecond:
out := make([]byte, 0, len(first)+len(second))
out = append(out, first...)
out = append(out, second...)
return out
case hasFirst:
return first
case hasSecond:
return second
default:
return nil
}
}

1340
vendor/github.com/hashicorp/memberlist/state.go generated vendored Normal file

File diff suppressed because it is too large Load Diff

130
vendor/github.com/hashicorp/memberlist/suspicion.go generated vendored Normal file
View File

@@ -0,0 +1,130 @@
package memberlist
import (
"math"
"sync/atomic"
"time"
)
// suspicion manages the suspect timer for a node and provides an interface
// to accelerate the timeout as we get more independent confirmations that
// a node is suspect.
type suspicion struct {
// n is the number of independent confirmations we've seen. This must
// be updated using atomic instructions to prevent contention with the
// timer callback.
n int32
// k is the number of independent confirmations we'd like to see in
// order to drive the timer to its minimum value.
k int32
// min is the minimum timer value.
min time.Duration
// max is the maximum timer value.
max time.Duration
// start captures the timestamp when we began the timer. This is used
// so we can calculate durations to feed the timer during updates in
// a way the achieves the overall time we'd like.
start time.Time
// timer is the underlying timer that implements the timeout.
timer *time.Timer
// f is the function to call when the timer expires. We hold on to this
// because there are cases where we call it directly.
timeoutFn func()
// confirmations is a map of "from" nodes that have confirmed a given
// node is suspect. This prevents double counting.
confirmations map[string]struct{}
}
// newSuspicion returns a timer started with the max time, and that will drive
// to the min time after seeing k or more confirmations. The from node will be
// excluded from confirmations since we might get our own suspicion message
// gossiped back to us. The minimum time will be used if no confirmations are
// called for (k <= 0).
func newSuspicion(from string, k int, min time.Duration, max time.Duration, fn func(int)) *suspicion {
s := &suspicion{
k: int32(k),
min: min,
max: max,
confirmations: make(map[string]struct{}),
}
// Exclude the from node from any confirmations.
s.confirmations[from] = struct{}{}
// Pass the number of confirmations into the timeout function for
// easy telemetry.
s.timeoutFn = func() {
fn(int(atomic.LoadInt32(&s.n)))
}
// If there aren't any confirmations to be made then take the min
// time from the start.
timeout := max
if k < 1 {
timeout = min
}
s.timer = time.AfterFunc(timeout, s.timeoutFn)
// Capture the start time right after starting the timer above so
// we should always err on the side of a little longer timeout if
// there's any preemption that separates this and the step above.
s.start = time.Now()
return s
}
// remainingSuspicionTime takes the state variables of the suspicion timer and
// calculates the remaining time to wait before considering a node dead. The
// return value can be negative, so be prepared to fire the timer immediately in
// that case.
func remainingSuspicionTime(n, k int32, elapsed time.Duration, min, max time.Duration) time.Duration {
frac := math.Log(float64(n)+1.0) / math.Log(float64(k)+1.0)
raw := max.Seconds() - frac*(max.Seconds()-min.Seconds())
timeout := time.Duration(math.Floor(1000.0*raw)) * time.Millisecond
if timeout < min {
timeout = min
}
// We have to take into account the amount of time that has passed so
// far, so we get the right overall timeout.
return timeout - elapsed
}
// Confirm registers that a possibly new peer has also determined the given
// node is suspect. This returns true if this was new information, and false
// if it was a duplicate confirmation, or if we've got enough confirmations to
// hit the minimum.
func (s *suspicion) Confirm(from string) bool {
// If we've got enough confirmations then stop accepting them.
if atomic.LoadInt32(&s.n) >= s.k {
return false
}
// Only allow one confirmation from each possible peer.
if _, ok := s.confirmations[from]; ok {
return false
}
s.confirmations[from] = struct{}{}
// Compute the new timeout given the current number of confirmations and
// adjust the timer. If the timeout becomes negative *and* we can cleanly
// stop the timer then we will call the timeout function directly from
// here.
n := atomic.AddInt32(&s.n, 1)
elapsed := time.Since(s.start)
remaining := remainingSuspicionTime(n, s.k, elapsed, s.min, s.max)
if s.timer.Stop() {
if remaining > 0 {
s.timer.Reset(remaining)
} else {
go s.timeoutFn()
}
}
return true
}

16
vendor/github.com/hashicorp/memberlist/tag.sh generated vendored Normal file
View File

@@ -0,0 +1,16 @@
#!/usr/bin/env bash
set -e
# The version must be supplied from the environment. Do not include the
# leading "v".
if [ -z $VERSION ]; then
echo "Please specify a version."
exit 1
fi
# Generate the tag.
echo "==> Tagging version $VERSION..."
git commit --allow-empty -a --gpg-sign=348FFC4C -m "Release v$VERSION"
git tag -a -m "Version $VERSION" -s -u 348FFC4C "v${VERSION}" master
exit 0

6
vendor/github.com/hashicorp/memberlist/todo.md generated vendored Normal file
View File

@@ -0,0 +1,6 @@
# TODO
* Dynamic RTT discovery
* Compute 99th percentile for ping/ack
* Better lower bound for ping/ack, faster failure detection
* Dynamic MTU discovery
* Prevent lost updates, increases efficiency

160
vendor/github.com/hashicorp/memberlist/transport.go generated vendored Normal file
View File

@@ -0,0 +1,160 @@
package memberlist
import (
"fmt"
"net"
"time"
)
// Packet is used to provide some metadata about incoming packets from peers
// over a packet connection, as well as the packet payload.
type Packet struct {
// Buf has the raw contents of the packet.
Buf []byte
// From has the address of the peer. This is an actual net.Addr so we
// can expose some concrete details about incoming packets.
From net.Addr
// Timestamp is the time when the packet was received. This should be
// taken as close as possible to the actual receipt time to help make an
// accurate RTT measurement during probes.
Timestamp time.Time
}
// Transport is used to abstract over communicating with other peers. The packet
// interface is assumed to be best-effort and the stream interface is assumed to
// be reliable.
type Transport interface {
// FinalAdvertiseAddr is given the user's configured values (which
// might be empty) and returns the desired IP and port to advertise to
// the rest of the cluster.
FinalAdvertiseAddr(ip string, port int) (net.IP, int, error)
// WriteTo is a packet-oriented interface that fires off the given
// payload to the given address in a connectionless fashion. This should
// return a time stamp that's as close as possible to when the packet
// was transmitted to help make accurate RTT measurements during probes.
//
// This is similar to net.PacketConn, though we didn't want to expose
// that full set of required methods to keep assumptions about the
// underlying plumbing to a minimum. We also treat the address here as a
// string, similar to Dial, so it's network neutral, so this usually is
// in the form of "host:port".
WriteTo(b []byte, addr string) (time.Time, error)
// PacketCh returns a channel that can be read to receive incoming
// packets from other peers. How this is set up for listening is left as
// an exercise for the concrete transport implementations.
PacketCh() <-chan *Packet
// DialTimeout is used to create a connection that allows us to perform
// two-way communication with a peer. This is generally more expensive
// than packet connections so is used for more infrequent operations
// such as anti-entropy or fallback probes if the packet-oriented probe
// failed.
DialTimeout(addr string, timeout time.Duration) (net.Conn, error)
// StreamCh returns a channel that can be read to handle incoming stream
// connections from other peers. How this is set up for listening is
// left as an exercise for the concrete transport implementations.
StreamCh() <-chan net.Conn
// Shutdown is called when memberlist is shutting down; this gives the
// transport a chance to clean up any listeners.
Shutdown() error
}
type Address struct {
// Addr is a network address as a string, similar to Dial. This usually is
// in the form of "host:port". This is required.
Addr string
// Name is the name of the node being addressed. This is optional but
// transports may require it.
Name string
}
func (a *Address) String() string {
if a.Name != "" {
return fmt.Sprintf("%s (%s)", a.Name, a.Addr)
}
return a.Addr
}
// IngestionAwareTransport is not used.
//
// Deprecated: IngestionAwareTransport is not used and may be removed in a future
// version. Define the interface locally instead of referencing this exported
// interface.
type IngestionAwareTransport interface {
IngestPacket(conn net.Conn, addr net.Addr, now time.Time, shouldClose bool) error
IngestStream(conn net.Conn) error
}
type NodeAwareTransport interface {
Transport
WriteToAddress(b []byte, addr Address) (time.Time, error)
DialAddressTimeout(addr Address, timeout time.Duration) (net.Conn, error)
}
type shimNodeAwareTransport struct {
Transport
}
var _ NodeAwareTransport = (*shimNodeAwareTransport)(nil)
func (t *shimNodeAwareTransport) WriteToAddress(b []byte, addr Address) (time.Time, error) {
return t.WriteTo(b, addr.Addr)
}
func (t *shimNodeAwareTransport) DialAddressTimeout(addr Address, timeout time.Duration) (net.Conn, error) {
return t.DialTimeout(addr.Addr, timeout)
}
type labelWrappedTransport struct {
label string
NodeAwareTransport
}
var _ NodeAwareTransport = (*labelWrappedTransport)(nil)
func (t *labelWrappedTransport) WriteToAddress(buf []byte, addr Address) (time.Time, error) {
var err error
buf, err = AddLabelHeaderToPacket(buf, t.label)
if err != nil {
return time.Time{}, fmt.Errorf("failed to add label header to packet: %w", err)
}
return t.NodeAwareTransport.WriteToAddress(buf, addr)
}
func (t *labelWrappedTransport) WriteTo(buf []byte, addr string) (time.Time, error) {
var err error
buf, err = AddLabelHeaderToPacket(buf, t.label)
if err != nil {
return time.Time{}, err
}
return t.NodeAwareTransport.WriteTo(buf, addr)
}
func (t *labelWrappedTransport) DialAddressTimeout(addr Address, timeout time.Duration) (net.Conn, error) {
conn, err := t.NodeAwareTransport.DialAddressTimeout(addr, timeout)
if err != nil {
return nil, err
}
if err := AddLabelHeaderToStream(conn, t.label); err != nil {
return nil, fmt.Errorf("failed to add label header to stream: %w", err)
}
return conn, nil
}
func (t *labelWrappedTransport) DialTimeout(addr string, timeout time.Duration) (net.Conn, error) {
conn, err := t.NodeAwareTransport.DialTimeout(addr, timeout)
if err != nil {
return nil, err
}
if err := AddLabelHeaderToStream(conn, t.label); err != nil {
return nil, fmt.Errorf("failed to add label header to stream: %w", err)
}
return conn, nil
}

326
vendor/github.com/hashicorp/memberlist/util.go generated vendored Normal file
View File

@@ -0,0 +1,326 @@
package memberlist
import (
"bytes"
"compress/lzw"
"encoding/binary"
"fmt"
"io"
"math"
"math/rand"
"net"
"strconv"
"strings"
"time"
"github.com/hashicorp/go-msgpack/codec"
"github.com/sean-/seed"
)
// pushPullScale is the minimum number of nodes
// before we start scaling the push/pull timing. The scale
// effect is the log2(Nodes) - log2(pushPullScale). This means
// that the 33rd node will cause us to double the interval,
// while the 65th will triple it.
const pushPullScaleThreshold = 32
const (
// Constant litWidth 2-8
lzwLitWidth = 8
)
func init() {
seed.Init()
}
// Decode reverses the encode operation on a byte slice input
func decode(buf []byte, out interface{}) error {
r := bytes.NewReader(buf)
hd := codec.MsgpackHandle{}
dec := codec.NewDecoder(r, &hd)
return dec.Decode(out)
}
// Encode writes an encoded object to a new bytes buffer
func encode(msgType messageType, in interface{}) (*bytes.Buffer, error) {
buf := bytes.NewBuffer(nil)
buf.WriteByte(uint8(msgType))
hd := codec.MsgpackHandle{}
enc := codec.NewEncoder(buf, &hd)
err := enc.Encode(in)
return buf, err
}
// Returns a random offset between 0 and n
func randomOffset(n int) int {
if n == 0 {
return 0
}
return int(rand.Uint32() % uint32(n))
}
// suspicionTimeout computes the timeout that should be used when
// a node is suspected
func suspicionTimeout(suspicionMult, n int, interval time.Duration) time.Duration {
nodeScale := math.Max(1.0, math.Log10(math.Max(1.0, float64(n))))
// multiply by 1000 to keep some precision because time.Duration is an int64 type
timeout := time.Duration(suspicionMult) * time.Duration(nodeScale*1000) * interval / 1000
return timeout
}
// retransmitLimit computes the limit of retransmissions
func retransmitLimit(retransmitMult, n int) int {
nodeScale := math.Ceil(math.Log10(float64(n + 1)))
limit := retransmitMult * int(nodeScale)
return limit
}
// shuffleNodes randomly shuffles the input nodes using the Fisher-Yates shuffle
func shuffleNodes(nodes []*nodeState) {
n := len(nodes)
rand.Shuffle(n, func(i, j int) {
nodes[i], nodes[j] = nodes[j], nodes[i]
})
}
// pushPushScale is used to scale the time interval at which push/pull
// syncs take place. It is used to prevent network saturation as the
// cluster size grows
func pushPullScale(interval time.Duration, n int) time.Duration {
// Don't scale until we cross the threshold
if n <= pushPullScaleThreshold {
return interval
}
multiplier := math.Ceil(math.Log2(float64(n))-math.Log2(pushPullScaleThreshold)) + 1.0
return time.Duration(multiplier) * interval
}
// moveDeadNodes moves dead and left nodes that that have not changed during the gossipToTheDeadTime interval
// to the end of the slice and returns the index of the first moved node.
func moveDeadNodes(nodes []*nodeState, gossipToTheDeadTime time.Duration) int {
numDead := 0
n := len(nodes)
for i := 0; i < n-numDead; i++ {
if !nodes[i].DeadOrLeft() {
continue
}
// Respect the gossip to the dead interval
if time.Since(nodes[i].StateChange) <= gossipToTheDeadTime {
continue
}
// Move this node to the end
nodes[i], nodes[n-numDead-1] = nodes[n-numDead-1], nodes[i]
numDead++
i--
}
return n - numDead
}
// kRandomNodes is used to select up to k random Nodes, excluding any nodes where
// the exclude function returns true. It is possible that less than k nodes are
// returned.
func kRandomNodes(k int, nodes []*nodeState, exclude func(*nodeState) bool) []Node {
n := len(nodes)
kNodes := make([]Node, 0, k)
OUTER:
// Probe up to 3*n times, with large n this is not necessary
// since k << n, but with small n we want search to be
// exhaustive
for i := 0; i < 3*n && len(kNodes) < k; i++ {
// Get random nodeState
idx := randomOffset(n)
state := nodes[idx]
// Give the filter a shot at it.
if exclude != nil && exclude(state) {
continue OUTER
}
// Check if we have this node already
for j := 0; j < len(kNodes); j++ {
if state.Node.Name == kNodes[j].Name {
continue OUTER
}
}
// Append the node
kNodes = append(kNodes, state.Node)
}
return kNodes
}
// makeCompoundMessages takes a list of messages and packs
// them into one or multiple messages based on the limitations
// of compound messages (255 messages each).
func makeCompoundMessages(msgs [][]byte) []*bytes.Buffer {
const maxMsgs = 255
bufs := make([]*bytes.Buffer, 0, (len(msgs)+(maxMsgs-1))/maxMsgs)
for ; len(msgs) > maxMsgs; msgs = msgs[maxMsgs:] {
bufs = append(bufs, makeCompoundMessage(msgs[:maxMsgs]))
}
if len(msgs) > 0 {
bufs = append(bufs, makeCompoundMessage(msgs))
}
return bufs
}
// makeCompoundMessage takes a list of messages and generates
// a single compound message containing all of them
func makeCompoundMessage(msgs [][]byte) *bytes.Buffer {
// Create a local buffer
buf := bytes.NewBuffer(nil)
// Write out the type
buf.WriteByte(uint8(compoundMsg))
// Write out the number of message
buf.WriteByte(uint8(len(msgs)))
// Add the message lengths
for _, m := range msgs {
binary.Write(buf, binary.BigEndian, uint16(len(m)))
}
// Append the messages
for _, m := range msgs {
buf.Write(m)
}
return buf
}
// decodeCompoundMessage splits a compound message and returns
// the slices of individual messages. Also returns the number
// of truncated messages and any potential error
func decodeCompoundMessage(buf []byte) (trunc int, parts [][]byte, err error) {
if len(buf) < 1 {
err = fmt.Errorf("missing compound length byte")
return
}
numParts := int(buf[0])
buf = buf[1:]
// Check we have enough bytes
if len(buf) < numParts*2 {
err = fmt.Errorf("truncated len slice")
return
}
// Decode the lengths
lengths := make([]uint16, numParts)
for i := 0; i < numParts; i++ {
lengths[i] = binary.BigEndian.Uint16(buf[i*2 : i*2+2])
}
buf = buf[numParts*2:]
// Split each message
for idx, msgLen := range lengths {
if len(buf) < int(msgLen) {
trunc = numParts - idx
return
}
// Extract the slice, seek past on the buffer
slice := buf[:msgLen]
buf = buf[msgLen:]
parts = append(parts, slice)
}
return
}
// compressPayload takes an opaque input buffer, compresses it
// and wraps it in a compress{} message that is encoded.
func compressPayload(inp []byte) (*bytes.Buffer, error) {
var buf bytes.Buffer
compressor := lzw.NewWriter(&buf, lzw.LSB, lzwLitWidth)
_, err := compressor.Write(inp)
if err != nil {
return nil, err
}
// Ensure we flush everything out
if err := compressor.Close(); err != nil {
return nil, err
}
// Create a compressed message
c := compress{
Algo: lzwAlgo,
Buf: buf.Bytes(),
}
return encode(compressMsg, &c)
}
// decompressPayload is used to unpack an encoded compress{}
// message and return its payload uncompressed
func decompressPayload(msg []byte) ([]byte, error) {
// Decode the message
var c compress
if err := decode(msg, &c); err != nil {
return nil, err
}
return decompressBuffer(&c)
}
// decompressBuffer is used to decompress the buffer of
// a single compress message, handling multiple algorithms
func decompressBuffer(c *compress) ([]byte, error) {
// Verify the algorithm
if c.Algo != lzwAlgo {
return nil, fmt.Errorf("Cannot decompress unknown algorithm %d", c.Algo)
}
// Create a uncompressor
uncomp := lzw.NewReader(bytes.NewReader(c.Buf), lzw.LSB, lzwLitWidth)
defer uncomp.Close()
// Read all the data
var b bytes.Buffer
_, err := io.Copy(&b, uncomp)
if err != nil {
return nil, err
}
// Return the uncompressed bytes
return b.Bytes(), nil
}
// joinHostPort returns the host:port form of an address, for use with a
// transport.
func joinHostPort(host string, port uint16) string {
return net.JoinHostPort(host, strconv.Itoa(int(port)))
}
// hasPort is given a string of the form "host", "host:port", "ipv6::address",
// or "[ipv6::address]:port", and returns true if the string includes a port.
func hasPort(s string) bool {
// IPv6 address in brackets.
if strings.LastIndex(s, "[") == 0 {
return strings.LastIndex(s, ":") > strings.LastIndex(s, "]")
}
// Otherwise the presence of a single colon determines if there's a port
// since IPv6 addresses outside of brackets (count > 1) can't have a
// port.
return strings.Count(s, ":") == 1
}
// ensurePort makes sure the given string has a port number on it, otherwise it
// appends the given port as a default.
func ensurePort(s string, port int) string {
if hasPort(s) {
return s
}
// If this is an IPv6 address, the join call will add another set of
// brackets, so we have to trim before we add the default port.
s = strings.Trim(s, "[]")
s = net.JoinHostPort(s, strconv.Itoa(port))
return s
}

8
vendor/github.com/miekg/dns/.codecov.yml generated vendored Normal file
View File

@@ -0,0 +1,8 @@
coverage:
status:
project:
default:
target: 40%
threshold: null
patch: false
changes: false

4
vendor/github.com/miekg/dns/.gitignore generated vendored Normal file
View File

@@ -0,0 +1,4 @@
*.6
tags
test.out
a.out

16
vendor/github.com/miekg/dns/.travis.yml generated vendored Normal file
View File

@@ -0,0 +1,16 @@
language: go
sudo: false
go:
- "1.12.x"
- "1.13.x"
- tip
env:
- GO111MODULE=on
script:
- go test -race -v -bench=. -coverprofile=coverage.txt -covermode=atomic ./...
after_success:
- bash <(curl -s https://codecov.io/bash)

1
vendor/github.com/miekg/dns/AUTHORS generated vendored Normal file
View File

@@ -0,0 +1 @@
Miek Gieben <miek@miek.nl>

1
vendor/github.com/miekg/dns/CODEOWNERS generated vendored Normal file
View File

@@ -0,0 +1 @@
* @miekg @tmthrgd

10
vendor/github.com/miekg/dns/CONTRIBUTORS generated vendored Normal file
View File

@@ -0,0 +1,10 @@
Alex A. Skinner
Andrew Tunnell-Jones
Ask Bjørn Hansen
Dave Cheney
Dusty Wilson
Marek Majkowski
Peter van Dijk
Omri Bahumi
Alex Sergeyev
James Hartig

9
vendor/github.com/miekg/dns/COPYRIGHT generated vendored Normal file
View File

@@ -0,0 +1,9 @@
Copyright 2009 The Go Authors. All rights reserved. Use of this source code
is governed by a BSD-style license that can be found in the LICENSE file.
Extensions of the original work are copyright (c) 2011 Miek Gieben
Copyright 2011 Miek Gieben. All rights reserved. Use of this source code is
governed by a BSD-style license that can be found in the LICENSE file.
Copyright 2014 CloudFlare. All rights reserved. Use of this source code is
governed by a BSD-style license that can be found in the LICENSE file.

30
vendor/github.com/miekg/dns/LICENSE generated vendored Normal file
View File

@@ -0,0 +1,30 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
As this is fork of the official Go code the same license applies.
Extensions of the original work are copyright (c) 2011 Miek Gieben

33
vendor/github.com/miekg/dns/Makefile.fuzz generated vendored Normal file
View File

@@ -0,0 +1,33 @@
# Makefile for fuzzing
#
# Use go-fuzz and needs the tools installed.
# See https://blog.cloudflare.com/dns-parser-meet-go-fuzzer/
#
# Installing go-fuzz:
# $ make -f Makefile.fuzz get
# Installs:
# * github.com/dvyukov/go-fuzz/go-fuzz
# * get github.com/dvyukov/go-fuzz/go-fuzz-build
all: build
.PHONY: build
build:
go-fuzz-build -tags fuzz github.com/miekg/dns
.PHONY: build-newrr
build-newrr:
go-fuzz-build -func FuzzNewRR -tags fuzz github.com/miekg/dns
.PHONY: fuzz
fuzz:
go-fuzz -bin=dns-fuzz.zip -workdir=fuzz
.PHONY: get
get:
go get github.com/dvyukov/go-fuzz/go-fuzz
go get github.com/dvyukov/go-fuzz/go-fuzz-build
.PHONY: clean
clean:
rm *-fuzz.zip

52
vendor/github.com/miekg/dns/Makefile.release generated vendored Normal file
View File

@@ -0,0 +1,52 @@
# Makefile for releasing.
#
# The release is controlled from version.go. The version found there is
# used to tag the git repo, we're not building any artifects so there is nothing
# to upload to github.
#
# * Up the version in version.go
# * Run: make -f Makefile.release release
# * will *commit* your change with 'Release $VERSION'
# * push to github
#
define GO
//+build ignore
package main
import (
"fmt"
"github.com/miekg/dns"
)
func main() {
fmt.Println(dns.Version.String())
}
endef
$(file > version_release.go,$(GO))
VERSION:=$(shell go run version_release.go)
TAG="v$(VERSION)"
all:
@echo Use the \'release\' target to start a release $(VERSION)
rm -f version_release.go
.PHONY: release
release: commit push
@echo Released $(VERSION)
rm -f version_release.go
.PHONY: commit
commit:
@echo Committing release $(VERSION)
git commit -am"Release $(VERSION)"
git tag $(TAG)
.PHONY: push
push:
@echo Pushing release $(VERSION) to master
git push --tags
git push

174
vendor/github.com/miekg/dns/README.md generated vendored Normal file
View File

@@ -0,0 +1,174 @@
[![Build Status](https://travis-ci.org/miekg/dns.svg?branch=master)](https://travis-ci.org/miekg/dns)
[![Code Coverage](https://img.shields.io/codecov/c/github/miekg/dns/master.svg)](https://codecov.io/github/miekg/dns?branch=master)
[![Go Report Card](https://goreportcard.com/badge/github.com/miekg/dns)](https://goreportcard.com/report/miekg/dns)
[![](https://godoc.org/github.com/miekg/dns?status.svg)](https://godoc.org/github.com/miekg/dns)
# Alternative (more granular) approach to a DNS library
> Less is more.
Complete and usable DNS library. All Resource Records are supported, including the DNSSEC types.
It follows a lean and mean philosophy. If there is stuff you should know as a DNS programmer there
isn't a convenience function for it. Server side and client side programming is supported, i.e. you
can build servers and resolvers with it.
We try to keep the "master" branch as sane as possible and at the bleeding edge of standards,
avoiding breaking changes wherever reasonable. We support the last two versions of Go.
# Goals
* KISS;
* Fast;
* Small API. If it's easy to code in Go, don't make a function for it.
# Users
A not-so-up-to-date-list-that-may-be-actually-current:
* https://github.com/coredns/coredns
* https://cloudflare.com
* https://github.com/abh/geodns
* http://www.statdns.com/
* http://www.dnsinspect.com/
* https://github.com/chuangbo/jianbing-dictionary-dns
* http://www.dns-lg.com/
* https://github.com/fcambus/rrda
* https://github.com/kenshinx/godns
* https://github.com/skynetservices/skydns
* https://github.com/hashicorp/consul
* https://github.com/DevelopersPL/godnsagent
* https://github.com/duedil-ltd/discodns
* https://github.com/StalkR/dns-reverse-proxy
* https://github.com/tianon/rawdns
* https://mesosphere.github.io/mesos-dns/
* https://pulse.turbobytes.com/
* https://github.com/fcambus/statzone
* https://github.com/benschw/dns-clb-go
* https://github.com/corny/dnscheck for <http://public-dns.info/>
* https://namesmith.io
* https://github.com/miekg/unbound
* https://github.com/miekg/exdns
* https://dnslookup.org
* https://github.com/looterz/grimd
* https://github.com/phamhongviet/serf-dns
* https://github.com/mehrdadrad/mylg
* https://github.com/bamarni/dockness
* https://github.com/fffaraz/microdns
* http://kelda.io
* https://github.com/ipdcode/hades <https://jd.com>
* https://github.com/StackExchange/dnscontrol/
* https://www.dnsperf.com/
* https://dnssectest.net/
* https://dns.apebits.com
* https://github.com/oif/apex
* https://github.com/jedisct1/dnscrypt-proxy
* https://github.com/jedisct1/rpdns
* https://github.com/xor-gate/sshfp
* https://github.com/rs/dnstrace
* https://blitiri.com.ar/p/dnss ([github mirror](https://github.com/albertito/dnss))
* https://github.com/semihalev/sdns
* https://render.com
* https://github.com/peterzen/goresolver
* https://github.com/folbricht/routedns
Send pull request if you want to be listed here.
# Features
* UDP/TCP queries, IPv4 and IPv6
* RFC 1035 zone file parsing ($INCLUDE, $ORIGIN, $TTL and $GENERATE (for all record types) are supported
* Fast
* Server side programming (mimicking the net/http package)
* Client side programming
* DNSSEC: signing, validating and key generation for DSA, RSA, ECDSA and Ed25519
* EDNS0, NSID, Cookies
* AXFR/IXFR
* TSIG, SIG(0)
* DNS over TLS (DoT): encrypted connection between client and server over TCP
* DNS name compression
Have fun!
Miek Gieben - 2010-2012 - <miek@miek.nl>
DNS Authors 2012-
# Building
This library uses Go modules and uses semantic versioning. Building is done with the `go` tool, so
the following should work:
go get github.com/miekg/dns
go build github.com/miekg/dns
## Examples
A short "how to use the API" is at the beginning of doc.go (this also will show when you call `godoc
github.com/miekg/dns`).
Example programs can be found in the `github.com/miekg/exdns` repository.
## Supported RFCs
*all of them*
* 103{4,5} - DNS standard
* 1348 - NSAP record (removed the record)
* 1982 - Serial Arithmetic
* 1876 - LOC record
* 1995 - IXFR
* 1996 - DNS notify
* 2136 - DNS Update (dynamic updates)
* 2181 - RRset definition - there is no RRset type though, just []RR
* 2537 - RSAMD5 DNS keys
* 2065 - DNSSEC (updated in later RFCs)
* 2671 - EDNS record
* 2782 - SRV record
* 2845 - TSIG record
* 2915 - NAPTR record
* 2929 - DNS IANA Considerations
* 3110 - RSASHA1 DNS keys
* 3225 - DO bit (DNSSEC OK)
* 340{1,2,3} - NAPTR record
* 3445 - Limiting the scope of (DNS)KEY
* 3597 - Unknown RRs
* 403{3,4,5} - DNSSEC + validation functions
* 4255 - SSHFP record
* 4343 - Case insensitivity
* 4408 - SPF record
* 4509 - SHA256 Hash in DS
* 4592 - Wildcards in the DNS
* 4635 - HMAC SHA TSIG
* 4701 - DHCID
* 4892 - id.server
* 5001 - NSID
* 5155 - NSEC3 record
* 5205 - HIP record
* 5702 - SHA2 in the DNS
* 5936 - AXFR
* 5966 - TCP implementation recommendations
* 6605 - ECDSA
* 6725 - IANA Registry Update
* 6742 - ILNP DNS
* 6840 - Clarifications and Implementation Notes for DNS Security
* 6844 - CAA record
* 6891 - EDNS0 update
* 6895 - DNS IANA considerations
* 6944 - DNSSEC DNSKEY Algorithm Status
* 6975 - Algorithm Understanding in DNSSEC
* 7043 - EUI48/EUI64 records
* 7314 - DNS (EDNS) EXPIRE Option
* 7477 - CSYNC RR
* 7828 - edns-tcp-keepalive EDNS0 Option
* 7553 - URI record
* 7858 - DNS over TLS: Initiation and Performance Considerations
* 7871 - EDNS0 Client Subnet
* 7873 - Domain Name System (DNS) Cookies
* 8080 - EdDSA for DNSSEC
* 8499 - DNS Terminology
## Loosely Based Upon
* ldns - <https://nlnetlabs.nl/projects/ldns/about/>
* NSD - <https://nlnetlabs.nl/projects/nsd/about/>
* Net::DNS - <http://www.net-dns.org/>
* GRONG - <https://github.com/bortzmeyer/grong>

61
vendor/github.com/miekg/dns/acceptfunc.go generated vendored Normal file
View File

@@ -0,0 +1,61 @@
package dns
// MsgAcceptFunc is used early in the server code to accept or reject a message with RcodeFormatError.
// It returns a MsgAcceptAction to indicate what should happen with the message.
type MsgAcceptFunc func(dh Header) MsgAcceptAction
// DefaultMsgAcceptFunc checks the request and will reject if:
//
// * isn't a request (don't respond in that case)
//
// * opcode isn't OpcodeQuery or OpcodeNotify
//
// * Zero bit isn't zero
//
// * has more than 1 question in the question section
//
// * has more than 1 RR in the Answer section
//
// * has more than 0 RRs in the Authority section
//
// * has more than 2 RRs in the Additional section
//
var DefaultMsgAcceptFunc MsgAcceptFunc = defaultMsgAcceptFunc
// MsgAcceptAction represents the action to be taken.
type MsgAcceptAction int
const (
MsgAccept MsgAcceptAction = iota // Accept the message
MsgReject // Reject the message with a RcodeFormatError
MsgIgnore // Ignore the error and send nothing back.
MsgRejectNotImplemented // Reject the message with a RcodeNotImplemented
)
func defaultMsgAcceptFunc(dh Header) MsgAcceptAction {
if isResponse := dh.Bits&_QR != 0; isResponse {
return MsgIgnore
}
// Don't allow dynamic updates, because then the sections can contain a whole bunch of RRs.
opcode := int(dh.Bits>>11) & 0xF
if opcode != OpcodeQuery && opcode != OpcodeNotify {
return MsgRejectNotImplemented
}
if dh.Qdcount != 1 {
return MsgReject
}
// NOTIFY requests can have a SOA in the ANSWER section. See RFC 1996 Section 3.7 and 3.11.
if dh.Ancount > 1 {
return MsgReject
}
// IXFR request could have one SOA RR in the NS section. See RFC 1995, section 3.
if dh.Nscount > 1 {
return MsgReject
}
if dh.Arcount > 2 {
return MsgReject
}
return MsgAccept
}

415
vendor/github.com/miekg/dns/client.go generated vendored Normal file
View File

@@ -0,0 +1,415 @@
package dns
// A client implementation.
import (
"context"
"crypto/tls"
"encoding/binary"
"fmt"
"io"
"net"
"strings"
"time"
)
const (
dnsTimeout time.Duration = 2 * time.Second
tcpIdleTimeout time.Duration = 8 * time.Second
)
// A Conn represents a connection to a DNS server.
type Conn struct {
net.Conn // a net.Conn holding the connection
UDPSize uint16 // minimum receive buffer for UDP messages
TsigSecret map[string]string // secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be in canonical form (lowercase, fqdn, see RFC 4034 Section 6.2)
tsigRequestMAC string
}
// A Client defines parameters for a DNS client.
type Client struct {
Net string // if "tcp" or "tcp-tls" (DNS over TLS) a TCP query will be initiated, otherwise an UDP one (default is "" for UDP)
UDPSize uint16 // minimum receive buffer for UDP messages
TLSConfig *tls.Config // TLS connection configuration
Dialer *net.Dialer // a net.Dialer used to set local address, timeouts and more
// Timeout is a cumulative timeout for dial, write and read, defaults to 0 (disabled) - overrides DialTimeout, ReadTimeout,
// WriteTimeout when non-zero. Can be overridden with net.Dialer.Timeout (see Client.ExchangeWithDialer and
// Client.Dialer) or context.Context.Deadline (see the deprecated ExchangeContext)
Timeout time.Duration
DialTimeout time.Duration // net.DialTimeout, defaults to 2 seconds, or net.Dialer.Timeout if expiring earlier - overridden by Timeout when that value is non-zero
ReadTimeout time.Duration // net.Conn.SetReadTimeout value for connections, defaults to 2 seconds - overridden by Timeout when that value is non-zero
WriteTimeout time.Duration // net.Conn.SetWriteTimeout value for connections, defaults to 2 seconds - overridden by Timeout when that value is non-zero
TsigSecret map[string]string // secret(s) for Tsig map[<zonename>]<base64 secret>, zonename must be in canonical form (lowercase, fqdn, see RFC 4034 Section 6.2)
SingleInflight bool // if true suppress multiple outstanding queries for the same Qname, Qtype and Qclass
group singleflight
}
// Exchange performs a synchronous UDP query. It sends the message m to the address
// contained in a and waits for a reply. Exchange does not retry a failed query, nor
// will it fall back to TCP in case of truncation.
// See client.Exchange for more information on setting larger buffer sizes.
func Exchange(m *Msg, a string) (r *Msg, err error) {
client := Client{Net: "udp"}
r, _, err = client.Exchange(m, a)
return r, err
}
func (c *Client) dialTimeout() time.Duration {
if c.Timeout != 0 {
return c.Timeout
}
if c.DialTimeout != 0 {
return c.DialTimeout
}
return dnsTimeout
}
func (c *Client) readTimeout() time.Duration {
if c.ReadTimeout != 0 {
return c.ReadTimeout
}
return dnsTimeout
}
func (c *Client) writeTimeout() time.Duration {
if c.WriteTimeout != 0 {
return c.WriteTimeout
}
return dnsTimeout
}
// Dial connects to the address on the named network.
func (c *Client) Dial(address string) (conn *Conn, err error) {
// create a new dialer with the appropriate timeout
var d net.Dialer
if c.Dialer == nil {
d = net.Dialer{Timeout: c.getTimeoutForRequest(c.dialTimeout())}
} else {
d = *c.Dialer
}
network := c.Net
if network == "" {
network = "udp"
}
useTLS := strings.HasPrefix(network, "tcp") && strings.HasSuffix(network, "-tls")
conn = new(Conn)
if useTLS {
network = strings.TrimSuffix(network, "-tls")
conn.Conn, err = tls.DialWithDialer(&d, network, address, c.TLSConfig)
} else {
conn.Conn, err = d.Dial(network, address)
}
if err != nil {
return nil, err
}
return conn, nil
}
// Exchange performs a synchronous query. It sends the message m to the address
// contained in a and waits for a reply. Basic use pattern with a *dns.Client:
//
// c := new(dns.Client)
// in, rtt, err := c.Exchange(message, "127.0.0.1:53")
//
// Exchange does not retry a failed query, nor will it fall back to TCP in
// case of truncation.
// It is up to the caller to create a message that allows for larger responses to be
// returned. Specifically this means adding an EDNS0 OPT RR that will advertise a larger
// buffer, see SetEdns0. Messages without an OPT RR will fallback to the historic limit
// of 512 bytes
// To specify a local address or a timeout, the caller has to set the `Client.Dialer`
// attribute appropriately
func (c *Client) Exchange(m *Msg, address string) (r *Msg, rtt time.Duration, err error) {
if !c.SingleInflight {
return c.exchange(m, address)
}
q := m.Question[0]
key := fmt.Sprintf("%s:%d:%d", q.Name, q.Qtype, q.Qclass)
r, rtt, err, shared := c.group.Do(key, func() (*Msg, time.Duration, error) {
return c.exchange(m, address)
})
if r != nil && shared {
r = r.Copy()
}
return r, rtt, err
}
func (c *Client) exchange(m *Msg, a string) (r *Msg, rtt time.Duration, err error) {
var co *Conn
co, err = c.Dial(a)
if err != nil {
return nil, 0, err
}
defer co.Close()
opt := m.IsEdns0()
// If EDNS0 is used use that for size.
if opt != nil && opt.UDPSize() >= MinMsgSize {
co.UDPSize = opt.UDPSize()
}
// Otherwise use the client's configured UDP size.
if opt == nil && c.UDPSize >= MinMsgSize {
co.UDPSize = c.UDPSize
}
co.TsigSecret = c.TsigSecret
t := time.Now()
// write with the appropriate write timeout
co.SetWriteDeadline(t.Add(c.getTimeoutForRequest(c.writeTimeout())))
if err = co.WriteMsg(m); err != nil {
return nil, 0, err
}
co.SetReadDeadline(time.Now().Add(c.getTimeoutForRequest(c.readTimeout())))
r, err = co.ReadMsg()
if err == nil && r.Id != m.Id {
err = ErrId
}
rtt = time.Since(t)
return r, rtt, err
}
// ReadMsg reads a message from the connection co.
// If the received message contains a TSIG record the transaction signature
// is verified. This method always tries to return the message, however if an
// error is returned there are no guarantees that the returned message is a
// valid representation of the packet read.
func (co *Conn) ReadMsg() (*Msg, error) {
p, err := co.ReadMsgHeader(nil)
if err != nil {
return nil, err
}
m := new(Msg)
if err := m.Unpack(p); err != nil {
// If an error was returned, we still want to allow the user to use
// the message, but naively they can just check err if they don't want
// to use an erroneous message
return m, err
}
if t := m.IsTsig(); t != nil {
if _, ok := co.TsigSecret[t.Hdr.Name]; !ok {
return m, ErrSecret
}
// Need to work on the original message p, as that was used to calculate the tsig.
err = TsigVerify(p, co.TsigSecret[t.Hdr.Name], co.tsigRequestMAC, false)
}
return m, err
}
// ReadMsgHeader reads a DNS message, parses and populates hdr (when hdr is not nil).
// Returns message as a byte slice to be parsed with Msg.Unpack later on.
// Note that error handling on the message body is not possible as only the header is parsed.
func (co *Conn) ReadMsgHeader(hdr *Header) ([]byte, error) {
var (
p []byte
n int
err error
)
if _, ok := co.Conn.(net.PacketConn); ok {
if co.UDPSize > MinMsgSize {
p = make([]byte, co.UDPSize)
} else {
p = make([]byte, MinMsgSize)
}
n, err = co.Read(p)
} else {
var length uint16
if err := binary.Read(co.Conn, binary.BigEndian, &length); err != nil {
return nil, err
}
p = make([]byte, length)
n, err = io.ReadFull(co.Conn, p)
}
if err != nil {
return nil, err
} else if n < headerSize {
return nil, ErrShortRead
}
p = p[:n]
if hdr != nil {
dh, _, err := unpackMsgHdr(p, 0)
if err != nil {
return nil, err
}
*hdr = dh
}
return p, err
}
// Read implements the net.Conn read method.
func (co *Conn) Read(p []byte) (n int, err error) {
if co.Conn == nil {
return 0, ErrConnEmpty
}
if _, ok := co.Conn.(net.PacketConn); ok {
// UDP connection
return co.Conn.Read(p)
}
var length uint16
if err := binary.Read(co.Conn, binary.BigEndian, &length); err != nil {
return 0, err
}
if int(length) > len(p) {
return 0, io.ErrShortBuffer
}
return io.ReadFull(co.Conn, p[:length])
}
// WriteMsg sends a message through the connection co.
// If the message m contains a TSIG record the transaction
// signature is calculated.
func (co *Conn) WriteMsg(m *Msg) (err error) {
var out []byte
if t := m.IsTsig(); t != nil {
mac := ""
if _, ok := co.TsigSecret[t.Hdr.Name]; !ok {
return ErrSecret
}
out, mac, err = TsigGenerate(m, co.TsigSecret[t.Hdr.Name], co.tsigRequestMAC, false)
// Set for the next read, although only used in zone transfers
co.tsigRequestMAC = mac
} else {
out, err = m.Pack()
}
if err != nil {
return err
}
_, err = co.Write(out)
return err
}
// Write implements the net.Conn Write method.
func (co *Conn) Write(p []byte) (int, error) {
if len(p) > MaxMsgSize {
return 0, &Error{err: "message too large"}
}
if _, ok := co.Conn.(net.PacketConn); ok {
return co.Conn.Write(p)
}
l := make([]byte, 2)
binary.BigEndian.PutUint16(l, uint16(len(p)))
n, err := (&net.Buffers{l, p}).WriteTo(co.Conn)
return int(n), err
}
// Return the appropriate timeout for a specific request
func (c *Client) getTimeoutForRequest(timeout time.Duration) time.Duration {
var requestTimeout time.Duration
if c.Timeout != 0 {
requestTimeout = c.Timeout
} else {
requestTimeout = timeout
}
// net.Dialer.Timeout has priority if smaller than the timeouts computed so
// far
if c.Dialer != nil && c.Dialer.Timeout != 0 {
if c.Dialer.Timeout < requestTimeout {
requestTimeout = c.Dialer.Timeout
}
}
return requestTimeout
}
// Dial connects to the address on the named network.
func Dial(network, address string) (conn *Conn, err error) {
conn = new(Conn)
conn.Conn, err = net.Dial(network, address)
if err != nil {
return nil, err
}
return conn, nil
}
// ExchangeContext performs a synchronous UDP query, like Exchange. It
// additionally obeys deadlines from the passed Context.
func ExchangeContext(ctx context.Context, m *Msg, a string) (r *Msg, err error) {
client := Client{Net: "udp"}
r, _, err = client.ExchangeContext(ctx, m, a)
// ignorint rtt to leave the original ExchangeContext API unchanged, but
// this function will go away
return r, err
}
// ExchangeConn performs a synchronous query. It sends the message m via the connection
// c and waits for a reply. The connection c is not closed by ExchangeConn.
// Deprecated: This function is going away, but can easily be mimicked:
//
// co := &dns.Conn{Conn: c} // c is your net.Conn
// co.WriteMsg(m)
// in, _ := co.ReadMsg()
// co.Close()
//
func ExchangeConn(c net.Conn, m *Msg) (r *Msg, err error) {
println("dns: ExchangeConn: this function is deprecated")
co := new(Conn)
co.Conn = c
if err = co.WriteMsg(m); err != nil {
return nil, err
}
r, err = co.ReadMsg()
if err == nil && r.Id != m.Id {
err = ErrId
}
return r, err
}
// DialTimeout acts like Dial but takes a timeout.
func DialTimeout(network, address string, timeout time.Duration) (conn *Conn, err error) {
client := Client{Net: network, Dialer: &net.Dialer{Timeout: timeout}}
return client.Dial(address)
}
// DialWithTLS connects to the address on the named network with TLS.
func DialWithTLS(network, address string, tlsConfig *tls.Config) (conn *Conn, err error) {
if !strings.HasSuffix(network, "-tls") {
network += "-tls"
}
client := Client{Net: network, TLSConfig: tlsConfig}
return client.Dial(address)
}
// DialTimeoutWithTLS acts like DialWithTLS but takes a timeout.
func DialTimeoutWithTLS(network, address string, tlsConfig *tls.Config, timeout time.Duration) (conn *Conn, err error) {
if !strings.HasSuffix(network, "-tls") {
network += "-tls"
}
client := Client{Net: network, Dialer: &net.Dialer{Timeout: timeout}, TLSConfig: tlsConfig}
return client.Dial(address)
}
// ExchangeContext acts like Exchange, but honors the deadline on the provided
// context, if present. If there is both a context deadline and a configured
// timeout on the client, the earliest of the two takes effect.
func (c *Client) ExchangeContext(ctx context.Context, m *Msg, a string) (r *Msg, rtt time.Duration, err error) {
var timeout time.Duration
if deadline, ok := ctx.Deadline(); !ok {
timeout = 0
} else {
timeout = time.Until(deadline)
}
// not passing the context to the underlying calls, as the API does not support
// context. For timeouts you should set up Client.Dialer and call Client.Exchange.
// TODO(tmthrgd,miekg): this is a race condition.
c.Dialer = &net.Dialer{Timeout: timeout}
return c.Exchange(m, a)
}

135
vendor/github.com/miekg/dns/clientconfig.go generated vendored Normal file
View File

@@ -0,0 +1,135 @@
package dns
import (
"bufio"
"io"
"os"
"strconv"
"strings"
)
// ClientConfig wraps the contents of the /etc/resolv.conf file.
type ClientConfig struct {
Servers []string // servers to use
Search []string // suffixes to append to local name
Port string // what port to use
Ndots int // number of dots in name to trigger absolute lookup
Timeout int // seconds before giving up on packet
Attempts int // lost packets before giving up on server, not used in the package dns
}
// ClientConfigFromFile parses a resolv.conf(5) like file and returns
// a *ClientConfig.
func ClientConfigFromFile(resolvconf string) (*ClientConfig, error) {
file, err := os.Open(resolvconf)
if err != nil {
return nil, err
}
defer file.Close()
return ClientConfigFromReader(file)
}
// ClientConfigFromReader works like ClientConfigFromFile but takes an io.Reader as argument
func ClientConfigFromReader(resolvconf io.Reader) (*ClientConfig, error) {
c := new(ClientConfig)
scanner := bufio.NewScanner(resolvconf)
c.Servers = make([]string, 0)
c.Search = make([]string, 0)
c.Port = "53"
c.Ndots = 1
c.Timeout = 5
c.Attempts = 2
for scanner.Scan() {
if err := scanner.Err(); err != nil {
return nil, err
}
line := scanner.Text()
f := strings.Fields(line)
if len(f) < 1 {
continue
}
switch f[0] {
case "nameserver": // add one name server
if len(f) > 1 {
// One more check: make sure server name is
// just an IP address. Otherwise we need DNS
// to look it up.
name := f[1]
c.Servers = append(c.Servers, name)
}
case "domain": // set search path to just this domain
if len(f) > 1 {
c.Search = make([]string, 1)
c.Search[0] = f[1]
} else {
c.Search = make([]string, 0)
}
case "search": // set search path to given servers
c.Search = append([]string(nil), f[1:]...)
case "options": // magic options
for _, s := range f[1:] {
switch {
case len(s) >= 6 && s[:6] == "ndots:":
n, _ := strconv.Atoi(s[6:])
if n < 0 {
n = 0
} else if n > 15 {
n = 15
}
c.Ndots = n
case len(s) >= 8 && s[:8] == "timeout:":
n, _ := strconv.Atoi(s[8:])
if n < 1 {
n = 1
}
c.Timeout = n
case len(s) >= 9 && s[:9] == "attempts:":
n, _ := strconv.Atoi(s[9:])
if n < 1 {
n = 1
}
c.Attempts = n
case s == "rotate":
/* not imp */
}
}
}
}
return c, nil
}
// NameList returns all of the names that should be queried based on the
// config. It is based off of go's net/dns name building, but it does not
// check the length of the resulting names.
func (c *ClientConfig) NameList(name string) []string {
// if this domain is already fully qualified, no append needed.
if IsFqdn(name) {
return []string{name}
}
// Check to see if the name has more labels than Ndots. Do this before making
// the domain fully qualified.
hasNdots := CountLabel(name) > c.Ndots
// Make the domain fully qualified.
name = Fqdn(name)
// Make a list of names based off search.
names := []string{}
// If name has enough dots, try that first.
if hasNdots {
names = append(names, name)
}
for _, s := range c.Search {
names = append(names, Fqdn(name+s))
}
// If we didn't have enough dots, try after suffixes.
if !hasNdots {
names = append(names, name)
}
return names
}

43
vendor/github.com/miekg/dns/dane.go generated vendored Normal file
View File

@@ -0,0 +1,43 @@
package dns
import (
"crypto/sha256"
"crypto/sha512"
"crypto/x509"
"encoding/hex"
"errors"
)
// CertificateToDANE converts a certificate to a hex string as used in the TLSA or SMIMEA records.
func CertificateToDANE(selector, matchingType uint8, cert *x509.Certificate) (string, error) {
switch matchingType {
case 0:
switch selector {
case 0:
return hex.EncodeToString(cert.Raw), nil
case 1:
return hex.EncodeToString(cert.RawSubjectPublicKeyInfo), nil
}
case 1:
h := sha256.New()
switch selector {
case 0:
h.Write(cert.Raw)
return hex.EncodeToString(h.Sum(nil)), nil
case 1:
h.Write(cert.RawSubjectPublicKeyInfo)
return hex.EncodeToString(h.Sum(nil)), nil
}
case 2:
h := sha512.New()
switch selector {
case 0:
h.Write(cert.Raw)
return hex.EncodeToString(h.Sum(nil)), nil
case 1:
h.Write(cert.RawSubjectPublicKeyInfo)
return hex.EncodeToString(h.Sum(nil)), nil
}
}
return "", errors.New("dns: bad MatchingType or Selector")
}

378
vendor/github.com/miekg/dns/defaults.go generated vendored Normal file
View File

@@ -0,0 +1,378 @@
package dns
import (
"errors"
"net"
"strconv"
"strings"
)
const hexDigit = "0123456789abcdef"
// Everything is assumed in ClassINET.
// SetReply creates a reply message from a request message.
func (dns *Msg) SetReply(request *Msg) *Msg {
dns.Id = request.Id
dns.Response = true
dns.Opcode = request.Opcode
if dns.Opcode == OpcodeQuery {
dns.RecursionDesired = request.RecursionDesired // Copy rd bit
dns.CheckingDisabled = request.CheckingDisabled // Copy cd bit
}
dns.Rcode = RcodeSuccess
if len(request.Question) > 0 {
dns.Question = make([]Question, 1)
dns.Question[0] = request.Question[0]
}
return dns
}
// SetQuestion creates a question message, it sets the Question
// section, generates an Id and sets the RecursionDesired (RD)
// bit to true.
func (dns *Msg) SetQuestion(z string, t uint16) *Msg {
dns.Id = Id()
dns.RecursionDesired = true
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, t, ClassINET}
return dns
}
// SetNotify creates a notify message, it sets the Question
// section, generates an Id and sets the Authoritative (AA)
// bit to true.
func (dns *Msg) SetNotify(z string) *Msg {
dns.Opcode = OpcodeNotify
dns.Authoritative = true
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeSOA, ClassINET}
return dns
}
// SetRcode creates an error message suitable for the request.
func (dns *Msg) SetRcode(request *Msg, rcode int) *Msg {
dns.SetReply(request)
dns.Rcode = rcode
return dns
}
// SetRcodeFormatError creates a message with FormError set.
func (dns *Msg) SetRcodeFormatError(request *Msg) *Msg {
dns.Rcode = RcodeFormatError
dns.Opcode = OpcodeQuery
dns.Response = true
dns.Authoritative = false
dns.Id = request.Id
return dns
}
// SetUpdate makes the message a dynamic update message. It
// sets the ZONE section to: z, TypeSOA, ClassINET.
func (dns *Msg) SetUpdate(z string) *Msg {
dns.Id = Id()
dns.Response = false
dns.Opcode = OpcodeUpdate
dns.Compress = false // BIND9 cannot handle compression
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeSOA, ClassINET}
return dns
}
// SetIxfr creates message for requesting an IXFR.
func (dns *Msg) SetIxfr(z string, serial uint32, ns, mbox string) *Msg {
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Ns = make([]RR, 1)
s := new(SOA)
s.Hdr = RR_Header{z, TypeSOA, ClassINET, defaultTtl, 0}
s.Serial = serial
s.Ns = ns
s.Mbox = mbox
dns.Question[0] = Question{z, TypeIXFR, ClassINET}
dns.Ns[0] = s
return dns
}
// SetAxfr creates message for requesting an AXFR.
func (dns *Msg) SetAxfr(z string) *Msg {
dns.Id = Id()
dns.Question = make([]Question, 1)
dns.Question[0] = Question{z, TypeAXFR, ClassINET}
return dns
}
// SetTsig appends a TSIG RR to the message.
// This is only a skeleton TSIG RR that is added as the last RR in the
// additional section. The Tsig is calculated when the message is being send.
func (dns *Msg) SetTsig(z, algo string, fudge uint16, timesigned int64) *Msg {
t := new(TSIG)
t.Hdr = RR_Header{z, TypeTSIG, ClassANY, 0, 0}
t.Algorithm = algo
t.Fudge = fudge
t.TimeSigned = uint64(timesigned)
t.OrigId = dns.Id
dns.Extra = append(dns.Extra, t)
return dns
}
// SetEdns0 appends a EDNS0 OPT RR to the message.
// TSIG should always the last RR in a message.
func (dns *Msg) SetEdns0(udpsize uint16, do bool) *Msg {
e := new(OPT)
e.Hdr.Name = "."
e.Hdr.Rrtype = TypeOPT
e.SetUDPSize(udpsize)
if do {
e.SetDo()
}
dns.Extra = append(dns.Extra, e)
return dns
}
// IsTsig checks if the message has a TSIG record as the last record
// in the additional section. It returns the TSIG record found or nil.
func (dns *Msg) IsTsig() *TSIG {
if len(dns.Extra) > 0 {
if dns.Extra[len(dns.Extra)-1].Header().Rrtype == TypeTSIG {
return dns.Extra[len(dns.Extra)-1].(*TSIG)
}
}
return nil
}
// IsEdns0 checks if the message has a EDNS0 (OPT) record, any EDNS0
// record in the additional section will do. It returns the OPT record
// found or nil.
func (dns *Msg) IsEdns0() *OPT {
// RFC 6891, Section 6.1.1 allows the OPT record to appear
// anywhere in the additional record section, but it's usually at
// the end so start there.
for i := len(dns.Extra) - 1; i >= 0; i-- {
if dns.Extra[i].Header().Rrtype == TypeOPT {
return dns.Extra[i].(*OPT)
}
}
return nil
}
// popEdns0 is like IsEdns0, but it removes the record from the message.
func (dns *Msg) popEdns0() *OPT {
// RFC 6891, Section 6.1.1 allows the OPT record to appear
// anywhere in the additional record section, but it's usually at
// the end so start there.
for i := len(dns.Extra) - 1; i >= 0; i-- {
if dns.Extra[i].Header().Rrtype == TypeOPT {
opt := dns.Extra[i].(*OPT)
dns.Extra = append(dns.Extra[:i], dns.Extra[i+1:]...)
return opt
}
}
return nil
}
// IsDomainName checks if s is a valid domain name, it returns the number of
// labels and true, when a domain name is valid. Note that non fully qualified
// domain name is considered valid, in this case the last label is counted in
// the number of labels. When false is returned the number of labels is not
// defined. Also note that this function is extremely liberal; almost any
// string is a valid domain name as the DNS is 8 bit protocol. It checks if each
// label fits in 63 characters and that the entire name will fit into the 255
// octet wire format limit.
func IsDomainName(s string) (labels int, ok bool) {
// XXX: The logic in this function was copied from packDomainName and
// should be kept in sync with that function.
const lenmsg = 256
if len(s) == 0 { // Ok, for instance when dealing with update RR without any rdata.
return 0, false
}
s = Fqdn(s)
// Each dot ends a segment of the name. Except for escaped dots (\.), which
// are normal dots.
var (
off int
begin int
wasDot bool
)
for i := 0; i < len(s); i++ {
switch s[i] {
case '\\':
if off+1 > lenmsg {
return labels, false
}
// check for \DDD
if i+3 < len(s) && isDigit(s[i+1]) && isDigit(s[i+2]) && isDigit(s[i+3]) {
i += 3
begin += 3
} else {
i++
begin++
}
wasDot = false
case '.':
if wasDot {
// two dots back to back is not legal
return labels, false
}
wasDot = true
labelLen := i - begin
if labelLen >= 1<<6 { // top two bits of length must be clear
return labels, false
}
// off can already (we're in a loop) be bigger than lenmsg
// this happens when a name isn't fully qualified
off += 1 + labelLen
if off > lenmsg {
return labels, false
}
labels++
begin = i + 1
default:
wasDot = false
}
}
return labels, true
}
// IsSubDomain checks if child is indeed a child of the parent. If child and parent
// are the same domain true is returned as well.
func IsSubDomain(parent, child string) bool {
// Entire child is contained in parent
return CompareDomainName(parent, child) == CountLabel(parent)
}
// IsMsg sanity checks buf and returns an error if it isn't a valid DNS packet.
// The checking is performed on the binary payload.
func IsMsg(buf []byte) error {
// Header
if len(buf) < headerSize {
return errors.New("dns: bad message header")
}
// Header: Opcode
// TODO(miek): more checks here, e.g. check all header bits.
return nil
}
// IsFqdn checks if a domain name is fully qualified.
func IsFqdn(s string) bool {
s2 := strings.TrimSuffix(s, ".")
if s == s2 {
return false
}
i := strings.LastIndexFunc(s2, func(r rune) bool {
return r != '\\'
})
// Test whether we have an even number of escape sequences before
// the dot or none.
return (len(s2)-i)%2 != 0
}
// IsRRset checks if a set of RRs is a valid RRset as defined by RFC 2181.
// This means the RRs need to have the same type, name, and class. Returns true
// if the RR set is valid, otherwise false.
func IsRRset(rrset []RR) bool {
if len(rrset) == 0 {
return false
}
if len(rrset) == 1 {
return true
}
rrHeader := rrset[0].Header()
rrType := rrHeader.Rrtype
rrClass := rrHeader.Class
rrName := rrHeader.Name
for _, rr := range rrset[1:] {
curRRHeader := rr.Header()
if curRRHeader.Rrtype != rrType || curRRHeader.Class != rrClass || curRRHeader.Name != rrName {
// Mismatch between the records, so this is not a valid rrset for
//signing/verifying
return false
}
}
return true
}
// Fqdn return the fully qualified domain name from s.
// If s is already fully qualified, it behaves as the identity function.
func Fqdn(s string) string {
if IsFqdn(s) {
return s
}
return s + "."
}
// Copied from the official Go code.
// ReverseAddr returns the in-addr.arpa. or ip6.arpa. hostname of the IP
// address suitable for reverse DNS (PTR) record lookups or an error if it fails
// to parse the IP address.
func ReverseAddr(addr string) (arpa string, err error) {
ip := net.ParseIP(addr)
if ip == nil {
return "", &Error{err: "unrecognized address: " + addr}
}
if v4 := ip.To4(); v4 != nil {
buf := make([]byte, 0, net.IPv4len*4+len("in-addr.arpa."))
// Add it, in reverse, to the buffer
for i := len(v4) - 1; i >= 0; i-- {
buf = strconv.AppendInt(buf, int64(v4[i]), 10)
buf = append(buf, '.')
}
// Append "in-addr.arpa." and return (buf already has the final .)
buf = append(buf, "in-addr.arpa."...)
return string(buf), nil
}
// Must be IPv6
buf := make([]byte, 0, net.IPv6len*4+len("ip6.arpa."))
// Add it, in reverse, to the buffer
for i := len(ip) - 1; i >= 0; i-- {
v := ip[i]
buf = append(buf, hexDigit[v&0xF])
buf = append(buf, '.')
buf = append(buf, hexDigit[v>>4])
buf = append(buf, '.')
}
// Append "ip6.arpa." and return (buf already has the final .)
buf = append(buf, "ip6.arpa."...)
return string(buf), nil
}
// String returns the string representation for the type t.
func (t Type) String() string {
if t1, ok := TypeToString[uint16(t)]; ok {
return t1
}
return "TYPE" + strconv.Itoa(int(t))
}
// String returns the string representation for the class c.
func (c Class) String() string {
if s, ok := ClassToString[uint16(c)]; ok {
// Only emit mnemonics when they are unambiguous, specically ANY is in both.
if _, ok := StringToType[s]; !ok {
return s
}
}
return "CLASS" + strconv.Itoa(int(c))
}
// String returns the string representation for the name n.
func (n Name) String() string {
return sprintName(string(n))
}

134
vendor/github.com/miekg/dns/dns.go generated vendored Normal file
View File

@@ -0,0 +1,134 @@
package dns
import "strconv"
const (
year68 = 1 << 31 // For RFC1982 (Serial Arithmetic) calculations in 32 bits.
defaultTtl = 3600 // Default internal TTL.
// DefaultMsgSize is the standard default for messages larger than 512 bytes.
DefaultMsgSize = 4096
// MinMsgSize is the minimal size of a DNS packet.
MinMsgSize = 512
// MaxMsgSize is the largest possible DNS packet.
MaxMsgSize = 65535
)
// Error represents a DNS error.
type Error struct{ err string }
func (e *Error) Error() string {
if e == nil {
return "dns: <nil>"
}
return "dns: " + e.err
}
// An RR represents a resource record.
type RR interface {
// Header returns the header of an resource record. The header contains
// everything up to the rdata.
Header() *RR_Header
// String returns the text representation of the resource record.
String() string
// copy returns a copy of the RR
copy() RR
// len returns the length (in octets) of the compressed or uncompressed RR in wire format.
//
// If compression is nil, the uncompressed size will be returned, otherwise the compressed
// size will be returned and domain names will be added to the map for future compression.
len(off int, compression map[string]struct{}) int
// pack packs the records RDATA into wire format. The header will
// already have been packed into msg.
pack(msg []byte, off int, compression compressionMap, compress bool) (off1 int, err error)
// unpack unpacks an RR from wire format.
//
// This will only be called on a new and empty RR type with only the header populated. It
// will only be called if the record's RDATA is non-empty.
unpack(msg []byte, off int) (off1 int, err error)
// parse parses an RR from zone file format.
//
// This will only be called on a new and empty RR type with only the header populated.
parse(c *zlexer, origin string) *ParseError
// isDuplicate returns whether the two RRs are duplicates.
isDuplicate(r2 RR) bool
}
// RR_Header is the header all DNS resource records share.
type RR_Header struct {
Name string `dns:"cdomain-name"`
Rrtype uint16
Class uint16
Ttl uint32
Rdlength uint16 // Length of data after header.
}
// Header returns itself. This is here to make RR_Header implements the RR interface.
func (h *RR_Header) Header() *RR_Header { return h }
// Just to implement the RR interface.
func (h *RR_Header) copy() RR { return nil }
func (h *RR_Header) String() string {
var s string
if h.Rrtype == TypeOPT {
s = ";"
// and maybe other things
}
s += sprintName(h.Name) + "\t"
s += strconv.FormatInt(int64(h.Ttl), 10) + "\t"
s += Class(h.Class).String() + "\t"
s += Type(h.Rrtype).String() + "\t"
return s
}
func (h *RR_Header) len(off int, compression map[string]struct{}) int {
l := domainNameLen(h.Name, off, compression, true)
l += 10 // rrtype(2) + class(2) + ttl(4) + rdlength(2)
return l
}
func (h *RR_Header) pack(msg []byte, off int, compression compressionMap, compress bool) (off1 int, err error) {
// RR_Header has no RDATA to pack.
return off, nil
}
func (h *RR_Header) unpack(msg []byte, off int) (int, error) {
panic("dns: internal error: unpack should never be called on RR_Header")
}
func (h *RR_Header) parse(c *zlexer, origin string) *ParseError {
panic("dns: internal error: parse should never be called on RR_Header")
}
// ToRFC3597 converts a known RR to the unknown RR representation from RFC 3597.
func (rr *RFC3597) ToRFC3597(r RR) error {
buf := make([]byte, Len(r)*2)
headerEnd, off, err := packRR(r, buf, 0, compressionMap{}, false)
if err != nil {
return err
}
buf = buf[:off]
*rr = RFC3597{Hdr: *r.Header()}
rr.Hdr.Rdlength = uint16(off - headerEnd)
if noRdata(rr.Hdr) {
return nil
}
_, err = rr.unpack(buf, headerEnd)
if err != nil {
return err
}
return nil
}

794
vendor/github.com/miekg/dns/dnssec.go generated vendored Normal file
View File

@@ -0,0 +1,794 @@
package dns
import (
"bytes"
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/elliptic"
_ "crypto/md5"
"crypto/rand"
"crypto/rsa"
_ "crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"encoding/asn1"
"encoding/binary"
"encoding/hex"
"math/big"
"sort"
"strings"
"time"
"golang.org/x/crypto/ed25519"
)
// DNSSEC encryption algorithm codes.
const (
_ uint8 = iota
RSAMD5
DH
DSA
_ // Skip 4, RFC 6725, section 2.1
RSASHA1
DSANSEC3SHA1
RSASHA1NSEC3SHA1
RSASHA256
_ // Skip 9, RFC 6725, section 2.1
RSASHA512
_ // Skip 11, RFC 6725, section 2.1
ECCGOST
ECDSAP256SHA256
ECDSAP384SHA384
ED25519
ED448
INDIRECT uint8 = 252
PRIVATEDNS uint8 = 253 // Private (experimental keys)
PRIVATEOID uint8 = 254
)
// AlgorithmToString is a map of algorithm IDs to algorithm names.
var AlgorithmToString = map[uint8]string{
RSAMD5: "RSAMD5",
DH: "DH",
DSA: "DSA",
RSASHA1: "RSASHA1",
DSANSEC3SHA1: "DSA-NSEC3-SHA1",
RSASHA1NSEC3SHA1: "RSASHA1-NSEC3-SHA1",
RSASHA256: "RSASHA256",
RSASHA512: "RSASHA512",
ECCGOST: "ECC-GOST",
ECDSAP256SHA256: "ECDSAP256SHA256",
ECDSAP384SHA384: "ECDSAP384SHA384",
ED25519: "ED25519",
ED448: "ED448",
INDIRECT: "INDIRECT",
PRIVATEDNS: "PRIVATEDNS",
PRIVATEOID: "PRIVATEOID",
}
// AlgorithmToHash is a map of algorithm crypto hash IDs to crypto.Hash's.
var AlgorithmToHash = map[uint8]crypto.Hash{
RSAMD5: crypto.MD5, // Deprecated in RFC 6725
DSA: crypto.SHA1,
RSASHA1: crypto.SHA1,
RSASHA1NSEC3SHA1: crypto.SHA1,
RSASHA256: crypto.SHA256,
ECDSAP256SHA256: crypto.SHA256,
ECDSAP384SHA384: crypto.SHA384,
RSASHA512: crypto.SHA512,
ED25519: crypto.Hash(0),
}
// DNSSEC hashing algorithm codes.
const (
_ uint8 = iota
SHA1 // RFC 4034
SHA256 // RFC 4509
GOST94 // RFC 5933
SHA384 // Experimental
SHA512 // Experimental
)
// HashToString is a map of hash IDs to names.
var HashToString = map[uint8]string{
SHA1: "SHA1",
SHA256: "SHA256",
GOST94: "GOST94",
SHA384: "SHA384",
SHA512: "SHA512",
}
// DNSKEY flag values.
const (
SEP = 1
REVOKE = 1 << 7
ZONE = 1 << 8
)
// The RRSIG needs to be converted to wireformat with some of the rdata (the signature) missing.
type rrsigWireFmt struct {
TypeCovered uint16
Algorithm uint8
Labels uint8
OrigTtl uint32
Expiration uint32
Inception uint32
KeyTag uint16
SignerName string `dns:"domain-name"`
/* No Signature */
}
// Used for converting DNSKEY's rdata to wirefmt.
type dnskeyWireFmt struct {
Flags uint16
Protocol uint8
Algorithm uint8
PublicKey string `dns:"base64"`
/* Nothing is left out */
}
func divRoundUp(a, b int) int {
return (a + b - 1) / b
}
// KeyTag calculates the keytag (or key-id) of the DNSKEY.
func (k *DNSKEY) KeyTag() uint16 {
if k == nil {
return 0
}
var keytag int
switch k.Algorithm {
case RSAMD5:
// Look at the bottom two bytes of the modules, which the last
// item in the pubkey.
// This algorithm has been deprecated, but keep this key-tag calculation.
modulus, _ := fromBase64([]byte(k.PublicKey))
if len(modulus) > 1 {
x := binary.BigEndian.Uint16(modulus[len(modulus)-2:])
keytag = int(x)
}
default:
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
wire := make([]byte, DefaultMsgSize)
n, err := packKeyWire(keywire, wire)
if err != nil {
return 0
}
wire = wire[:n]
for i, v := range wire {
if i&1 != 0 {
keytag += int(v) // must be larger than uint32
} else {
keytag += int(v) << 8
}
}
keytag += keytag >> 16 & 0xFFFF
keytag &= 0xFFFF
}
return uint16(keytag)
}
// ToDS converts a DNSKEY record to a DS record.
func (k *DNSKEY) ToDS(h uint8) *DS {
if k == nil {
return nil
}
ds := new(DS)
ds.Hdr.Name = k.Hdr.Name
ds.Hdr.Class = k.Hdr.Class
ds.Hdr.Rrtype = TypeDS
ds.Hdr.Ttl = k.Hdr.Ttl
ds.Algorithm = k.Algorithm
ds.DigestType = h
ds.KeyTag = k.KeyTag()
keywire := new(dnskeyWireFmt)
keywire.Flags = k.Flags
keywire.Protocol = k.Protocol
keywire.Algorithm = k.Algorithm
keywire.PublicKey = k.PublicKey
wire := make([]byte, DefaultMsgSize)
n, err := packKeyWire(keywire, wire)
if err != nil {
return nil
}
wire = wire[:n]
owner := make([]byte, 255)
off, err1 := PackDomainName(strings.ToLower(k.Hdr.Name), owner, 0, nil, false)
if err1 != nil {
return nil
}
owner = owner[:off]
// RFC4034:
// digest = digest_algorithm( DNSKEY owner name | DNSKEY RDATA);
// "|" denotes concatenation
// DNSKEY RDATA = Flags | Protocol | Algorithm | Public Key.
var hash crypto.Hash
switch h {
case SHA1:
hash = crypto.SHA1
case SHA256:
hash = crypto.SHA256
case SHA384:
hash = crypto.SHA384
case SHA512:
hash = crypto.SHA512
default:
return nil
}
s := hash.New()
s.Write(owner)
s.Write(wire)
ds.Digest = hex.EncodeToString(s.Sum(nil))
return ds
}
// ToCDNSKEY converts a DNSKEY record to a CDNSKEY record.
func (k *DNSKEY) ToCDNSKEY() *CDNSKEY {
c := &CDNSKEY{DNSKEY: *k}
c.Hdr = k.Hdr
c.Hdr.Rrtype = TypeCDNSKEY
return c
}
// ToCDS converts a DS record to a CDS record.
func (d *DS) ToCDS() *CDS {
c := &CDS{DS: *d}
c.Hdr = d.Hdr
c.Hdr.Rrtype = TypeCDS
return c
}
// Sign signs an RRSet. The signature needs to be filled in with the values:
// Inception, Expiration, KeyTag, SignerName and Algorithm. The rest is copied
// from the RRset. Sign returns a non-nill error when the signing went OK.
// There is no check if RRSet is a proper (RFC 2181) RRSet. If OrigTTL is non
// zero, it is used as-is, otherwise the TTL of the RRset is used as the
// OrigTTL.
func (rr *RRSIG) Sign(k crypto.Signer, rrset []RR) error {
if k == nil {
return ErrPrivKey
}
// s.Inception and s.Expiration may be 0 (rollover etc.), the rest must be set
if rr.KeyTag == 0 || len(rr.SignerName) == 0 || rr.Algorithm == 0 {
return ErrKey
}
h0 := rrset[0].Header()
rr.Hdr.Rrtype = TypeRRSIG
rr.Hdr.Name = h0.Name
rr.Hdr.Class = h0.Class
if rr.OrigTtl == 0 { // If set don't override
rr.OrigTtl = h0.Ttl
}
rr.TypeCovered = h0.Rrtype
rr.Labels = uint8(CountLabel(h0.Name))
if strings.HasPrefix(h0.Name, "*") {
rr.Labels-- // wildcard, remove from label count
}
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = rr.TypeCovered
sigwire.Algorithm = rr.Algorithm
sigwire.Labels = rr.Labels
sigwire.OrigTtl = rr.OrigTtl
sigwire.Expiration = rr.Expiration
sigwire.Inception = rr.Inception
sigwire.KeyTag = rr.KeyTag
// For signing, lowercase this name
sigwire.SignerName = strings.ToLower(rr.SignerName)
// Create the desired binary blob
signdata := make([]byte, DefaultMsgSize)
n, err := packSigWire(sigwire, signdata)
if err != nil {
return err
}
signdata = signdata[:n]
wire, err := rawSignatureData(rrset, rr)
if err != nil {
return err
}
hash, ok := AlgorithmToHash[rr.Algorithm]
if !ok {
return ErrAlg
}
switch rr.Algorithm {
case ED25519:
// ed25519 signs the raw message and performs hashing internally.
// All other supported signature schemes operate over the pre-hashed
// message, and thus ed25519 must be handled separately here.
//
// The raw message is passed directly into sign and crypto.Hash(0) is
// used to signal to the crypto.Signer that the data has not been hashed.
signature, err := sign(k, append(signdata, wire...), crypto.Hash(0), rr.Algorithm)
if err != nil {
return err
}
rr.Signature = toBase64(signature)
case RSAMD5, DSA, DSANSEC3SHA1:
// See RFC 6944.
return ErrAlg
default:
h := hash.New()
h.Write(signdata)
h.Write(wire)
signature, err := sign(k, h.Sum(nil), hash, rr.Algorithm)
if err != nil {
return err
}
rr.Signature = toBase64(signature)
}
return nil
}
func sign(k crypto.Signer, hashed []byte, hash crypto.Hash, alg uint8) ([]byte, error) {
signature, err := k.Sign(rand.Reader, hashed, hash)
if err != nil {
return nil, err
}
switch alg {
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512:
return signature, nil
case ECDSAP256SHA256, ECDSAP384SHA384:
ecdsaSignature := &struct {
R, S *big.Int
}{}
if _, err := asn1.Unmarshal(signature, ecdsaSignature); err != nil {
return nil, err
}
var intlen int
switch alg {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
signature := intToBytes(ecdsaSignature.R, intlen)
signature = append(signature, intToBytes(ecdsaSignature.S, intlen)...)
return signature, nil
// There is no defined interface for what a DSA backed crypto.Signer returns
case DSA, DSANSEC3SHA1:
// t := divRoundUp(divRoundUp(p.PublicKey.Y.BitLen(), 8)-64, 8)
// signature := []byte{byte(t)}
// signature = append(signature, intToBytes(r1, 20)...)
// signature = append(signature, intToBytes(s1, 20)...)
// rr.Signature = signature
case ED25519:
return signature, nil
}
return nil, ErrAlg
}
// Verify validates an RRSet with the signature and key. This is only the
// cryptographic test, the signature validity period must be checked separately.
// This function copies the rdata of some RRs (to lowercase domain names) for the validation to work.
func (rr *RRSIG) Verify(k *DNSKEY, rrset []RR) error {
// First the easy checks
if !IsRRset(rrset) {
return ErrRRset
}
if rr.KeyTag != k.KeyTag() {
return ErrKey
}
if rr.Hdr.Class != k.Hdr.Class {
return ErrKey
}
if rr.Algorithm != k.Algorithm {
return ErrKey
}
if !strings.EqualFold(rr.SignerName, k.Hdr.Name) {
return ErrKey
}
if k.Protocol != 3 {
return ErrKey
}
// IsRRset checked that we have at least one RR and that the RRs in
// the set have consistent type, class, and name. Also check that type and
// class matches the RRSIG record.
if h0 := rrset[0].Header(); h0.Class != rr.Hdr.Class || h0.Rrtype != rr.TypeCovered {
return ErrRRset
}
// RFC 4035 5.3.2. Reconstructing the Signed Data
// Copy the sig, except the rrsig data
sigwire := new(rrsigWireFmt)
sigwire.TypeCovered = rr.TypeCovered
sigwire.Algorithm = rr.Algorithm
sigwire.Labels = rr.Labels
sigwire.OrigTtl = rr.OrigTtl
sigwire.Expiration = rr.Expiration
sigwire.Inception = rr.Inception
sigwire.KeyTag = rr.KeyTag
sigwire.SignerName = strings.ToLower(rr.SignerName)
// Create the desired binary blob
signeddata := make([]byte, DefaultMsgSize)
n, err := packSigWire(sigwire, signeddata)
if err != nil {
return err
}
signeddata = signeddata[:n]
wire, err := rawSignatureData(rrset, rr)
if err != nil {
return err
}
sigbuf := rr.sigBuf() // Get the binary signature data
if rr.Algorithm == PRIVATEDNS { // PRIVATEOID
// TODO(miek)
// remove the domain name and assume its ours?
}
hash, ok := AlgorithmToHash[rr.Algorithm]
if !ok {
return ErrAlg
}
switch rr.Algorithm {
case RSASHA1, RSASHA1NSEC3SHA1, RSASHA256, RSASHA512, RSAMD5:
// TODO(mg): this can be done quicker, ie. cache the pubkey data somewhere??
pubkey := k.publicKeyRSA() // Get the key
if pubkey == nil {
return ErrKey
}
h := hash.New()
h.Write(signeddata)
h.Write(wire)
return rsa.VerifyPKCS1v15(pubkey, hash, h.Sum(nil), sigbuf)
case ECDSAP256SHA256, ECDSAP384SHA384:
pubkey := k.publicKeyECDSA()
if pubkey == nil {
return ErrKey
}
// Split sigbuf into the r and s coordinates
r := new(big.Int).SetBytes(sigbuf[:len(sigbuf)/2])
s := new(big.Int).SetBytes(sigbuf[len(sigbuf)/2:])
h := hash.New()
h.Write(signeddata)
h.Write(wire)
if ecdsa.Verify(pubkey, h.Sum(nil), r, s) {
return nil
}
return ErrSig
case ED25519:
pubkey := k.publicKeyED25519()
if pubkey == nil {
return ErrKey
}
if ed25519.Verify(pubkey, append(signeddata, wire...), sigbuf) {
return nil
}
return ErrSig
default:
return ErrAlg
}
}
// ValidityPeriod uses RFC1982 serial arithmetic to calculate
// if a signature period is valid. If t is the zero time, the
// current time is taken other t is. Returns true if the signature
// is valid at the given time, otherwise returns false.
func (rr *RRSIG) ValidityPeriod(t time.Time) bool {
var utc int64
if t.IsZero() {
utc = time.Now().UTC().Unix()
} else {
utc = t.UTC().Unix()
}
modi := (int64(rr.Inception) - utc) / year68
mode := (int64(rr.Expiration) - utc) / year68
ti := int64(rr.Inception) + modi*year68
te := int64(rr.Expiration) + mode*year68
return ti <= utc && utc <= te
}
// Return the signatures base64 encodedig sigdata as a byte slice.
func (rr *RRSIG) sigBuf() []byte {
sigbuf, err := fromBase64([]byte(rr.Signature))
if err != nil {
return nil
}
return sigbuf
}
// publicKeyRSA returns the RSA public key from a DNSKEY record.
func (k *DNSKEY) publicKeyRSA() *rsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) < 1+1+64 {
// Exponent must be at least 1 byte and modulus at least 64
return nil
}
// RFC 2537/3110, section 2. RSA Public KEY Resource Records
// Length is in the 0th byte, unless its zero, then it
// it in bytes 1 and 2 and its a 16 bit number
explen := uint16(keybuf[0])
keyoff := 1
if explen == 0 {
explen = uint16(keybuf[1])<<8 | uint16(keybuf[2])
keyoff = 3
}
if explen > 4 || explen == 0 || keybuf[keyoff] == 0 {
// Exponent larger than supported by the crypto package,
// empty, or contains prohibited leading zero.
return nil
}
modoff := keyoff + int(explen)
modlen := len(keybuf) - modoff
if modlen < 64 || modlen > 512 || keybuf[modoff] == 0 {
// Modulus is too small, large, or contains prohibited leading zero.
return nil
}
pubkey := new(rsa.PublicKey)
var expo uint64
// The exponent of length explen is between keyoff and modoff.
for _, v := range keybuf[keyoff:modoff] {
expo <<= 8
expo |= uint64(v)
}
if expo > 1<<31-1 {
// Larger exponent than supported by the crypto package.
return nil
}
pubkey.E = int(expo)
pubkey.N = new(big.Int).SetBytes(keybuf[modoff:])
return pubkey
}
// publicKeyECDSA returns the Curve public key from the DNSKEY record.
func (k *DNSKEY) publicKeyECDSA() *ecdsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
pubkey := new(ecdsa.PublicKey)
switch k.Algorithm {
case ECDSAP256SHA256:
pubkey.Curve = elliptic.P256()
if len(keybuf) != 64 {
// wrongly encoded key
return nil
}
case ECDSAP384SHA384:
pubkey.Curve = elliptic.P384()
if len(keybuf) != 96 {
// Wrongly encoded key
return nil
}
}
pubkey.X = new(big.Int).SetBytes(keybuf[:len(keybuf)/2])
pubkey.Y = new(big.Int).SetBytes(keybuf[len(keybuf)/2:])
return pubkey
}
func (k *DNSKEY) publicKeyDSA() *dsa.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) < 22 {
return nil
}
t, keybuf := int(keybuf[0]), keybuf[1:]
size := 64 + t*8
q, keybuf := keybuf[:20], keybuf[20:]
if len(keybuf) != 3*size {
return nil
}
p, keybuf := keybuf[:size], keybuf[size:]
g, y := keybuf[:size], keybuf[size:]
pubkey := new(dsa.PublicKey)
pubkey.Parameters.Q = new(big.Int).SetBytes(q)
pubkey.Parameters.P = new(big.Int).SetBytes(p)
pubkey.Parameters.G = new(big.Int).SetBytes(g)
pubkey.Y = new(big.Int).SetBytes(y)
return pubkey
}
func (k *DNSKEY) publicKeyED25519() ed25519.PublicKey {
keybuf, err := fromBase64([]byte(k.PublicKey))
if err != nil {
return nil
}
if len(keybuf) != ed25519.PublicKeySize {
return nil
}
return keybuf
}
type wireSlice [][]byte
func (p wireSlice) Len() int { return len(p) }
func (p wireSlice) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p wireSlice) Less(i, j int) bool {
_, ioff, _ := UnpackDomainName(p[i], 0)
_, joff, _ := UnpackDomainName(p[j], 0)
return bytes.Compare(p[i][ioff+10:], p[j][joff+10:]) < 0
}
// Return the raw signature data.
func rawSignatureData(rrset []RR, s *RRSIG) (buf []byte, err error) {
wires := make(wireSlice, len(rrset))
for i, r := range rrset {
r1 := r.copy()
h := r1.Header()
h.Ttl = s.OrigTtl
labels := SplitDomainName(h.Name)
// 6.2. Canonical RR Form. (4) - wildcards
if len(labels) > int(s.Labels) {
// Wildcard
h.Name = "*." + strings.Join(labels[len(labels)-int(s.Labels):], ".") + "."
}
// RFC 4034: 6.2. Canonical RR Form. (2) - domain name to lowercase
h.Name = strings.ToLower(h.Name)
// 6.2. Canonical RR Form. (3) - domain rdata to lowercase.
// NS, MD, MF, CNAME, SOA, MB, MG, MR, PTR,
// HINFO, MINFO, MX, RP, AFSDB, RT, SIG, PX, NXT, NAPTR, KX,
// SRV, DNAME, A6
//
// RFC 6840 - Clarifications and Implementation Notes for DNS Security (DNSSEC):
// Section 6.2 of [RFC4034] also erroneously lists HINFO as a record
// that needs conversion to lowercase, and twice at that. Since HINFO
// records contain no domain names, they are not subject to case
// conversion.
switch x := r1.(type) {
case *NS:
x.Ns = strings.ToLower(x.Ns)
case *MD:
x.Md = strings.ToLower(x.Md)
case *MF:
x.Mf = strings.ToLower(x.Mf)
case *CNAME:
x.Target = strings.ToLower(x.Target)
case *SOA:
x.Ns = strings.ToLower(x.Ns)
x.Mbox = strings.ToLower(x.Mbox)
case *MB:
x.Mb = strings.ToLower(x.Mb)
case *MG:
x.Mg = strings.ToLower(x.Mg)
case *MR:
x.Mr = strings.ToLower(x.Mr)
case *PTR:
x.Ptr = strings.ToLower(x.Ptr)
case *MINFO:
x.Rmail = strings.ToLower(x.Rmail)
x.Email = strings.ToLower(x.Email)
case *MX:
x.Mx = strings.ToLower(x.Mx)
case *RP:
x.Mbox = strings.ToLower(x.Mbox)
x.Txt = strings.ToLower(x.Txt)
case *AFSDB:
x.Hostname = strings.ToLower(x.Hostname)
case *RT:
x.Host = strings.ToLower(x.Host)
case *SIG:
x.SignerName = strings.ToLower(x.SignerName)
case *PX:
x.Map822 = strings.ToLower(x.Map822)
x.Mapx400 = strings.ToLower(x.Mapx400)
case *NAPTR:
x.Replacement = strings.ToLower(x.Replacement)
case *KX:
x.Exchanger = strings.ToLower(x.Exchanger)
case *SRV:
x.Target = strings.ToLower(x.Target)
case *DNAME:
x.Target = strings.ToLower(x.Target)
}
// 6.2. Canonical RR Form. (5) - origTTL
wire := make([]byte, Len(r1)+1) // +1 to be safe(r)
off, err1 := PackRR(r1, wire, 0, nil, false)
if err1 != nil {
return nil, err1
}
wire = wire[:off]
wires[i] = wire
}
sort.Sort(wires)
for i, wire := range wires {
if i > 0 && bytes.Equal(wire, wires[i-1]) {
continue
}
buf = append(buf, wire...)
}
return buf, nil
}
func packSigWire(sw *rrsigWireFmt, msg []byte) (int, error) {
// copied from zmsg.go RRSIG packing
off, err := packUint16(sw.TypeCovered, msg, 0)
if err != nil {
return off, err
}
off, err = packUint8(sw.Algorithm, msg, off)
if err != nil {
return off, err
}
off, err = packUint8(sw.Labels, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.OrigTtl, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.Expiration, msg, off)
if err != nil {
return off, err
}
off, err = packUint32(sw.Inception, msg, off)
if err != nil {
return off, err
}
off, err = packUint16(sw.KeyTag, msg, off)
if err != nil {
return off, err
}
off, err = PackDomainName(sw.SignerName, msg, off, nil, false)
if err != nil {
return off, err
}
return off, nil
}
func packKeyWire(dw *dnskeyWireFmt, msg []byte) (int, error) {
// copied from zmsg.go DNSKEY packing
off, err := packUint16(dw.Flags, msg, 0)
if err != nil {
return off, err
}
off, err = packUint8(dw.Protocol, msg, off)
if err != nil {
return off, err
}
off, err = packUint8(dw.Algorithm, msg, off)
if err != nil {
return off, err
}
off, err = packStringBase64(dw.PublicKey, msg, off)
if err != nil {
return off, err
}
return off, nil
}

140
vendor/github.com/miekg/dns/dnssec_keygen.go generated vendored Normal file
View File

@@ -0,0 +1,140 @@
package dns
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
"math/big"
"golang.org/x/crypto/ed25519"
)
// Generate generates a DNSKEY of the given bit size.
// The public part is put inside the DNSKEY record.
// The Algorithm in the key must be set as this will define
// what kind of DNSKEY will be generated.
// The ECDSA algorithms imply a fixed keysize, in that case
// bits should be set to the size of the algorithm.
func (k *DNSKEY) Generate(bits int) (crypto.PrivateKey, error) {
switch k.Algorithm {
case RSAMD5, DSA, DSANSEC3SHA1:
return nil, ErrAlg
case RSASHA1, RSASHA256, RSASHA1NSEC3SHA1:
if bits < 512 || bits > 4096 {
return nil, ErrKeySize
}
case RSASHA512:
if bits < 1024 || bits > 4096 {
return nil, ErrKeySize
}
case ECDSAP256SHA256:
if bits != 256 {
return nil, ErrKeySize
}
case ECDSAP384SHA384:
if bits != 384 {
return nil, ErrKeySize
}
case ED25519:
if bits != 256 {
return nil, ErrKeySize
}
}
switch k.Algorithm {
case RSASHA1, RSASHA256, RSASHA512, RSASHA1NSEC3SHA1:
priv, err := rsa.GenerateKey(rand.Reader, bits)
if err != nil {
return nil, err
}
k.setPublicKeyRSA(priv.PublicKey.E, priv.PublicKey.N)
return priv, nil
case ECDSAP256SHA256, ECDSAP384SHA384:
var c elliptic.Curve
switch k.Algorithm {
case ECDSAP256SHA256:
c = elliptic.P256()
case ECDSAP384SHA384:
c = elliptic.P384()
}
priv, err := ecdsa.GenerateKey(c, rand.Reader)
if err != nil {
return nil, err
}
k.setPublicKeyECDSA(priv.PublicKey.X, priv.PublicKey.Y)
return priv, nil
case ED25519:
pub, priv, err := ed25519.GenerateKey(rand.Reader)
if err != nil {
return nil, err
}
k.setPublicKeyED25519(pub)
return priv, nil
default:
return nil, ErrAlg
}
}
// Set the public key (the value E and N)
func (k *DNSKEY) setPublicKeyRSA(_E int, _N *big.Int) bool {
if _E == 0 || _N == nil {
return false
}
buf := exponentToBuf(_E)
buf = append(buf, _N.Bytes()...)
k.PublicKey = toBase64(buf)
return true
}
// Set the public key for Elliptic Curves
func (k *DNSKEY) setPublicKeyECDSA(_X, _Y *big.Int) bool {
if _X == nil || _Y == nil {
return false
}
var intlen int
switch k.Algorithm {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
k.PublicKey = toBase64(curveToBuf(_X, _Y, intlen))
return true
}
// Set the public key for Ed25519
func (k *DNSKEY) setPublicKeyED25519(_K ed25519.PublicKey) bool {
if _K == nil {
return false
}
k.PublicKey = toBase64(_K)
return true
}
// Set the public key (the values E and N) for RSA
// RFC 3110: Section 2. RSA Public KEY Resource Records
func exponentToBuf(_E int) []byte {
var buf []byte
i := big.NewInt(int64(_E)).Bytes()
if len(i) < 256 {
buf = make([]byte, 1, 1+len(i))
buf[0] = uint8(len(i))
} else {
buf = make([]byte, 3, 3+len(i))
buf[0] = 0
buf[1] = uint8(len(i) >> 8)
buf[2] = uint8(len(i))
}
buf = append(buf, i...)
return buf
}
// Set the public key for X and Y for Curve. The two
// values are just concatenated.
func curveToBuf(_X, _Y *big.Int, intlen int) []byte {
buf := intToBytes(_X, intlen)
buf = append(buf, intToBytes(_Y, intlen)...)
return buf
}

322
vendor/github.com/miekg/dns/dnssec_keyscan.go generated vendored Normal file
View File

@@ -0,0 +1,322 @@
package dns
import (
"bufio"
"crypto"
"crypto/ecdsa"
"crypto/rsa"
"io"
"math/big"
"strconv"
"strings"
"golang.org/x/crypto/ed25519"
)
// NewPrivateKey returns a PrivateKey by parsing the string s.
// s should be in the same form of the BIND private key files.
func (k *DNSKEY) NewPrivateKey(s string) (crypto.PrivateKey, error) {
if s == "" || s[len(s)-1] != '\n' { // We need a closing newline
return k.ReadPrivateKey(strings.NewReader(s+"\n"), "")
}
return k.ReadPrivateKey(strings.NewReader(s), "")
}
// ReadPrivateKey reads a private key from the io.Reader q. The string file is
// only used in error reporting.
// The public key must be known, because some cryptographic algorithms embed
// the public inside the privatekey.
func (k *DNSKEY) ReadPrivateKey(q io.Reader, file string) (crypto.PrivateKey, error) {
m, err := parseKey(q, file)
if m == nil {
return nil, err
}
if _, ok := m["private-key-format"]; !ok {
return nil, ErrPrivKey
}
if m["private-key-format"] != "v1.2" && m["private-key-format"] != "v1.3" {
return nil, ErrPrivKey
}
// TODO(mg): check if the pubkey matches the private key
algo, err := strconv.ParseUint(strings.SplitN(m["algorithm"], " ", 2)[0], 10, 8)
if err != nil {
return nil, ErrPrivKey
}
switch uint8(algo) {
case RSAMD5, DSA, DSANSEC3SHA1:
return nil, ErrAlg
case RSASHA1:
fallthrough
case RSASHA1NSEC3SHA1:
fallthrough
case RSASHA256:
fallthrough
case RSASHA512:
priv, err := readPrivateKeyRSA(m)
if err != nil {
return nil, err
}
pub := k.publicKeyRSA()
if pub == nil {
return nil, ErrKey
}
priv.PublicKey = *pub
return priv, nil
case ECCGOST:
return nil, ErrPrivKey
case ECDSAP256SHA256:
fallthrough
case ECDSAP384SHA384:
priv, err := readPrivateKeyECDSA(m)
if err != nil {
return nil, err
}
pub := k.publicKeyECDSA()
if pub == nil {
return nil, ErrKey
}
priv.PublicKey = *pub
return priv, nil
case ED25519:
return readPrivateKeyED25519(m)
default:
return nil, ErrPrivKey
}
}
// Read a private key (file) string and create a public key. Return the private key.
func readPrivateKeyRSA(m map[string]string) (*rsa.PrivateKey, error) {
p := new(rsa.PrivateKey)
p.Primes = []*big.Int{nil, nil}
for k, v := range m {
switch k {
case "modulus", "publicexponent", "privateexponent", "prime1", "prime2":
v1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
switch k {
case "modulus":
p.PublicKey.N = new(big.Int).SetBytes(v1)
case "publicexponent":
i := new(big.Int).SetBytes(v1)
p.PublicKey.E = int(i.Int64()) // int64 should be large enough
case "privateexponent":
p.D = new(big.Int).SetBytes(v1)
case "prime1":
p.Primes[0] = new(big.Int).SetBytes(v1)
case "prime2":
p.Primes[1] = new(big.Int).SetBytes(v1)
}
case "exponent1", "exponent2", "coefficient":
// not used in Go (yet)
case "created", "publish", "activate":
// not used in Go (yet)
}
}
return p, nil
}
func readPrivateKeyECDSA(m map[string]string) (*ecdsa.PrivateKey, error) {
p := new(ecdsa.PrivateKey)
p.D = new(big.Int)
// TODO: validate that the required flags are present
for k, v := range m {
switch k {
case "privatekey":
v1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
p.D.SetBytes(v1)
case "created", "publish", "activate":
/* not used in Go (yet) */
}
}
return p, nil
}
func readPrivateKeyED25519(m map[string]string) (ed25519.PrivateKey, error) {
var p ed25519.PrivateKey
// TODO: validate that the required flags are present
for k, v := range m {
switch k {
case "privatekey":
p1, err := fromBase64([]byte(v))
if err != nil {
return nil, err
}
if len(p1) != ed25519.SeedSize {
return nil, ErrPrivKey
}
p = ed25519.NewKeyFromSeed(p1)
case "created", "publish", "activate":
/* not used in Go (yet) */
}
}
return p, nil
}
// parseKey reads a private key from r. It returns a map[string]string,
// with the key-value pairs, or an error when the file is not correct.
func parseKey(r io.Reader, file string) (map[string]string, error) {
m := make(map[string]string)
var k string
c := newKLexer(r)
for l, ok := c.Next(); ok; l, ok = c.Next() {
// It should alternate
switch l.value {
case zKey:
k = l.token
case zValue:
if k == "" {
return nil, &ParseError{file, "no private key seen", l}
}
m[strings.ToLower(k)] = l.token
k = ""
}
}
// Surface any read errors from r.
if err := c.Err(); err != nil {
return nil, &ParseError{file: file, err: err.Error()}
}
return m, nil
}
type klexer struct {
br io.ByteReader
readErr error
line int
column int
key bool
eol bool // end-of-line
}
func newKLexer(r io.Reader) *klexer {
br, ok := r.(io.ByteReader)
if !ok {
br = bufio.NewReaderSize(r, 1024)
}
return &klexer{
br: br,
line: 1,
key: true,
}
}
func (kl *klexer) Err() error {
if kl.readErr == io.EOF {
return nil
}
return kl.readErr
}
// readByte returns the next byte from the input
func (kl *klexer) readByte() (byte, bool) {
if kl.readErr != nil {
return 0, false
}
c, err := kl.br.ReadByte()
if err != nil {
kl.readErr = err
return 0, false
}
// delay the newline handling until the next token is delivered,
// fixes off-by-one errors when reporting a parse error.
if kl.eol {
kl.line++
kl.column = 0
kl.eol = false
}
if c == '\n' {
kl.eol = true
} else {
kl.column++
}
return c, true
}
func (kl *klexer) Next() (lex, bool) {
var (
l lex
str strings.Builder
commt bool
)
for x, ok := kl.readByte(); ok; x, ok = kl.readByte() {
l.line, l.column = kl.line, kl.column
switch x {
case ':':
if commt || !kl.key {
break
}
kl.key = false
// Next token is a space, eat it
kl.readByte()
l.value = zKey
l.token = str.String()
return l, true
case ';':
commt = true
case '\n':
if commt {
// Reset a comment
commt = false
}
if kl.key && str.Len() == 0 {
// ignore empty lines
break
}
kl.key = true
l.value = zValue
l.token = str.String()
return l, true
default:
if commt {
break
}
str.WriteByte(x)
}
}
if kl.readErr != nil && kl.readErr != io.EOF {
// Don't return any tokens after a read error occurs.
return lex{value: zEOF}, false
}
if str.Len() > 0 {
// Send remainder
l.value = zValue
l.token = str.String()
return l, true
}
return lex{value: zEOF}, false
}

94
vendor/github.com/miekg/dns/dnssec_privkey.go generated vendored Normal file
View File

@@ -0,0 +1,94 @@
package dns
import (
"crypto"
"crypto/dsa"
"crypto/ecdsa"
"crypto/rsa"
"math/big"
"strconv"
"golang.org/x/crypto/ed25519"
)
const format = "Private-key-format: v1.3\n"
var bigIntOne = big.NewInt(1)
// PrivateKeyString converts a PrivateKey to a string. This string has the same
// format as the private-key-file of BIND9 (Private-key-format: v1.3).
// It needs some info from the key (the algorithm), so its a method of the DNSKEY
// It supports rsa.PrivateKey, ecdsa.PrivateKey and dsa.PrivateKey
func (r *DNSKEY) PrivateKeyString(p crypto.PrivateKey) string {
algorithm := strconv.Itoa(int(r.Algorithm))
algorithm += " (" + AlgorithmToString[r.Algorithm] + ")"
switch p := p.(type) {
case *rsa.PrivateKey:
modulus := toBase64(p.PublicKey.N.Bytes())
e := big.NewInt(int64(p.PublicKey.E))
publicExponent := toBase64(e.Bytes())
privateExponent := toBase64(p.D.Bytes())
prime1 := toBase64(p.Primes[0].Bytes())
prime2 := toBase64(p.Primes[1].Bytes())
// Calculate Exponent1/2 and Coefficient as per: http://en.wikipedia.org/wiki/RSA#Using_the_Chinese_remainder_algorithm
// and from: http://code.google.com/p/go/issues/detail?id=987
p1 := new(big.Int).Sub(p.Primes[0], bigIntOne)
q1 := new(big.Int).Sub(p.Primes[1], bigIntOne)
exp1 := new(big.Int).Mod(p.D, p1)
exp2 := new(big.Int).Mod(p.D, q1)
coeff := new(big.Int).ModInverse(p.Primes[1], p.Primes[0])
exponent1 := toBase64(exp1.Bytes())
exponent2 := toBase64(exp2.Bytes())
coefficient := toBase64(coeff.Bytes())
return format +
"Algorithm: " + algorithm + "\n" +
"Modulus: " + modulus + "\n" +
"PublicExponent: " + publicExponent + "\n" +
"PrivateExponent: " + privateExponent + "\n" +
"Prime1: " + prime1 + "\n" +
"Prime2: " + prime2 + "\n" +
"Exponent1: " + exponent1 + "\n" +
"Exponent2: " + exponent2 + "\n" +
"Coefficient: " + coefficient + "\n"
case *ecdsa.PrivateKey:
var intlen int
switch r.Algorithm {
case ECDSAP256SHA256:
intlen = 32
case ECDSAP384SHA384:
intlen = 48
}
private := toBase64(intToBytes(p.D, intlen))
return format +
"Algorithm: " + algorithm + "\n" +
"PrivateKey: " + private + "\n"
case *dsa.PrivateKey:
T := divRoundUp(divRoundUp(p.PublicKey.Parameters.G.BitLen(), 8)-64, 8)
prime := toBase64(intToBytes(p.PublicKey.Parameters.P, 64+T*8))
subprime := toBase64(intToBytes(p.PublicKey.Parameters.Q, 20))
base := toBase64(intToBytes(p.PublicKey.Parameters.G, 64+T*8))
priv := toBase64(intToBytes(p.X, 20))
pub := toBase64(intToBytes(p.PublicKey.Y, 64+T*8))
return format +
"Algorithm: " + algorithm + "\n" +
"Prime(p): " + prime + "\n" +
"Subprime(q): " + subprime + "\n" +
"Base(g): " + base + "\n" +
"Private_value(x): " + priv + "\n" +
"Public_value(y): " + pub + "\n"
case ed25519.PrivateKey:
private := toBase64(p.Seed())
return format +
"Algorithm: " + algorithm + "\n" +
"PrivateKey: " + private + "\n"
default:
return ""
}
}

268
vendor/github.com/miekg/dns/doc.go generated vendored Normal file
View File

@@ -0,0 +1,268 @@
/*
Package dns implements a full featured interface to the Domain Name System.
Both server- and client-side programming is supported. The package allows
complete control over what is sent out to the DNS. The API follows the
less-is-more principle, by presenting a small, clean interface.
It supports (asynchronous) querying/replying, incoming/outgoing zone transfers,
TSIG, EDNS0, dynamic updates, notifies and DNSSEC validation/signing.
Note that domain names MUST be fully qualified before sending them, unqualified
names in a message will result in a packing failure.
Resource records are native types. They are not stored in wire format. Basic
usage pattern for creating a new resource record:
r := new(dns.MX)
r.Hdr = dns.RR_Header{Name: "miek.nl.", Rrtype: dns.TypeMX, Class: dns.ClassINET, Ttl: 3600}
r.Preference = 10
r.Mx = "mx.miek.nl."
Or directly from a string:
mx, err := dns.NewRR("miek.nl. 3600 IN MX 10 mx.miek.nl.")
Or when the default origin (.) and TTL (3600) and class (IN) suit you:
mx, err := dns.NewRR("miek.nl MX 10 mx.miek.nl")
Or even:
mx, err := dns.NewRR("$ORIGIN nl.\nmiek 1H IN MX 10 mx.miek")
In the DNS messages are exchanged, these messages contain resource records
(sets). Use pattern for creating a message:
m := new(dns.Msg)
m.SetQuestion("miek.nl.", dns.TypeMX)
Or when not certain if the domain name is fully qualified:
m.SetQuestion(dns.Fqdn("miek.nl"), dns.TypeMX)
The message m is now a message with the question section set to ask the MX
records for the miek.nl. zone.
The following is slightly more verbose, but more flexible:
m1 := new(dns.Msg)
m1.Id = dns.Id()
m1.RecursionDesired = true
m1.Question = make([]dns.Question, 1)
m1.Question[0] = dns.Question{"miek.nl.", dns.TypeMX, dns.ClassINET}
After creating a message it can be sent. Basic use pattern for synchronous
querying the DNS at a server configured on 127.0.0.1 and port 53:
c := new(dns.Client)
in, rtt, err := c.Exchange(m1, "127.0.0.1:53")
Suppressing multiple outstanding queries (with the same question, type and
class) is as easy as setting:
c.SingleInflight = true
More advanced options are available using a net.Dialer and the corresponding API.
For example it is possible to set a timeout, or to specify a source IP address
and port to use for the connection:
c := new(dns.Client)
laddr := net.UDPAddr{
IP: net.ParseIP("[::1]"),
Port: 12345,
Zone: "",
}
c.Dialer := &net.Dialer{
Timeout: 200 * time.Millisecond,
LocalAddr: &laddr,
}
in, rtt, err := c.Exchange(m1, "8.8.8.8:53")
If these "advanced" features are not needed, a simple UDP query can be sent,
with:
in, err := dns.Exchange(m1, "127.0.0.1:53")
When this functions returns you will get DNS message. A DNS message consists
out of four sections.
The question section: in.Question, the answer section: in.Answer,
the authority section: in.Ns and the additional section: in.Extra.
Each of these sections (except the Question section) contain a []RR. Basic
use pattern for accessing the rdata of a TXT RR as the first RR in
the Answer section:
if t, ok := in.Answer[0].(*dns.TXT); ok {
// do something with t.Txt
}
Domain Name and TXT Character String Representations
Both domain names and TXT character strings are converted to presentation form
both when unpacked and when converted to strings.
For TXT character strings, tabs, carriage returns and line feeds will be
converted to \t, \r and \n respectively. Back slashes and quotations marks will
be escaped. Bytes below 32 and above 127 will be converted to \DDD form.
For domain names, in addition to the above rules brackets, periods, spaces,
semicolons and the at symbol are escaped.
DNSSEC
DNSSEC (DNS Security Extension) adds a layer of security to the DNS. It uses
public key cryptography to sign resource records. The public keys are stored in
DNSKEY records and the signatures in RRSIG records.
Requesting DNSSEC information for a zone is done by adding the DO (DNSSEC OK)
bit to a request.
m := new(dns.Msg)
m.SetEdns0(4096, true)
Signature generation, signature verification and key generation are all supported.
DYNAMIC UPDATES
Dynamic updates reuses the DNS message format, but renames three of the
sections. Question is Zone, Answer is Prerequisite, Authority is Update, only
the Additional is not renamed. See RFC 2136 for the gory details.
You can set a rather complex set of rules for the existence of absence of
certain resource records or names in a zone to specify if resource records
should be added or removed. The table from RFC 2136 supplemented with the Go
DNS function shows which functions exist to specify the prerequisites.
3.2.4 - Table Of Metavalues Used In Prerequisite Section
CLASS TYPE RDATA Meaning Function
--------------------------------------------------------------
ANY ANY empty Name is in use dns.NameUsed
ANY rrset empty RRset exists (value indep) dns.RRsetUsed
NONE ANY empty Name is not in use dns.NameNotUsed
NONE rrset empty RRset does not exist dns.RRsetNotUsed
zone rrset rr RRset exists (value dep) dns.Used
The prerequisite section can also be left empty. If you have decided on the
prerequisites you can tell what RRs should be added or deleted. The next table
shows the options you have and what functions to call.
3.4.2.6 - Table Of Metavalues Used In Update Section
CLASS TYPE RDATA Meaning Function
---------------------------------------------------------------
ANY ANY empty Delete all RRsets from name dns.RemoveName
ANY rrset empty Delete an RRset dns.RemoveRRset
NONE rrset rr Delete an RR from RRset dns.Remove
zone rrset rr Add to an RRset dns.Insert
TRANSACTION SIGNATURE
An TSIG or transaction signature adds a HMAC TSIG record to each message sent.
The supported algorithms include: HmacMD5, HmacSHA1, HmacSHA256 and HmacSHA512.
Basic use pattern when querying with a TSIG name "axfr." (note that these key names
must be fully qualified - as they are domain names) and the base64 secret
"so6ZGir4GPAqINNh9U5c3A==":
If an incoming message contains a TSIG record it MUST be the last record in
the additional section (RFC2845 3.2). This means that you should make the
call to SetTsig last, right before executing the query. If you make any
changes to the RRset after calling SetTsig() the signature will be incorrect.
c := new(dns.Client)
c.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
m := new(dns.Msg)
m.SetQuestion("miek.nl.", dns.TypeMX)
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
...
// When sending the TSIG RR is calculated and filled in before sending
When requesting an zone transfer (almost all TSIG usage is when requesting zone
transfers), with TSIG, this is the basic use pattern. In this example we
request an AXFR for miek.nl. with TSIG key named "axfr." and secret
"so6ZGir4GPAqINNh9U5c3A==" and using the server 176.58.119.54:
t := new(dns.Transfer)
m := new(dns.Msg)
t.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
m.SetAxfr("miek.nl.")
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
c, err := t.In(m, "176.58.119.54:53")
for r := range c { ... }
You can now read the records from the transfer as they come in. Each envelope
is checked with TSIG. If something is not correct an error is returned.
Basic use pattern validating and replying to a message that has TSIG set.
server := &dns.Server{Addr: ":53", Net: "udp"}
server.TsigSecret = map[string]string{"axfr.": "so6ZGir4GPAqINNh9U5c3A=="}
go server.ListenAndServe()
dns.HandleFunc(".", handleRequest)
func handleRequest(w dns.ResponseWriter, r *dns.Msg) {
m := new(dns.Msg)
m.SetReply(r)
if r.IsTsig() != nil {
if w.TsigStatus() == nil {
// *Msg r has an TSIG record and it was validated
m.SetTsig("axfr.", dns.HmacMD5, 300, time.Now().Unix())
} else {
// *Msg r has an TSIG records and it was not valided
}
}
w.WriteMsg(m)
}
PRIVATE RRS
RFC 6895 sets aside a range of type codes for private use. This range is 65,280
- 65,534 (0xFF00 - 0xFFFE). When experimenting with new Resource Records these
can be used, before requesting an official type code from IANA.
See https://miek.nl/2014/september/21/idn-and-private-rr-in-go-dns/ for more
information.
EDNS0
EDNS0 is an extension mechanism for the DNS defined in RFC 2671 and updated by
RFC 6891. It defines an new RR type, the OPT RR, which is then completely
abused.
Basic use pattern for creating an (empty) OPT RR:
o := new(dns.OPT)
o.Hdr.Name = "." // MUST be the root zone, per definition.
o.Hdr.Rrtype = dns.TypeOPT
The rdata of an OPT RR consists out of a slice of EDNS0 (RFC 6891) interfaces.
Currently only a few have been standardized: EDNS0_NSID (RFC 5001) and
EDNS0_SUBNET (RFC 7871). Note that these options may be combined in an OPT RR.
Basic use pattern for a server to check if (and which) options are set:
// o is a dns.OPT
for _, s := range o.Option {
switch e := s.(type) {
case *dns.EDNS0_NSID:
// do stuff with e.Nsid
case *dns.EDNS0_SUBNET:
// access e.Family, e.Address, etc.
}
}
SIG(0)
From RFC 2931:
SIG(0) provides protection for DNS transactions and requests ....
... protection for glue records, DNS requests, protection for message headers
on requests and responses, and protection of the overall integrity of a response.
It works like TSIG, except that SIG(0) uses public key cryptography, instead of
the shared secret approach in TSIG. Supported algorithms: DSA, ECDSAP256SHA256,
ECDSAP384SHA384, RSASHA1, RSASHA256 and RSASHA512.
Signing subsequent messages in multi-message sessions is not implemented.
*/
package dns

38
vendor/github.com/miekg/dns/duplicate.go generated vendored Normal file
View File

@@ -0,0 +1,38 @@
package dns
//go:generate go run duplicate_generate.go
// IsDuplicate checks of r1 and r2 are duplicates of each other, excluding the TTL.
// So this means the header data is equal *and* the RDATA is the same. Return true
// is so, otherwise false.
// It's a protocol violation to have identical RRs in a message.
func IsDuplicate(r1, r2 RR) bool {
// Check whether the record header is identical.
if !r1.Header().isDuplicate(r2.Header()) {
return false
}
// Check whether the RDATA is identical.
return r1.isDuplicate(r2)
}
func (r1 *RR_Header) isDuplicate(_r2 RR) bool {
r2, ok := _r2.(*RR_Header)
if !ok {
return false
}
if r1.Class != r2.Class {
return false
}
if r1.Rrtype != r2.Rrtype {
return false
}
if !isDuplicateName(r1.Name, r2.Name) {
return false
}
// ignore TTL
return true
}
// isDuplicateName checks if the domain names s1 and s2 are equal.
func isDuplicateName(s1, s2 string) bool { return equal(s1, s2) }

671
vendor/github.com/miekg/dns/edns.go generated vendored Normal file
View File

@@ -0,0 +1,671 @@
package dns
import (
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"net"
"strconv"
)
// EDNS0 Option codes.
const (
EDNS0LLQ = 0x1 // long lived queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01
EDNS0UL = 0x2 // update lease draft: http://files.dns-sd.org/draft-sekar-dns-ul.txt
EDNS0NSID = 0x3 // nsid (See RFC 5001)
EDNS0DAU = 0x5 // DNSSEC Algorithm Understood
EDNS0DHU = 0x6 // DS Hash Understood
EDNS0N3U = 0x7 // NSEC3 Hash Understood
EDNS0SUBNET = 0x8 // client-subnet (See RFC 7871)
EDNS0EXPIRE = 0x9 // EDNS0 expire
EDNS0COOKIE = 0xa // EDNS0 Cookie
EDNS0TCPKEEPALIVE = 0xb // EDNS0 tcp keep alive (See RFC 7828)
EDNS0PADDING = 0xc // EDNS0 padding (See RFC 7830)
EDNS0LOCALSTART = 0xFDE9 // Beginning of range reserved for local/experimental use (See RFC 6891)
EDNS0LOCALEND = 0xFFFE // End of range reserved for local/experimental use (See RFC 6891)
_DO = 1 << 15 // DNSSEC OK
)
// OPT is the EDNS0 RR appended to messages to convey extra (meta) information.
// See RFC 6891.
type OPT struct {
Hdr RR_Header
Option []EDNS0 `dns:"opt"`
}
func (rr *OPT) String() string {
s := "\n;; OPT PSEUDOSECTION:\n; EDNS: version " + strconv.Itoa(int(rr.Version())) + "; "
if rr.Do() {
s += "flags: do; "
} else {
s += "flags: ; "
}
s += "udp: " + strconv.Itoa(int(rr.UDPSize()))
for _, o := range rr.Option {
switch o.(type) {
case *EDNS0_NSID:
s += "\n; NSID: " + o.String()
h, e := o.pack()
var r string
if e == nil {
for _, c := range h {
r += "(" + string(c) + ")"
}
s += " " + r
}
case *EDNS0_SUBNET:
s += "\n; SUBNET: " + o.String()
case *EDNS0_COOKIE:
s += "\n; COOKIE: " + o.String()
case *EDNS0_UL:
s += "\n; UPDATE LEASE: " + o.String()
case *EDNS0_LLQ:
s += "\n; LONG LIVED QUERIES: " + o.String()
case *EDNS0_DAU:
s += "\n; DNSSEC ALGORITHM UNDERSTOOD: " + o.String()
case *EDNS0_DHU:
s += "\n; DS HASH UNDERSTOOD: " + o.String()
case *EDNS0_N3U:
s += "\n; NSEC3 HASH UNDERSTOOD: " + o.String()
case *EDNS0_LOCAL:
s += "\n; LOCAL OPT: " + o.String()
case *EDNS0_PADDING:
s += "\n; PADDING: " + o.String()
}
}
return s
}
func (rr *OPT) len(off int, compression map[string]struct{}) int {
l := rr.Hdr.len(off, compression)
for _, o := range rr.Option {
l += 4 // Account for 2-byte option code and 2-byte option length.
lo, _ := o.pack()
l += len(lo)
}
return l
}
func (rr *OPT) parse(c *zlexer, origin string) *ParseError {
panic("dns: internal error: parse should never be called on OPT")
}
func (r1 *OPT) isDuplicate(r2 RR) bool { return false }
// return the old value -> delete SetVersion?
// Version returns the EDNS version used. Only zero is defined.
func (rr *OPT) Version() uint8 {
return uint8(rr.Hdr.Ttl & 0x00FF0000 >> 16)
}
// SetVersion sets the version of EDNS. This is usually zero.
func (rr *OPT) SetVersion(v uint8) {
rr.Hdr.Ttl = rr.Hdr.Ttl&0xFF00FFFF | uint32(v)<<16
}
// ExtendedRcode returns the EDNS extended RCODE field (the upper 8 bits of the TTL).
func (rr *OPT) ExtendedRcode() int {
return int(rr.Hdr.Ttl&0xFF000000>>24) << 4
}
// SetExtendedRcode sets the EDNS extended RCODE field.
//
// If the RCODE is not an extended RCODE, will reset the extended RCODE field to 0.
func (rr *OPT) SetExtendedRcode(v uint16) {
rr.Hdr.Ttl = rr.Hdr.Ttl&0x00FFFFFF | uint32(v>>4)<<24
}
// UDPSize returns the UDP buffer size.
func (rr *OPT) UDPSize() uint16 {
return rr.Hdr.Class
}
// SetUDPSize sets the UDP buffer size.
func (rr *OPT) SetUDPSize(size uint16) {
rr.Hdr.Class = size
}
// Do returns the value of the DO (DNSSEC OK) bit.
func (rr *OPT) Do() bool {
return rr.Hdr.Ttl&_DO == _DO
}
// SetDo sets the DO (DNSSEC OK) bit.
// If we pass an argument, set the DO bit to that value.
// It is possible to pass 2 or more arguments. Any arguments after the 1st is silently ignored.
func (rr *OPT) SetDo(do ...bool) {
if len(do) == 1 {
if do[0] {
rr.Hdr.Ttl |= _DO
} else {
rr.Hdr.Ttl &^= _DO
}
} else {
rr.Hdr.Ttl |= _DO
}
}
// EDNS0 defines an EDNS0 Option. An OPT RR can have multiple options appended to it.
type EDNS0 interface {
// Option returns the option code for the option.
Option() uint16
// pack returns the bytes of the option data.
pack() ([]byte, error)
// unpack sets the data as found in the buffer. Is also sets
// the length of the slice as the length of the option data.
unpack([]byte) error
// String returns the string representation of the option.
String() string
// copy returns a deep-copy of the option.
copy() EDNS0
}
// EDNS0_NSID option is used to retrieve a nameserver
// identifier. When sending a request Nsid must be set to the empty string
// The identifier is an opaque string encoded as hex.
// Basic use pattern for creating an nsid option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_NSID)
// e.Code = dns.EDNS0NSID
// e.Nsid = "AA"
// o.Option = append(o.Option, e)
type EDNS0_NSID struct {
Code uint16 // Always EDNS0NSID
Nsid string // This string needs to be hex encoded
}
func (e *EDNS0_NSID) pack() ([]byte, error) {
h, err := hex.DecodeString(e.Nsid)
if err != nil {
return nil, err
}
return h, nil
}
// Option implements the EDNS0 interface.
func (e *EDNS0_NSID) Option() uint16 { return EDNS0NSID } // Option returns the option code.
func (e *EDNS0_NSID) unpack(b []byte) error { e.Nsid = hex.EncodeToString(b); return nil }
func (e *EDNS0_NSID) String() string { return e.Nsid }
func (e *EDNS0_NSID) copy() EDNS0 { return &EDNS0_NSID{e.Code, e.Nsid} }
// EDNS0_SUBNET is the subnet option that is used to give the remote nameserver
// an idea of where the client lives. See RFC 7871. It can then give back a different
// answer depending on the location or network topology.
// Basic use pattern for creating an subnet option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_SUBNET)
// e.Code = dns.EDNS0SUBNET
// e.Family = 1 // 1 for IPv4 source address, 2 for IPv6
// e.SourceNetmask = 32 // 32 for IPV4, 128 for IPv6
// e.SourceScope = 0
// e.Address = net.ParseIP("127.0.0.1").To4() // for IPv4
// // e.Address = net.ParseIP("2001:7b8:32a::2") // for IPV6
// o.Option = append(o.Option, e)
//
// This code will parse all the available bits when unpacking (up to optlen).
// When packing it will apply SourceNetmask. If you need more advanced logic,
// patches welcome and good luck.
type EDNS0_SUBNET struct {
Code uint16 // Always EDNS0SUBNET
Family uint16 // 1 for IP, 2 for IP6
SourceNetmask uint8
SourceScope uint8
Address net.IP
}
// Option implements the EDNS0 interface.
func (e *EDNS0_SUBNET) Option() uint16 { return EDNS0SUBNET }
func (e *EDNS0_SUBNET) pack() ([]byte, error) {
b := make([]byte, 4)
binary.BigEndian.PutUint16(b[0:], e.Family)
b[2] = e.SourceNetmask
b[3] = e.SourceScope
switch e.Family {
case 0:
// "dig" sets AddressFamily to 0 if SourceNetmask is also 0
// We might don't need to complain either
if e.SourceNetmask != 0 {
return nil, errors.New("dns: bad address family")
}
case 1:
if e.SourceNetmask > net.IPv4len*8 {
return nil, errors.New("dns: bad netmask")
}
if len(e.Address.To4()) != net.IPv4len {
return nil, errors.New("dns: bad address")
}
ip := e.Address.To4().Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv4len*8))
needLength := (e.SourceNetmask + 8 - 1) / 8 // division rounding up
b = append(b, ip[:needLength]...)
case 2:
if e.SourceNetmask > net.IPv6len*8 {
return nil, errors.New("dns: bad netmask")
}
if len(e.Address) != net.IPv6len {
return nil, errors.New("dns: bad address")
}
ip := e.Address.Mask(net.CIDRMask(int(e.SourceNetmask), net.IPv6len*8))
needLength := (e.SourceNetmask + 8 - 1) / 8 // division rounding up
b = append(b, ip[:needLength]...)
default:
return nil, errors.New("dns: bad address family")
}
return b, nil
}
func (e *EDNS0_SUBNET) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Family = binary.BigEndian.Uint16(b)
e.SourceNetmask = b[2]
e.SourceScope = b[3]
switch e.Family {
case 0:
// "dig" sets AddressFamily to 0 if SourceNetmask is also 0
// It's okay to accept such a packet
if e.SourceNetmask != 0 {
return errors.New("dns: bad address family")
}
e.Address = net.IPv4(0, 0, 0, 0)
case 1:
if e.SourceNetmask > net.IPv4len*8 || e.SourceScope > net.IPv4len*8 {
return errors.New("dns: bad netmask")
}
addr := make(net.IP, net.IPv4len)
copy(addr, b[4:])
e.Address = addr.To16()
case 2:
if e.SourceNetmask > net.IPv6len*8 || e.SourceScope > net.IPv6len*8 {
return errors.New("dns: bad netmask")
}
addr := make(net.IP, net.IPv6len)
copy(addr, b[4:])
e.Address = addr
default:
return errors.New("dns: bad address family")
}
return nil
}
func (e *EDNS0_SUBNET) String() (s string) {
if e.Address == nil {
s = "<nil>"
} else if e.Address.To4() != nil {
s = e.Address.String()
} else {
s = "[" + e.Address.String() + "]"
}
s += "/" + strconv.Itoa(int(e.SourceNetmask)) + "/" + strconv.Itoa(int(e.SourceScope))
return
}
func (e *EDNS0_SUBNET) copy() EDNS0 {
return &EDNS0_SUBNET{
e.Code,
e.Family,
e.SourceNetmask,
e.SourceScope,
e.Address,
}
}
// The EDNS0_COOKIE option is used to add a DNS Cookie to a message.
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_COOKIE)
// e.Code = dns.EDNS0COOKIE
// e.Cookie = "24a5ac.."
// o.Option = append(o.Option, e)
//
// The Cookie field consists out of a client cookie (RFC 7873 Section 4), that is
// always 8 bytes. It may then optionally be followed by the server cookie. The server
// cookie is of variable length, 8 to a maximum of 32 bytes. In other words:
//
// cCookie := o.Cookie[:16]
// sCookie := o.Cookie[16:]
//
// There is no guarantee that the Cookie string has a specific length.
type EDNS0_COOKIE struct {
Code uint16 // Always EDNS0COOKIE
Cookie string // Hex-encoded cookie data
}
func (e *EDNS0_COOKIE) pack() ([]byte, error) {
h, err := hex.DecodeString(e.Cookie)
if err != nil {
return nil, err
}
return h, nil
}
// Option implements the EDNS0 interface.
func (e *EDNS0_COOKIE) Option() uint16 { return EDNS0COOKIE }
func (e *EDNS0_COOKIE) unpack(b []byte) error { e.Cookie = hex.EncodeToString(b); return nil }
func (e *EDNS0_COOKIE) String() string { return e.Cookie }
func (e *EDNS0_COOKIE) copy() EDNS0 { return &EDNS0_COOKIE{e.Code, e.Cookie} }
// The EDNS0_UL (Update Lease) (draft RFC) option is used to tell the server to set
// an expiration on an update RR. This is helpful for clients that cannot clean
// up after themselves. This is a draft RFC and more information can be found at
// https://tools.ietf.org/html/draft-sekar-dns-ul-02
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_UL)
// e.Code = dns.EDNS0UL
// e.Lease = 120 // in seconds
// o.Option = append(o.Option, e)
type EDNS0_UL struct {
Code uint16 // Always EDNS0UL
Lease uint32
KeyLease uint32
}
// Option implements the EDNS0 interface.
func (e *EDNS0_UL) Option() uint16 { return EDNS0UL }
func (e *EDNS0_UL) String() string { return fmt.Sprintf("%d %d", e.Lease, e.KeyLease) }
func (e *EDNS0_UL) copy() EDNS0 { return &EDNS0_UL{e.Code, e.Lease, e.KeyLease} }
// Copied: http://golang.org/src/pkg/net/dnsmsg.go
func (e *EDNS0_UL) pack() ([]byte, error) {
var b []byte
if e.KeyLease == 0 {
b = make([]byte, 4)
} else {
b = make([]byte, 8)
binary.BigEndian.PutUint32(b[4:], e.KeyLease)
}
binary.BigEndian.PutUint32(b, e.Lease)
return b, nil
}
func (e *EDNS0_UL) unpack(b []byte) error {
switch len(b) {
case 4:
e.KeyLease = 0
case 8:
e.KeyLease = binary.BigEndian.Uint32(b[4:])
default:
return ErrBuf
}
e.Lease = binary.BigEndian.Uint32(b)
return nil
}
// EDNS0_LLQ stands for Long Lived Queries: http://tools.ietf.org/html/draft-sekar-dns-llq-01
// Implemented for completeness, as the EDNS0 type code is assigned.
type EDNS0_LLQ struct {
Code uint16 // Always EDNS0LLQ
Version uint16
Opcode uint16
Error uint16
Id uint64
LeaseLife uint32
}
// Option implements the EDNS0 interface.
func (e *EDNS0_LLQ) Option() uint16 { return EDNS0LLQ }
func (e *EDNS0_LLQ) pack() ([]byte, error) {
b := make([]byte, 18)
binary.BigEndian.PutUint16(b[0:], e.Version)
binary.BigEndian.PutUint16(b[2:], e.Opcode)
binary.BigEndian.PutUint16(b[4:], e.Error)
binary.BigEndian.PutUint64(b[6:], e.Id)
binary.BigEndian.PutUint32(b[14:], e.LeaseLife)
return b, nil
}
func (e *EDNS0_LLQ) unpack(b []byte) error {
if len(b) < 18 {
return ErrBuf
}
e.Version = binary.BigEndian.Uint16(b[0:])
e.Opcode = binary.BigEndian.Uint16(b[2:])
e.Error = binary.BigEndian.Uint16(b[4:])
e.Id = binary.BigEndian.Uint64(b[6:])
e.LeaseLife = binary.BigEndian.Uint32(b[14:])
return nil
}
func (e *EDNS0_LLQ) String() string {
s := strconv.FormatUint(uint64(e.Version), 10) + " " + strconv.FormatUint(uint64(e.Opcode), 10) +
" " + strconv.FormatUint(uint64(e.Error), 10) + " " + strconv.FormatUint(e.Id, 10) +
" " + strconv.FormatUint(uint64(e.LeaseLife), 10)
return s
}
func (e *EDNS0_LLQ) copy() EDNS0 {
return &EDNS0_LLQ{e.Code, e.Version, e.Opcode, e.Error, e.Id, e.LeaseLife}
}
// EDNS0_DUA implements the EDNS0 "DNSSEC Algorithm Understood" option. See RFC 6975.
type EDNS0_DAU struct {
Code uint16 // Always EDNS0DAU
AlgCode []uint8
}
// Option implements the EDNS0 interface.
func (e *EDNS0_DAU) Option() uint16 { return EDNS0DAU }
func (e *EDNS0_DAU) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_DAU) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_DAU) String() string {
s := ""
for _, alg := range e.AlgCode {
if a, ok := AlgorithmToString[alg]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(alg))
}
}
return s
}
func (e *EDNS0_DAU) copy() EDNS0 { return &EDNS0_DAU{e.Code, e.AlgCode} }
// EDNS0_DHU implements the EDNS0 "DS Hash Understood" option. See RFC 6975.
type EDNS0_DHU struct {
Code uint16 // Always EDNS0DHU
AlgCode []uint8
}
// Option implements the EDNS0 interface.
func (e *EDNS0_DHU) Option() uint16 { return EDNS0DHU }
func (e *EDNS0_DHU) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_DHU) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_DHU) String() string {
s := ""
for _, alg := range e.AlgCode {
if a, ok := HashToString[alg]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(alg))
}
}
return s
}
func (e *EDNS0_DHU) copy() EDNS0 { return &EDNS0_DHU{e.Code, e.AlgCode} }
// EDNS0_N3U implements the EDNS0 "NSEC3 Hash Understood" option. See RFC 6975.
type EDNS0_N3U struct {
Code uint16 // Always EDNS0N3U
AlgCode []uint8
}
// Option implements the EDNS0 interface.
func (e *EDNS0_N3U) Option() uint16 { return EDNS0N3U }
func (e *EDNS0_N3U) pack() ([]byte, error) { return e.AlgCode, nil }
func (e *EDNS0_N3U) unpack(b []byte) error { e.AlgCode = b; return nil }
func (e *EDNS0_N3U) String() string {
// Re-use the hash map
s := ""
for _, alg := range e.AlgCode {
if a, ok := HashToString[alg]; ok {
s += " " + a
} else {
s += " " + strconv.Itoa(int(alg))
}
}
return s
}
func (e *EDNS0_N3U) copy() EDNS0 { return &EDNS0_N3U{e.Code, e.AlgCode} }
// EDNS0_EXPIRE implementes the EDNS0 option as described in RFC 7314.
type EDNS0_EXPIRE struct {
Code uint16 // Always EDNS0EXPIRE
Expire uint32
}
// Option implements the EDNS0 interface.
func (e *EDNS0_EXPIRE) Option() uint16 { return EDNS0EXPIRE }
func (e *EDNS0_EXPIRE) String() string { return strconv.FormatUint(uint64(e.Expire), 10) }
func (e *EDNS0_EXPIRE) copy() EDNS0 { return &EDNS0_EXPIRE{e.Code, e.Expire} }
func (e *EDNS0_EXPIRE) pack() ([]byte, error) {
b := make([]byte, 4)
binary.BigEndian.PutUint32(b, e.Expire)
return b, nil
}
func (e *EDNS0_EXPIRE) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Expire = binary.BigEndian.Uint32(b)
return nil
}
// The EDNS0_LOCAL option is used for local/experimental purposes. The option
// code is recommended to be within the range [EDNS0LOCALSTART, EDNS0LOCALEND]
// (RFC6891), although any unassigned code can actually be used. The content of
// the option is made available in Data, unaltered.
// Basic use pattern for creating a local option:
//
// o := new(dns.OPT)
// o.Hdr.Name = "."
// o.Hdr.Rrtype = dns.TypeOPT
// e := new(dns.EDNS0_LOCAL)
// e.Code = dns.EDNS0LOCALSTART
// e.Data = []byte{72, 82, 74}
// o.Option = append(o.Option, e)
type EDNS0_LOCAL struct {
Code uint16
Data []byte
}
// Option implements the EDNS0 interface.
func (e *EDNS0_LOCAL) Option() uint16 { return e.Code }
func (e *EDNS0_LOCAL) String() string {
return strconv.FormatInt(int64(e.Code), 10) + ":0x" + hex.EncodeToString(e.Data)
}
func (e *EDNS0_LOCAL) copy() EDNS0 {
b := make([]byte, len(e.Data))
copy(b, e.Data)
return &EDNS0_LOCAL{e.Code, b}
}
func (e *EDNS0_LOCAL) pack() ([]byte, error) {
b := make([]byte, len(e.Data))
copied := copy(b, e.Data)
if copied != len(e.Data) {
return nil, ErrBuf
}
return b, nil
}
func (e *EDNS0_LOCAL) unpack(b []byte) error {
e.Data = make([]byte, len(b))
copied := copy(e.Data, b)
if copied != len(b) {
return ErrBuf
}
return nil
}
// EDNS0_TCP_KEEPALIVE is an EDNS0 option that instructs the server to keep
// the TCP connection alive. See RFC 7828.
type EDNS0_TCP_KEEPALIVE struct {
Code uint16 // Always EDNSTCPKEEPALIVE
Length uint16 // the value 0 if the TIMEOUT is omitted, the value 2 if it is present;
Timeout uint16 // an idle timeout value for the TCP connection, specified in units of 100 milliseconds, encoded in network byte order.
}
// Option implements the EDNS0 interface.
func (e *EDNS0_TCP_KEEPALIVE) Option() uint16 { return EDNS0TCPKEEPALIVE }
func (e *EDNS0_TCP_KEEPALIVE) pack() ([]byte, error) {
if e.Timeout != 0 && e.Length != 2 {
return nil, errors.New("dns: timeout specified but length is not 2")
}
if e.Timeout == 0 && e.Length != 0 {
return nil, errors.New("dns: timeout not specified but length is not 0")
}
b := make([]byte, 4+e.Length)
binary.BigEndian.PutUint16(b[0:], e.Code)
binary.BigEndian.PutUint16(b[2:], e.Length)
if e.Length == 2 {
binary.BigEndian.PutUint16(b[4:], e.Timeout)
}
return b, nil
}
func (e *EDNS0_TCP_KEEPALIVE) unpack(b []byte) error {
if len(b) < 4 {
return ErrBuf
}
e.Length = binary.BigEndian.Uint16(b[2:4])
if e.Length != 0 && e.Length != 2 {
return errors.New("dns: length mismatch, want 0/2 but got " + strconv.FormatUint(uint64(e.Length), 10))
}
if e.Length == 2 {
if len(b) < 6 {
return ErrBuf
}
e.Timeout = binary.BigEndian.Uint16(b[4:6])
}
return nil
}
func (e *EDNS0_TCP_KEEPALIVE) String() (s string) {
s = "use tcp keep-alive"
if e.Length == 0 {
s += ", timeout omitted"
} else {
s += fmt.Sprintf(", timeout %dms", e.Timeout*100)
}
return
}
func (e *EDNS0_TCP_KEEPALIVE) copy() EDNS0 { return &EDNS0_TCP_KEEPALIVE{e.Code, e.Length, e.Timeout} }
// EDNS0_PADDING option is used to add padding to a request/response. The default
// value of padding SHOULD be 0x0 but other values MAY be used, for instance if
// compression is applied before encryption which may break signatures.
type EDNS0_PADDING struct {
Padding []byte
}
// Option implements the EDNS0 interface.
func (e *EDNS0_PADDING) Option() uint16 { return EDNS0PADDING }
func (e *EDNS0_PADDING) pack() ([]byte, error) { return e.Padding, nil }
func (e *EDNS0_PADDING) unpack(b []byte) error { e.Padding = b; return nil }
func (e *EDNS0_PADDING) String() string { return fmt.Sprintf("%0X", e.Padding) }
func (e *EDNS0_PADDING) copy() EDNS0 {
b := make([]byte, len(e.Padding))
copy(b, e.Padding)
return &EDNS0_PADDING{b}
}

93
vendor/github.com/miekg/dns/format.go generated vendored Normal file
View File

@@ -0,0 +1,93 @@
package dns
import (
"net"
"reflect"
"strconv"
)
// NumField returns the number of rdata fields r has.
func NumField(r RR) int {
return reflect.ValueOf(r).Elem().NumField() - 1 // Remove RR_Header
}
// Field returns the rdata field i as a string. Fields are indexed starting from 1.
// RR types that holds slice data, for instance the NSEC type bitmap will return a single
// string where the types are concatenated using a space.
// Accessing non existing fields will cause a panic.
func Field(r RR, i int) string {
if i == 0 {
return ""
}
d := reflect.ValueOf(r).Elem().Field(i)
switch d.Kind() {
case reflect.String:
return d.String()
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
return strconv.FormatInt(d.Int(), 10)
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
return strconv.FormatUint(d.Uint(), 10)
case reflect.Slice:
switch reflect.ValueOf(r).Elem().Type().Field(i).Tag {
case `dns:"a"`:
// TODO(miek): Hmm store this as 16 bytes
if d.Len() < net.IPv4len {
return ""
}
if d.Len() < net.IPv6len {
return net.IPv4(byte(d.Index(0).Uint()),
byte(d.Index(1).Uint()),
byte(d.Index(2).Uint()),
byte(d.Index(3).Uint())).String()
}
return net.IPv4(byte(d.Index(12).Uint()),
byte(d.Index(13).Uint()),
byte(d.Index(14).Uint()),
byte(d.Index(15).Uint())).String()
case `dns:"aaaa"`:
if d.Len() < net.IPv6len {
return ""
}
return net.IP{
byte(d.Index(0).Uint()),
byte(d.Index(1).Uint()),
byte(d.Index(2).Uint()),
byte(d.Index(3).Uint()),
byte(d.Index(4).Uint()),
byte(d.Index(5).Uint()),
byte(d.Index(6).Uint()),
byte(d.Index(7).Uint()),
byte(d.Index(8).Uint()),
byte(d.Index(9).Uint()),
byte(d.Index(10).Uint()),
byte(d.Index(11).Uint()),
byte(d.Index(12).Uint()),
byte(d.Index(13).Uint()),
byte(d.Index(14).Uint()),
byte(d.Index(15).Uint()),
}.String()
case `dns:"nsec"`:
if d.Len() == 0 {
return ""
}
s := Type(d.Index(0).Uint()).String()
for i := 1; i < d.Len(); i++ {
s += " " + Type(d.Index(i).Uint()).String()
}
return s
default:
// if it does not have a tag its a string slice
fallthrough
case `dns:"txt"`:
if d.Len() == 0 {
return ""
}
s := d.Index(0).String()
for i := 1; i < d.Len(); i++ {
s += " " + d.Index(i).String()
}
return s
}
}
return ""
}

32
vendor/github.com/miekg/dns/fuzz.go generated vendored Normal file
View File

@@ -0,0 +1,32 @@
// +build fuzz
package dns
import "strings"
func Fuzz(data []byte) int {
msg := new(Msg)
if err := msg.Unpack(data); err != nil {
return 0
}
if _, err := msg.Pack(); err != nil {
return 0
}
return 1
}
func FuzzNewRR(data []byte) int {
str := string(data)
// Do not fuzz lines that include the $INCLUDE keyword and hint the fuzzer
// at avoiding them.
// See GH#1025 for context.
if strings.Contains(strings.ToUpper(str), "$INCLUDE") {
return -1
}
if _, err := NewRR(str); err != nil {
return 0
}
return 1
}

247
vendor/github.com/miekg/dns/generate.go generated vendored Normal file
View File

@@ -0,0 +1,247 @@
package dns
import (
"bytes"
"fmt"
"io"
"strconv"
"strings"
)
// Parse the $GENERATE statement as used in BIND9 zones.
// See http://www.zytrax.com/books/dns/ch8/generate.html for instance.
// We are called after '$GENERATE '. After which we expect:
// * the range (12-24/2)
// * lhs (ownername)
// * [[ttl][class]]
// * type
// * rhs (rdata)
// But we are lazy here, only the range is parsed *all* occurrences
// of $ after that are interpreted.
func (zp *ZoneParser) generate(l lex) (RR, bool) {
token := l.token
step := 1
if i := strings.IndexByte(token, '/'); i >= 0 {
if i+1 == len(token) {
return zp.setParseError("bad step in $GENERATE range", l)
}
s, err := strconv.Atoi(token[i+1:])
if err != nil || s <= 0 {
return zp.setParseError("bad step in $GENERATE range", l)
}
step = s
token = token[:i]
}
sx := strings.SplitN(token, "-", 2)
if len(sx) != 2 {
return zp.setParseError("bad start-stop in $GENERATE range", l)
}
start, err := strconv.Atoi(sx[0])
if err != nil {
return zp.setParseError("bad start in $GENERATE range", l)
}
end, err := strconv.Atoi(sx[1])
if err != nil {
return zp.setParseError("bad stop in $GENERATE range", l)
}
if end < 0 || start < 0 || end < start || (end-start)/step > 65535 {
return zp.setParseError("bad range in $GENERATE range", l)
}
// _BLANK
l, ok := zp.c.Next()
if !ok || l.value != zBlank {
return zp.setParseError("garbage after $GENERATE range", l)
}
// Create a complete new string, which we then parse again.
var s string
for l, ok := zp.c.Next(); ok; l, ok = zp.c.Next() {
if l.err {
return zp.setParseError("bad data in $GENERATE directive", l)
}
if l.value == zNewline {
break
}
s += l.token
}
r := &generateReader{
s: s,
cur: start,
start: start,
end: end,
step: step,
file: zp.file,
lex: &l,
}
zp.sub = NewZoneParser(r, zp.origin, zp.file)
zp.sub.includeDepth, zp.sub.includeAllowed = zp.includeDepth, zp.includeAllowed
zp.sub.generateDisallowed = true
zp.sub.SetDefaultTTL(defaultTtl)
return zp.subNext()
}
type generateReader struct {
s string
si int
cur int
start int
end int
step int
mod bytes.Buffer
escape bool
eof bool
file string
lex *lex
}
func (r *generateReader) parseError(msg string, end int) *ParseError {
r.eof = true // Make errors sticky.
l := *r.lex
l.token = r.s[r.si-1 : end]
l.column += r.si // l.column starts one zBLANK before r.s
return &ParseError{r.file, msg, l}
}
func (r *generateReader) Read(p []byte) (int, error) {
// NewZLexer, through NewZoneParser, should use ReadByte and
// not end up here.
panic("not implemented")
}
func (r *generateReader) ReadByte() (byte, error) {
if r.eof {
return 0, io.EOF
}
if r.mod.Len() > 0 {
return r.mod.ReadByte()
}
if r.si >= len(r.s) {
r.si = 0
r.cur += r.step
r.eof = r.cur > r.end || r.cur < 0
return '\n', nil
}
si := r.si
r.si++
switch r.s[si] {
case '\\':
if r.escape {
r.escape = false
return '\\', nil
}
r.escape = true
return r.ReadByte()
case '$':
if r.escape {
r.escape = false
return '$', nil
}
mod := "%d"
if si >= len(r.s)-1 {
// End of the string
fmt.Fprintf(&r.mod, mod, r.cur)
return r.mod.ReadByte()
}
if r.s[si+1] == '$' {
r.si++
return '$', nil
}
var offset int
// Search for { and }
if r.s[si+1] == '{' {
// Modifier block
sep := strings.Index(r.s[si+2:], "}")
if sep < 0 {
return 0, r.parseError("bad modifier in $GENERATE", len(r.s))
}
var errMsg string
mod, offset, errMsg = modToPrintf(r.s[si+2 : si+2+sep])
if errMsg != "" {
return 0, r.parseError(errMsg, si+3+sep)
}
if r.start+offset < 0 || r.end+offset > 1<<31-1 {
return 0, r.parseError("bad offset in $GENERATE", si+3+sep)
}
r.si += 2 + sep // Jump to it
}
fmt.Fprintf(&r.mod, mod, r.cur+offset)
return r.mod.ReadByte()
default:
if r.escape { // Pretty useless here
r.escape = false
return r.ReadByte()
}
return r.s[si], nil
}
}
// Convert a $GENERATE modifier 0,0,d to something Printf can deal with.
func modToPrintf(s string) (string, int, string) {
// Modifier is { offset [ ,width [ ,base ] ] } - provide default
// values for optional width and type, if necessary.
var offStr, widthStr, base string
switch xs := strings.Split(s, ","); len(xs) {
case 1:
offStr, widthStr, base = xs[0], "0", "d"
case 2:
offStr, widthStr, base = xs[0], xs[1], "d"
case 3:
offStr, widthStr, base = xs[0], xs[1], xs[2]
default:
return "", 0, "bad modifier in $GENERATE"
}
switch base {
case "o", "d", "x", "X":
default:
return "", 0, "bad base in $GENERATE"
}
offset, err := strconv.Atoi(offStr)
if err != nil {
return "", 0, "bad offset in $GENERATE"
}
width, err := strconv.Atoi(widthStr)
if err != nil || width < 0 || width > 255 {
return "", 0, "bad width in $GENERATE"
}
if width == 0 {
return "%" + base, offset, ""
}
return "%0" + widthStr + base, offset, ""
}

Some files were not shown because too many files have changed in this diff Show More