Rewrite timers and related state machines

This commit is contained in:
Jason A. Donenfeld
2018-05-07 22:27:03 +02:00
parent 375dcbd4ae
commit 233f079a94
14 changed files with 453 additions and 602 deletions

512
timers.go
View File

@@ -1,355 +1,221 @@
/* SPDX-License-Identifier: GPL-2.0
*
* Copyright (C) 2017-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
* Copyright (C) 2015-2018 Jason A. Donenfeld <Jason@zx2c4.com>. All Rights Reserved.
*
* This is based heavily on timers.c from the kernel implementation.
*/
package main
import (
"bytes"
"encoding/binary"
"math/rand"
"sync/atomic"
"time"
)
/* NOTE:
* Notion of validity
/* This Timer structure and related functions should roughly copy the interface of
* the Linux kernel's struct timer_list.
*/
/* Called when a new authenticated message has been send
*
*/
func (peer *Peer) KeepKeyFreshSending() {
kp := peer.keyPairs.Current()
if kp == nil {
return
}
nonce := atomic.LoadUint64(&kp.sendNonce)
if nonce > RekeyAfterMessages {
peer.event.handshakeBegin.Fire()
}
if kp.isInitiator && time.Now().Sub(kp.created) > RekeyAfterTime {
peer.event.handshakeBegin.Fire()
}
type Timer struct {
timer *time.Timer
isPending bool
}
/* Called when a new authenticated message has been received
*
* NOTE: Not thread safe, but called by sequential receiver!
*/
func (peer *Peer) KeepKeyFreshReceiving() {
if peer.timer.sendLastMinuteHandshake.Get() {
return
}
kp := peer.keyPairs.Current()
if kp == nil {
return
}
if !kp.isInitiator {
return
}
nonce := atomic.LoadUint64(&kp.sendNonce)
send := nonce > RekeyAfterMessages || time.Now().Sub(kp.created) > RekeyAfterTimeReceiving
if send {
// do a last minute attempt at initiating a new handshake
peer.timer.sendLastMinuteHandshake.Set(true)
peer.event.handshakeBegin.Fire()
}
}
/* Queues a keep-alive if no packets are queued for peer
*/
func (peer *Peer) SendKeepAlive() bool {
if len(peer.queue.nonce) != 0 {
return false
}
elem := peer.device.NewOutboundElement()
elem.packet = nil
select {
case peer.queue.nonce <- elem:
return true
default:
return false
}
}
/* Called after successfully completing a handshake.
* i.e. after:
*
* - Valid handshake response
* - First transport message under the "next" key
*/
// peer.device.log.Info.Println(peer, ": New handshake completed")
/* Event:
* An ephemeral key is generated
*
* i.e. after:
*
* CreateMessageInitiation
* CreateMessageResponse
*
* Action:
* Schedule the deletion of all key material
* upon failure to complete a handshake
*/
func (peer *Peer) TimerEphemeralKeyCreated() {
peer.event.ephemeralKeyCreated.Fire()
// peer.timer.zeroAllKeys.Reset(RejectAfterTime * 3)
}
/* Sends a new handshake initiation message to the peer (endpoint)
*/
func (peer *Peer) sendNewHandshake() error {
// create initiation message
msg, err := peer.device.CreateMessageInitiation(peer)
if err != nil {
return err
}
// marshal handshake message
var buff [MessageInitiationSize]byte
writer := bytes.NewBuffer(buff[:0])
binary.Write(writer, binary.LittleEndian, msg)
packet := writer.Bytes()
peer.mac.AddMacs(packet)
// send to endpoint
peer.event.anyAuthenticatedPacketTraversal.Fire()
return peer.SendBuffer(packet)
}
func newTimer() *time.Timer {
timer := time.NewTimer(time.Hour)
timer.Stop()
func (peer *Peer) NewTimer(expirationFunction func(*Peer)) *Timer {
timer := &Timer{}
timer.timer = time.AfterFunc(time.Hour, func() {
timer.isPending = false
expirationFunction(peer)
})
timer.timer.Stop()
return timer
}
func (peer *Peer) RoutineTimerHandler() {
func (timer *Timer) Mod(d time.Duration) {
timer.isPending = true
timer.timer.Reset(d)
}
device := peer.device
func (timer *Timer) Del() {
timer.isPending = false
timer.timer.Stop()
}
logInfo := device.log.Info
logDebug := device.log.Debug
func (peer *Peer) timersActive() bool {
return peer.isRunning.Get() && peer.device != nil && peer.device.isUp.Get() && len(peer.device.peers.keyMap) > 0
}
defer func() {
logDebug.Println(peer, ": Routine: timer handler - stopped")
peer.routines.stopping.Done()
}()
func expiredRetransmitHandshake(peer *Peer) {
if peer.timers.handshakeAttempts > MaxTimerHandshakes {
peer.device.log.Debug.Printf("%s: Handshake did not complete after %d attempts, giving up\n", peer, MaxTimerHandshakes+2)
logDebug.Println(peer, ": Routine: timer handler - started")
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
}
// reset all timers
/* We drop all packets without a keypair and don't try again,
* if we try unsuccessfully for too long to make a handshake.
*/
peer.FlushNonceQueue()
enableHandshake := true
pendingHandshakeNew := false
pendingKeepalivePassive := false
needAnotherKeepalive := false
/* We set a timer for destroying any residue that might be left
* of a partial exchange.
*/
if peer.timersActive() && !peer.timers.zeroKeyMaterial.isPending {
peer.timers.zeroKeyMaterial.Mod(RejectAfterTime * 3)
}
} else {
peer.timers.handshakeAttempts++
peer.device.log.Debug.Printf("%s: Handshake did not complete after %d seconds, retrying (try %d)\n", peer, int(RekeyTimeout.Seconds()), peer.timers.handshakeAttempts+1)
timerKeepalivePassive := newTimer()
timerHandshakeDeadline := newTimer()
timerHandshakeTimeout := newTimer()
timerHandshakeNew := newTimer()
timerZeroAllKeys := newTimer()
timerKeepalivePersistent := newTimer()
/* We clear the endpoint address src address, in case this is the cause of trouble. */
peer.mutex.Lock()
if peer.endpoint != nil {
peer.endpoint.ClearSrc()
}
peer.mutex.Unlock()
interval := peer.persistentKeepaliveInterval
if interval > 0 {
duration := time.Duration(interval) * time.Second
timerKeepalivePersistent.Reset(duration)
peer.SendHandshakeInitiation(true)
}
}
// signal synchronised setup complete
peer.routines.starting.Done()
// handle timer events
for {
select {
/* stopping */
case <-peer.routines.stop:
return
/* events */
case <-peer.event.dataSent.C:
timerKeepalivePassive.Stop()
if !pendingHandshakeNew {
timerHandshakeNew.Reset(NewHandshakeTime)
}
case <-peer.event.dataReceived.C:
if pendingKeepalivePassive {
needAnotherKeepalive = true
} else {
timerKeepalivePassive.Reset(KeepaliveTimeout)
}
case <-peer.event.anyAuthenticatedPacketTraversal.C:
interval := peer.persistentKeepaliveInterval
if interval > 0 {
duration := time.Duration(interval) * time.Second
timerKeepalivePersistent.Reset(duration)
}
case <-peer.event.handshakeBegin.C:
if !enableHandshake {
continue
}
logDebug.Println(peer, ": Event, Handshake Begin")
err := peer.sendNewHandshake()
// set timeout
jitter := time.Millisecond * time.Duration(rand.Int31n(334))
timerKeepalivePassive.Stop()
timerHandshakeTimeout.Reset(RekeyTimeout + jitter)
if err != nil {
logInfo.Println(peer, ": Failed to send handshake initiation", err)
} else {
logDebug.Println(peer, ": Send handshake initiation (initial)")
}
timerHandshakeDeadline.Reset(RekeyAttemptTime)
// disable further handshakes
peer.event.handshakeBegin.Clear()
enableHandshake = false
case <-peer.event.handshakeCompleted.C:
logInfo.Println(peer, ": Handshake completed")
atomic.StoreInt64(
&peer.stats.lastHandshakeNano,
time.Now().UnixNano(),
)
timerHandshakeTimeout.Stop()
timerHandshakeDeadline.Stop()
peer.timer.sendLastMinuteHandshake.Set(false)
// allow further handshakes
peer.event.handshakeBegin.Clear()
enableHandshake = true
/* timers */
case <-timerKeepalivePersistent.C:
interval := peer.persistentKeepaliveInterval
if interval > 0 {
logDebug.Println(peer, ": Send keep-alive (persistent)")
timerKeepalivePassive.Stop()
peer.SendKeepAlive()
}
case <-timerKeepalivePassive.C:
logDebug.Println(peer, ": Send keep-alive (passive)")
peer.SendKeepAlive()
if needAnotherKeepalive {
timerKeepalivePassive.Reset(KeepaliveTimeout)
needAnotherKeepalive = false
}
case <-timerZeroAllKeys.C:
logDebug.Println(peer, ": Clear all key-material (timer event)")
hs := &peer.handshake
hs.mutex.Lock()
kp := &peer.keyPairs
kp.mutex.Lock()
// remove key-pairs
if kp.previous != nil {
device.DeleteKeyPair(kp.previous)
kp.previous = nil
}
if kp.current != nil {
device.DeleteKeyPair(kp.current)
kp.current = nil
}
if kp.next != nil {
device.DeleteKeyPair(kp.next)
kp.next = nil
}
kp.mutex.Unlock()
// zero out handshake
device.indices.Delete(hs.localIndex)
hs.Clear()
hs.mutex.Unlock()
case <-timerHandshakeTimeout.C:
// allow new handshake to be send
enableHandshake = true
// clear source (in case this is causing problems)
peer.mutex.Lock()
if peer.endpoint != nil {
peer.endpoint.ClearSrc()
}
peer.mutex.Unlock()
// send new handshake
err := peer.sendNewHandshake()
// set timeout
jitter := time.Millisecond * time.Duration(rand.Int31n(334))
timerKeepalivePassive.Stop()
timerHandshakeTimeout.Reset(RekeyTimeout + jitter)
if err != nil {
logInfo.Println(peer, ": Failed to send handshake initiation", err)
} else {
logDebug.Println(peer, ": Send handshake initiation (subsequent)")
}
// disable further handshakes
peer.event.handshakeBegin.Clear()
enableHandshake = false
case <-timerHandshakeDeadline.C:
// clear all queued packets and stop keep-alive
logInfo.Println(peer, ": Handshake negotiation timed-out")
peer.flushNonceQueue()
peer.event.flushNonceQueue.Fire()
// renable further handshakes
peer.event.handshakeBegin.Clear()
enableHandshake = true
func expiredSendKeepalive(peer *Peer) {
peer.SendKeepalive()
if peer.timers.needAnotherKeepalive {
peer.timers.needAnotherKeepalive = false
if peer.timersActive() {
peer.timers.sendKeepalive.Mod(KeepaliveTimeout)
}
}
}
func expiredNewHandshake(peer *Peer) {
peer.device.log.Debug.Printf("%s: Retrying handshake because we stopped hearing back after %d seconds\n", peer, int((KeepaliveTimeout + RekeyTimeout).Seconds()))
/* We clear the endpoint address src address, in case this is the cause of trouble. */
peer.mutex.Lock()
if peer.endpoint != nil {
peer.endpoint.ClearSrc()
}
peer.mutex.Unlock()
peer.SendHandshakeInitiation(false)
}
func expiredZeroKeyMaterial(peer *Peer) {
peer.device.log.Debug.Printf(":%s Removing all keys, since we haven't received a new one in %d seconds\n", peer, int((RejectAfterTime * 3).Seconds()))
hs := &peer.handshake
hs.mutex.Lock()
kp := &peer.keyPairs
kp.mutex.Lock()
if kp.previous != nil {
peer.device.DeleteKeypair(kp.previous)
kp.previous = nil
}
if kp.current != nil {
peer.device.DeleteKeypair(kp.current)
kp.current = nil
}
if kp.next != nil {
peer.device.DeleteKeypair(kp.next)
kp.next = nil
}
kp.mutex.Unlock()
peer.device.indices.Delete(hs.localIndex)
hs.Clear()
hs.mutex.Unlock()
}
func expiredPersistentKeepalive(peer *Peer) {
if peer.persistentKeepaliveInterval > 0 {
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
}
peer.SendKeepalive()
}
}
/* Should be called after an authenticated data packet is sent. */
func (peer *Peer) timersDataSent() {
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
}
if peer.timersActive() && !peer.timers.newHandshake.isPending {
peer.timers.newHandshake.Mod(KeepaliveTimeout + RekeyTimeout)
}
}
/* Should be called after an authenticated data packet is received. */
func (peer *Peer) timersDataReceived() {
if peer.timersActive() {
if !peer.timers.sendKeepalive.isPending {
peer.timers.sendKeepalive.Mod(KeepaliveTimeout)
} else {
peer.timers.needAnotherKeepalive = true
}
}
}
/* Should be called after any type of authenticated packet is received -- keepalive or data. */
func (peer *Peer) timersAnyAuthenticatedPacketReceived() {
if peer.timersActive() {
peer.timers.newHandshake.Del()
}
}
/* Should be called after a handshake initiation message is sent. */
func (peer *Peer) timersHandshakeInitiated() {
if peer.timersActive() {
peer.timers.sendKeepalive.Del()
peer.timers.retransmitHandshake.Mod(RekeyTimeout + time.Millisecond*time.Duration(rand.Int31n(RekeyTimeoutJitterMaxMs)))
}
}
/* Should be called after a handshake response message is received and processed or when getting key confirmation via the first data message. */
func (peer *Peer) timersHandshakeComplete() {
if peer.timersActive() {
peer.timers.retransmitHandshake.Del()
}
peer.timers.handshakeAttempts = 0
peer.timers.sentLastMinuteHandshake = false
atomic.StoreInt64(&peer.stats.lastHandshakeNano, time.Now().UnixNano())
}
/* Should be called after an ephemeral key is created, which is before sending a handshake response or after receiving a handshake response. */
func (peer *Peer) timersSessionDerived() {
if peer.timersActive() {
peer.timers.zeroKeyMaterial.Mod(RejectAfterTime * 3)
}
}
/* Should be called before a packet with authentication -- data, keepalive, either handshake -- is sent, or after one is received. */
func (peer *Peer) timersAnyAuthenticatedPacketTraversal() {
if peer.persistentKeepaliveInterval > 0 && peer.timersActive() {
peer.timers.persistentKeepalive.Mod(time.Duration(peer.persistentKeepaliveInterval) * time.Second)
}
}
func (peer *Peer) timersInit() {
peer.timers.retransmitHandshake = peer.NewTimer(expiredRetransmitHandshake)
peer.timers.sendKeepalive = peer.NewTimer(expiredSendKeepalive)
peer.timers.newHandshake = peer.NewTimer(expiredNewHandshake)
peer.timers.zeroKeyMaterial = peer.NewTimer(expiredZeroKeyMaterial)
peer.timers.persistentKeepalive = peer.NewTimer(expiredPersistentKeepalive)
peer.timers.handshakeAttempts = 0
peer.timers.sentLastMinuteHandshake = false
peer.timers.needAnotherKeepalive = false
peer.timers.lastSentHandshake = time.Now().Add(-(RekeyTimeout + time.Second))
}
func (peer *Peer) timersStop() {
peer.timers.retransmitHandshake.Del()
peer.timers.sendKeepalive.Del()
peer.timers.newHandshake.Del()
peer.timers.zeroKeyMaterial.Del()
peer.timers.persistentKeepalive.Del()
}