Number of fixes in response to code review

This version cannot complete a handshake.
The program will panic upon receiving any message on the UDP socket.
This commit is contained in:
Mathias Hall-Andersen
2017-08-07 15:25:04 +02:00
parent 8c34c4cbb3
commit cba1d6585a
12 changed files with 552 additions and 445 deletions

View File

@@ -111,113 +111,84 @@ func (device *Device) RoutineBusyMonitor() {
func (device *Device) RoutineReceiveIncomming() {
logInfo := device.log.Info
logDebug := device.log.Debug
logDebug.Println("Routine, receive incomming, started")
var buffer *[MaxMessageSize]byte
for {
// check if stopped
// wait for new conn
var conn *net.UDPConn
select {
case <-device.signal.newUDPConn:
device.net.mutex.RLock()
conn = device.net.conn
device.net.mutex.RUnlock()
case <-device.signal.stop:
return
default:
}
// read next datagram
if buffer == nil {
buffer = device.GetMessageBuffer()
}
// TODO: Take writelock to sleep
device.net.mutex.RLock()
conn := device.net.conn
device.net.mutex.RUnlock()
if conn == nil {
time.Sleep(time.Second)
continue
}
// TODO: Wait for new conn or message
conn.SetReadDeadline(time.Now().Add(time.Second))
// receive datagrams until closed
size, raddr, err := conn.ReadFromUDP(buffer[:])
if err != nil || size < MinMessageSize {
continue
}
buffer := device.GetMessageBuffer()
// handle packet
for {
packet := buffer[:size]
msgType := binary.LittleEndian.Uint32(packet[:4])
// read next datagram
size, raddr, err := conn.ReadFromUDP(buffer[:]) // TODO: This is broken
if err != nil {
break
}
if size < MinMessageSize {
continue
}
// check size of packet
packet := buffer[:size]
msgType := binary.LittleEndian.Uint32(packet[:4])
var okay bool
func() {
switch msgType {
case MessageInitiationType, MessageResponseType:
// TODO: Check size early
// add to handshake queue
device.addToHandshakeQueue(
device.queue.handshake,
QueueHandshakeElement{
msgType: msgType,
buffer: buffer,
packet: packet,
source: raddr,
},
)
buffer = nil
case MessageCookieReplyType:
// TODO: Queue all the things
// verify and update peer cookie state
if len(packet) != MessageCookieReplySize {
return
}
var reply MessageCookieReply
reader := bytes.NewReader(packet)
err := binary.Read(reader, binary.LittleEndian, &reply)
if err != nil {
logDebug.Println("Failed to decode cookie reply")
return
}
device.ConsumeMessageCookieReply(&reply)
// check if transport
case MessageTransportType:
// lookup key pair
// check size
if len(packet) < MessageTransportSize {
return
if len(packet) < MessageTransportType {
continue
}
// lookup key pair
receiver := binary.LittleEndian.Uint32(
packet[MessageTransportOffsetReceiver:MessageTransportOffsetCounter],
)
value := device.indices.Lookup(receiver)
keyPair := value.keyPair
if keyPair == nil {
return
continue
}
// check key-pair expiry
if keyPair.created.Add(RejectAfterTime).Before(time.Now()) {
return
continue
}
// add to peer queue
// create work element
peer := value.peer
elem := &QueueInboundElement{
@@ -233,11 +204,33 @@ func (device *Device) RoutineReceiveIncomming() {
device.addToInboundQueue(device.queue.decryption, elem)
device.addToInboundQueue(peer.queue.inbound, elem)
buffer = nil
continue
default:
logInfo.Println("Got unknown message from:", raddr)
// otherwise it is a handshake related packet
case MessageInitiationType:
okay = len(packet) == MessageInitiationSize
case MessageResponseType:
okay = len(packet) == MessageResponseSize
case MessageCookieReplyType:
okay = len(packet) == MessageCookieReplySize
}
}()
if okay {
device.addToHandshakeQueue(
device.queue.handshake,
QueueHandshakeElement{
msgType: msgType,
buffer: buffer,
packet: packet,
source: raddr,
},
)
buffer = device.GetMessageBuffer()
}
}
}
}
@@ -306,154 +299,165 @@ func (device *Device) RoutineHandshake() {
return
}
func() {
// handle cookie fields and ratelimiting
// verify mac1
switch elem.msgType {
case MessageCookieReplyType:
// verify and update peer cookie state
var reply MessageCookieReply
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &reply)
if err != nil {
logDebug.Println("Failed to decode cookie reply")
return
}
device.ConsumeMessageCookieReply(&reply)
continue
case MessageInitiationType, MessageResponseType:
// check mac fields and ratelimit
if !device.mac.CheckMAC1(elem.packet) {
logDebug.Println("Received packet with invalid mac1")
return
}
// verify mac2
busy := atomic.LoadInt32(&device.underLoad) == AtomicTrue
if busy && !device.mac.CheckMAC2(elem.packet, elem.source) {
sender := binary.LittleEndian.Uint32(elem.packet[4:8]) // "sender" always follows "type"
reply, err := device.CreateMessageCookieReply(elem.packet, sender, elem.source)
if err != nil {
logError.Println("Failed to create cookie reply:", err)
return
}
// TODO: Use temp
writer := bytes.NewBuffer(elem.packet[:0])
binary.Write(writer, binary.LittleEndian, reply)
elem.packet = writer.Bytes()
_, err = device.net.conn.WriteToUDP(elem.packet, elem.source)
if err != nil {
logDebug.Println("Failed to send cookie reply:", err)
}
return
}
// ratelimit
// TODO: Only ratelimit when busy
if !device.ratelimiter.Allow(elem.source.IP) {
return
}
// handle messages
switch elem.msgType {
case MessageInitiationType:
// unmarshal
if len(elem.packet) != MessageInitiationSize {
return
}
var msg MessageInitiation
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &msg)
if err != nil {
logError.Println("Failed to decode initiation message")
return
}
// consume initiation
peer := device.ConsumeMessageInitiation(&msg)
if peer == nil {
logInfo.Println(
"Recieved invalid initiation message from",
elem.source.IP.String(),
elem.source.Port,
if busy {
if !device.mac.CheckMAC2(elem.packet, elem.source) {
sender := binary.LittleEndian.Uint32(elem.packet[4:8]) // "sender" always follows "type"
reply, err := device.CreateMessageCookieReply(elem.packet, sender, elem.source)
if err != nil {
logError.Println("Failed to create cookie reply:", err)
return
}
writer := bytes.NewBuffer(temp[:0])
binary.Write(writer, binary.LittleEndian, reply)
_, err = device.net.conn.WriteToUDP(
writer.Bytes(),
elem.source,
)
return
if err != nil {
logDebug.Println("Failed to send cookie reply:", err)
}
continue
}
// update timers
peer.TimerAnyAuthenticatedPacketTraversal()
peer.TimerAnyAuthenticatedPacketReceived()
// update endpoint
// TODO: Add a race condition \s
peer.mutex.Lock()
peer.endpoint = elem.source
peer.mutex.Unlock()
// create response
response, err := device.CreateMessageResponse(peer)
if err != nil {
logError.Println("Failed to create response message:", err)
return
if !device.ratelimiter.Allow(elem.source.IP) {
continue
}
peer.TimerEphemeralKeyCreated()
peer.NewKeyPair()
logDebug.Println("Creating response message for", peer.String())
writer := bytes.NewBuffer(temp[:0])
binary.Write(writer, binary.LittleEndian, response)
packet := writer.Bytes()
peer.mac.AddMacs(packet)
// send response
peer.SendBuffer(packet)
peer.TimerAnyAuthenticatedPacketTraversal()
case MessageResponseType:
// unmarshal
if len(elem.packet) != MessageResponseSize {
return
}
var msg MessageResponse
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &msg)
if err != nil {
logError.Println("Failed to decode response message")
return
}
// consume response
peer := device.ConsumeMessageResponse(&msg)
if peer == nil {
logInfo.Println(
"Recieved invalid response message from",
elem.source.IP.String(),
elem.source.Port,
)
return
}
// update timers
peer.TimerAnyAuthenticatedPacketTraversal()
peer.TimerAnyAuthenticatedPacketReceived()
peer.TimerHandshakeComplete()
// derive key-pair
peer.NewKeyPair()
peer.SendKeepAlive()
default:
logError.Println("Invalid message type in handshake queue")
}
}()
default:
logError.Println("Invalid packet ended up in the handshake queue")
continue
}
// handle handshake initation/response content
switch elem.msgType {
case MessageInitiationType:
// unmarshal
var msg MessageInitiation
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &msg)
if err != nil {
logError.Println("Failed to decode initiation message")
continue
}
// consume initiation
peer := device.ConsumeMessageInitiation(&msg)
if peer == nil {
logInfo.Println(
"Recieved invalid initiation message from",
elem.source.IP.String(),
elem.source.Port,
)
continue
}
// update timers
peer.TimerAnyAuthenticatedPacketTraversal()
peer.TimerAnyAuthenticatedPacketReceived()
// update endpoint
// TODO: Discover destination address also, only update on change
peer.mutex.Lock()
peer.endpoint = elem.source
peer.mutex.Unlock()
// create response
response, err := device.CreateMessageResponse(peer)
if err != nil {
logError.Println("Failed to create response message:", err)
continue
}
peer.TimerEphemeralKeyCreated()
peer.NewKeyPair()
logDebug.Println("Creating response message for", peer.String())
writer := bytes.NewBuffer(temp[:0])
binary.Write(writer, binary.LittleEndian, response)
packet := writer.Bytes()
peer.mac.AddMacs(packet)
// send response
_, err = peer.SendBuffer(packet)
if err == nil {
peer.TimerAnyAuthenticatedPacketTraversal()
}
case MessageResponseType:
// unmarshal
var msg MessageResponse
reader := bytes.NewReader(elem.packet)
err := binary.Read(reader, binary.LittleEndian, &msg)
if err != nil {
logError.Println("Failed to decode response message")
continue
}
// consume response
peer := device.ConsumeMessageResponse(&msg)
if peer == nil {
logInfo.Println(
"Recieved invalid response message from",
elem.source.IP.String(),
elem.source.Port,
)
continue
}
peer.TimerEphemeralKeyCreated()
// update timers
peer.TimerAnyAuthenticatedPacketTraversal()
peer.TimerAnyAuthenticatedPacketReceived()
peer.TimerHandshakeComplete()
// derive key-pair
peer.NewKeyPair()
peer.SendKeepAlive()
}
}
}
@@ -463,6 +467,7 @@ func (peer *Peer) RoutineSequentialReceiver() {
device := peer.device
logInfo := device.log.Info
logError := device.log.Error
logDebug := device.log.Debug
logDebug.Println("Routine, sequential receiver, started for peer", peer.id)
@@ -478,116 +483,104 @@ func (peer *Peer) RoutineSequentialReceiver() {
// process packet
func() {
if elem.IsDropped() {
return
if elem.IsDropped() {
continue
}
// check for replay
if !elem.keyPair.replayFilter.ValidateCounter(elem.counter) {
continue
}
peer.TimerAnyAuthenticatedPacketTraversal()
peer.TimerAnyAuthenticatedPacketReceived()
peer.KeepKeyFreshReceiving()
// check if using new key-pair
kp := &peer.keyPairs
kp.mutex.Lock()
if kp.next == elem.keyPair {
peer.TimerHandshakeComplete()
kp.previous = kp.current
kp.current = kp.next
kp.next = nil
}
kp.mutex.Unlock()
// check for keep-alive
if len(elem.packet) == 0 {
logDebug.Println("Received keep-alive from", peer.String())
continue
}
peer.TimerDataReceived()
// verify source and strip padding
switch elem.packet[0] >> 4 {
case ipv4.Version:
// strip padding
if len(elem.packet) < ipv4.HeaderLen {
continue
}
// check for replay
if !elem.keyPair.replayFilter.ValidateCounter(elem.counter) {
return
field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2]
length := binary.BigEndian.Uint16(field)
if int(length) > len(elem.packet) || int(length) < ipv4.HeaderLen {
continue
}
peer.TimerAnyAuthenticatedPacketTraversal()
peer.TimerAnyAuthenticatedPacketReceived()
peer.KeepKeyFreshReceiving()
elem.packet = elem.packet[:length]
// check if using new key-pair
// verify IPv4 source
kp := &peer.keyPairs
kp.mutex.Lock()
if kp.next == elem.keyPair {
peer.TimerHandshakeComplete()
kp.previous = kp.current
kp.current = kp.next
kp.next = nil
}
kp.mutex.Unlock()
// check for keep-alive
if len(elem.packet) == 0 {
logDebug.Println("Received keep-alive from", peer.String())
return
}
peer.TimerDataReceived()
// verify source and strip padding
switch elem.packet[0] >> 4 {
case ipv4.Version:
// strip padding
if len(elem.packet) < ipv4.HeaderLen {
return
}
field := elem.packet[IPv4offsetTotalLength : IPv4offsetTotalLength+2]
length := binary.BigEndian.Uint16(field)
// TODO: check length of packet & NOT TOO SMALL either
elem.packet = elem.packet[:length]
// verify IPv4 source
src := elem.packet[IPv4offsetSrc : IPv4offsetSrc+net.IPv4len]
if device.routingTable.LookupIPv4(src) != peer {
logInfo.Println("Packet with unallowed source IP from", peer.String())
return
}
case ipv6.Version:
// strip padding
if len(elem.packet) < ipv6.HeaderLen {
return
}
field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
length := binary.BigEndian.Uint16(field)
length += ipv6.HeaderLen
// TODO: check length of packet
elem.packet = elem.packet[:length]
// verify IPv6 source
src := elem.packet[IPv6offsetSrc : IPv6offsetSrc+net.IPv6len]
if device.routingTable.LookupIPv6(src) != peer {
logInfo.Println("Packet with unallowed source IP from", peer.String())
return
}
default:
logInfo.Println("Packet with invalid IP version from", peer.String())
return
src := elem.packet[IPv4offsetSrc : IPv4offsetSrc+net.IPv4len]
if device.routingTable.LookupIPv4(src) != peer {
logInfo.Println("Packet with unallowed source IP from", peer.String())
continue
}
atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)))
device.addToInboundQueue(device.queue.inbound, elem)
case ipv6.Version:
// TODO: move TUN write into per peer routine
}()
}
}
// strip padding
func (device *Device) RoutineWriteToTUN() {
logError := device.log.Error
logDebug := device.log.Debug
logDebug.Println("Routine, sequential tun writer, started")
for {
select {
case <-device.signal.stop:
return
case elem := <-device.queue.inbound:
_, err := device.tun.Write(elem.packet)
device.PutMessageBuffer(elem.buffer)
if err != nil {
logError.Println("Failed to write packet to TUN device:", err)
if len(elem.packet) < ipv6.HeaderLen {
continue
}
field := elem.packet[IPv6offsetPayloadLength : IPv6offsetPayloadLength+2]
length := binary.BigEndian.Uint16(field)
length += ipv6.HeaderLen
if int(length) > len(elem.packet) {
continue
}
elem.packet = elem.packet[:length]
// verify IPv6 source
src := elem.packet[IPv6offsetSrc : IPv6offsetSrc+net.IPv6len]
if device.routingTable.LookupIPv6(src) != peer {
logInfo.Println("Packet with unallowed source IP from", peer.String())
continue
}
default:
logInfo.Println("Packet with invalid IP version from", peer.String())
continue
}
// write to tun
atomic.AddUint64(&peer.stats.rxBytes, uint64(len(elem.packet)))
_, err := device.tun.Write(elem.packet)
device.PutMessageBuffer(elem.buffer)
if err != nil {
logError.Println("Failed to write packet to TUN device:", err)
}
}
}