Files
sing-tun/internal/fdbased_darwin/endpoint.go
2025-07-17 23:46:08 +08:00

669 lines
20 KiB
Go

// Copyright 2018 The gVisor Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Package fdbased provides the implementation of data-link layer endpoints
// backed by boundary-preserving file descriptors (e.g., TUN devices,
// seqpacket/datagram sockets).
//
// FD based endpoints can be used in the networking stack by calling New() to
// create a new endpoint, and then passing it as an argument to
// Stack.CreateNIC().
//
// FD based endpoints can use more than one file descriptor to read incoming
// packets. If there are more than one FDs specified and the underlying FD is an
// AF_PACKET then the endpoint will enable FANOUT mode on the socket so that the
// host kernel will consistently hash the packets to the sockets. This ensures
// that packets for the same TCP streams are not reordered.
//
// Similarly if more than one FD's are specified where the underlying FD is not
// AF_PACKET then it's the caller's responsibility to ensure that all inbound
// packets on the descriptors are consistently 5 tuple hashed to one of the
// descriptors to prevent TCP reordering.
//
// Since netstack today does not compute 5 tuple hashes for outgoing packets we
// only use the first FD to write outbound packets. Once 5 tuple hashes for
// all outbound packets are available we will make use of all underlying FD's to
// write outbound packets.
package fdbased
import (
"fmt"
"runtime"
"github.com/sagernet/gvisor/pkg/buffer"
"github.com/sagernet/gvisor/pkg/sync"
"github.com/sagernet/gvisor/pkg/tcpip"
"github.com/sagernet/gvisor/pkg/tcpip/header"
"github.com/sagernet/gvisor/pkg/tcpip/stack"
"github.com/sagernet/sing-tun/internal/rawfile_darwin"
"github.com/sagernet/sing/common"
"golang.org/x/sys/unix"
)
// linkDispatcher reads packets from the link FD and dispatches them to the
// NetworkDispatcher.
type linkDispatcher interface {
Stop()
dispatch() (bool, tcpip.Error)
release()
}
// PacketDispatchMode are the various supported methods of receiving and
// dispatching packets from the underlying FD.
type PacketDispatchMode int
// BatchSize is the number of packets to write in each syscall. It is 47
// because when GVisorGSO is in use then a single 65KB TCP segment can get
// split into 46 segments of 1420 bytes and a single 216 byte segment.
const BatchSize = 47
const (
// Readv is the default dispatch mode and is the least performant of the
// dispatch options but the one that is supported by all underlying FD
// types.
Readv PacketDispatchMode = iota
// RecvMMsg enables use of recvmmsg() syscall instead of readv() to
// read inbound packets. This reduces # of syscalls needed to process
// packets.
//
// NOTE: recvmmsg() is only supported for sockets, so if the underlying
// FD is not a socket then the code will still fall back to the readv()
// path.
RecvMMsg
// PacketMMap enables use of PACKET_RX_RING to receive packets from the
// NIC. PacketMMap requires that the underlying FD be an AF_PACKET. The
// primary use-case for this is runsc which uses an AF_PACKET FD to
// receive packets from the veth device.
PacketMMap
)
func (p PacketDispatchMode) String() string {
switch p {
case Readv:
return "Readv"
case RecvMMsg:
return "RecvMMsg"
case PacketMMap:
return "PacketMMap"
default:
return fmt.Sprintf("unknown packet dispatch mode '%d'", p)
}
}
var (
_ stack.LinkEndpoint = (*endpoint)(nil)
_ stack.GSOEndpoint = (*endpoint)(nil)
)
// +stateify savable
type fdInfo struct {
fd int
isSocket bool
}
// +stateify savable
type endpoint struct {
// fds is the set of file descriptors each identifying one inbound/outbound
// channel. The endpoint will dispatch from all inbound channels as well as
// hash outbound packets to specific channels based on the packet hash.
fds []fdInfo
// hdrSize specifies the link-layer header size. If set to 0, no header
// is added/removed; otherwise an ethernet header is used.
hdrSize int
// caps holds the endpoint capabilities.
caps stack.LinkEndpointCapabilities
// closed is a function to be called when the FD's peer (if any) closes
// its end of the communication pipe.
closed func(tcpip.Error) `state:"nosave"`
inboundDispatchers []linkDispatcher
mu endpointRWMutex `state:"nosave"`
// +checklocks:mu
dispatcher stack.NetworkDispatcher
// packetDispatchMode controls the packet dispatcher used by this
// endpoint.
packetDispatchMode PacketDispatchMode
// wg keeps track of running goroutines.
wg sync.WaitGroup `state:"nosave"`
// maxSyscallHeaderBytes has the same meaning as
// Options.MaxSyscallHeaderBytes.
maxSyscallHeaderBytes uintptr
// writevMaxIovs is the maximum number of iovecs that may be passed to
// rawfile.NonBlockingWriteIovec, as possibly limited by
// maxSyscallHeaderBytes. (No analogous limit is defined for
// rawfile.NonBlockingSendMMsg, since in that case the maximum number of
// iovecs also depends on the number of mmsghdrs. Instead, if sendBatch
// encounters a packet whose iovec count is limited by
// maxSyscallHeaderBytes, it falls back to writing the packet using writev
// via WritePacket.)
writevMaxIovs int
// addr is the address of the endpoint.
//
// +checklocks:mu
addr tcpip.LinkAddress
// mtu (maximum transmission unit) is the maximum size of a packet.
// +checklocks:mu
mtu uint32
batchSize int
sendMsgX bool
}
// Options specify the details about the fd-based endpoint to be created.
//
// +stateify savable
type Options struct {
// FDs is a set of FDs used to read/write packets.
FDs []int
// MTU is the mtu to use for this endpoint.
MTU uint32
// EthernetHeader if true, indicates that the endpoint should read/write
// ethernet frames instead of IP packets.
EthernetHeader bool
// ClosedFunc is a function to be called when an endpoint's peer (if
// any) closes its end of the communication pipe.
ClosedFunc func(tcpip.Error)
// Address is the link address for this endpoint. Only used if
// EthernetHeader is true.
Address tcpip.LinkAddress
// SaveRestore if true, indicates that this NIC capability set should
// include CapabilitySaveRestore
SaveRestore bool
// DisconnectOk if true, indicates that this NIC capability set should
// include CapabilityDisconnectOk.
DisconnectOk bool
// PacketDispatchMode specifies the type of inbound dispatcher to be
// used for this endpoint.
PacketDispatchMode PacketDispatchMode
// TXChecksumOffload if true, indicates that this endpoints capability
// set should include CapabilityTXChecksumOffload.
TXChecksumOffload bool
// RXChecksumOffload if true, indicates that this endpoints capability
// set should include CapabilityRXChecksumOffload.
RXChecksumOffload bool
// If MaxSyscallHeaderBytes is non-zero, it is the maximum number of bytes
// of struct iovec, msghdr, and mmsghdr that may be passed by each host
// system call.
MaxSyscallHeaderBytes int
// InterfaceIndex is the interface index of the underlying device.
InterfaceIndex int
// ProcessorsPerChannel is the number of goroutines used to handle packets
// from each FD.
ProcessorsPerChannel int
MultiPendingPackets bool
SendMsgX bool
}
// New creates a new fd-based endpoint.
//
// Makes fd non-blocking, but does not take ownership of fd, which must remain
// open for the lifetime of the returned endpoint (until after the endpoint has
// stopped being using and Wait returns).
func New(opts *Options) (stack.LinkEndpoint, error) {
caps := stack.LinkEndpointCapabilities(0)
if opts.RXChecksumOffload {
caps |= stack.CapabilityRXChecksumOffload
}
if opts.TXChecksumOffload {
caps |= stack.CapabilityTXChecksumOffload
}
hdrSize := 0
if opts.EthernetHeader {
hdrSize = header.EthernetMinimumSize
caps |= stack.CapabilityResolutionRequired
}
if opts.SaveRestore {
caps |= stack.CapabilitySaveRestore
}
if opts.DisconnectOk {
caps |= stack.CapabilityDisconnectOk
}
if len(opts.FDs) == 0 {
return nil, fmt.Errorf("opts.FD is empty, at least one FD must be specified")
}
if opts.MaxSyscallHeaderBytes < 0 {
return nil, fmt.Errorf("opts.MaxSyscallHeaderBytes is negative")
}
var batchSize int
if opts.MultiPendingPackets {
batchSize = int((512*1024)/(opts.MTU)) + 1
} else {
batchSize = 1
}
e := &endpoint{
mtu: opts.MTU,
caps: caps,
closed: opts.ClosedFunc,
addr: opts.Address,
hdrSize: hdrSize,
packetDispatchMode: opts.PacketDispatchMode,
maxSyscallHeaderBytes: uintptr(opts.MaxSyscallHeaderBytes),
writevMaxIovs: rawfile.MaxIovs,
batchSize: batchSize,
sendMsgX: opts.SendMsgX,
}
if e.maxSyscallHeaderBytes != 0 {
if max := int(e.maxSyscallHeaderBytes / rawfile.SizeofIovec); max < e.writevMaxIovs {
e.writevMaxIovs = max
}
}
// Create per channel dispatchers.
for _, fd := range opts.FDs {
if err := unix.SetNonblock(fd, true); err != nil {
return nil, fmt.Errorf("unix.SetNonblock(%v) failed: %v", fd, err)
}
e.fds = append(e.fds, fdInfo{fd: fd, isSocket: true})
if opts.ProcessorsPerChannel == 0 {
opts.ProcessorsPerChannel = common.Max(1, runtime.GOMAXPROCS(0)/len(opts.FDs))
}
inboundDispatcher, err := newRecvMMsgDispatcher(fd, e, opts)
if err != nil {
return nil, fmt.Errorf("createInboundDispatcher(...) = %v", err)
}
e.inboundDispatchers = append(e.inboundDispatchers, inboundDispatcher)
}
return e, nil
}
// Attach launches the goroutine that reads packets from the file descriptor and
// dispatches them via the provided dispatcher. If one is already attached,
// then nothing happens.
//
// Attach implements stack.LinkEndpoint.Attach.
func (e *endpoint) Attach(dispatcher stack.NetworkDispatcher) {
e.mu.Lock()
// nil means the NIC is being removed.
if dispatcher == nil && e.dispatcher != nil {
for _, dispatcher := range e.inboundDispatchers {
dispatcher.Stop()
}
e.dispatcher = nil
// NOTE(gvisor.dev/issue/11456): Unlock e.mu before e.Wait().
e.mu.Unlock()
e.Wait()
return
}
defer e.mu.Unlock()
if dispatcher != nil && e.dispatcher == nil {
e.dispatcher = dispatcher
// Link endpoints are not savable. When transportation endpoints are
// saved, they stop sending outgoing packets and all incoming packets
// are rejected.
for i := range e.inboundDispatchers {
e.wg.Add(1)
go func(i int) { // S/R-SAFE: See above.
e.dispatchLoop(e.inboundDispatchers[i])
e.wg.Done()
}(i)
}
}
}
// IsAttached implements stack.LinkEndpoint.IsAttached.
func (e *endpoint) IsAttached() bool {
e.mu.RLock()
defer e.mu.RUnlock()
return e.dispatcher != nil
}
// MTU implements stack.LinkEndpoint.MTU.
func (e *endpoint) MTU() uint32 {
e.mu.RLock()
defer e.mu.RUnlock()
return e.mtu
}
// SetMTU implements stack.LinkEndpoint.SetMTU.
func (e *endpoint) SetMTU(mtu uint32) {
e.mu.Lock()
defer e.mu.Unlock()
e.mtu = mtu
}
// Capabilities implements stack.LinkEndpoint.Capabilities.
func (e *endpoint) Capabilities() stack.LinkEndpointCapabilities {
return e.caps
}
// MaxHeaderLength returns the maximum size of the link-layer header.
func (e *endpoint) MaxHeaderLength() uint16 {
return uint16(e.hdrSize)
}
// LinkAddress returns the link address of this endpoint.
func (e *endpoint) LinkAddress() tcpip.LinkAddress {
e.mu.RLock()
defer e.mu.RUnlock()
return e.addr
}
// SetLinkAddress implements stack.LinkEndpoint.SetLinkAddress.
func (e *endpoint) SetLinkAddress(addr tcpip.LinkAddress) {
e.mu.Lock()
defer e.mu.Unlock()
e.addr = addr
}
// Wait implements stack.LinkEndpoint.Wait. It waits for the endpoint to stop
// reading from its FD.
func (e *endpoint) Wait() {
e.wg.Wait()
}
// AddHeader implements stack.LinkEndpoint.AddHeader.
func (e *endpoint) AddHeader(pkt *stack.PacketBuffer) {
if e.hdrSize > 0 {
// Add ethernet header if needed.
eth := header.Ethernet(pkt.LinkHeader().Push(header.EthernetMinimumSize))
eth.Encode(&header.EthernetFields{
SrcAddr: pkt.EgressRoute.LocalLinkAddress,
DstAddr: pkt.EgressRoute.RemoteLinkAddress,
Type: pkt.NetworkProtocolNumber,
})
}
}
func (e *endpoint) parseHeader(pkt *stack.PacketBuffer) (header.Ethernet, bool) {
if e.hdrSize <= 0 {
return nil, true
}
hdrBytes, ok := pkt.LinkHeader().Consume(e.hdrSize)
if !ok {
return nil, false
}
hdr := header.Ethernet(hdrBytes)
pkt.NetworkProtocolNumber = hdr.Type()
return hdr, true
}
// parseInboundHeader parses the link header of pkt and returns true if the
// header is well-formed and sent to this endpoint's MAC or the broadcast
// address.
func (e *endpoint) parseInboundHeader(pkt *stack.PacketBuffer, wantAddr tcpip.LinkAddress) bool {
hdr, ok := e.parseHeader(pkt)
if !ok || e.hdrSize <= 0 {
return ok
}
dstAddr := hdr.DestinationAddress()
// Per RFC 9542 2.1 on the least significant bit of the first octet of
// a MAC address: "If it is zero, the MAC address is unicast. If it is
// a one, the address is groupcast (multicast or broadcast)." Multicast
// and broadcast are the same thing to ethernet; they are both sent to
// everyone.
return dstAddr == wantAddr || byte(dstAddr[0])&0x01 == 1
}
// ParseHeader implements stack.LinkEndpoint.ParseHeader.
func (e *endpoint) ParseHeader(pkt *stack.PacketBuffer) bool {
_, ok := e.parseHeader(pkt)
return ok
}
var (
packetHeader4 = []byte{0x00, 0x00, 0x00, unix.AF_INET}
packetHeader6 = []byte{0x00, 0x00, 0x00, unix.AF_INET6}
)
// writePacket writes outbound packets to the file descriptor. If it is not
// currently writable, the packet is dropped.
func (e *endpoint) writePacket(pkt *stack.PacketBuffer) tcpip.Error {
fdInfo := e.fds[pkt.Hash%uint32(len(e.fds))]
fd := fdInfo.fd
var vnetHdrBuf []byte
if pkt.NetworkProtocolNumber == header.IPv4ProtocolNumber {
vnetHdrBuf = packetHeader4
} else {
vnetHdrBuf = packetHeader6
}
views := pkt.AsSlices()
numIovecs := len(views)
if len(vnetHdrBuf) != 0 {
numIovecs++
}
if numIovecs > e.writevMaxIovs {
numIovecs = e.writevMaxIovs
}
// Allocate small iovec arrays on the stack.
var iovecsArr [8]unix.Iovec
iovecs := iovecsArr[:0]
if numIovecs > len(iovecsArr) {
iovecs = make([]unix.Iovec, 0, numIovecs)
}
iovecs = rawfile.AppendIovecFromBytes(iovecs, vnetHdrBuf, numIovecs)
for _, v := range views {
iovecs = rawfile.AppendIovecFromBytes(iovecs, v, numIovecs)
}
if errno := rawfile.NonBlockingWriteIovec(fd, iovecs); errno != 0 {
return TranslateErrno(errno)
}
return nil
}
func (e *endpoint) sendBatch(batchFDInfo fdInfo, pkts []*stack.PacketBuffer) (int, tcpip.Error) {
// Degrade to writePacket if underlying fd is not a socket.
if !batchFDInfo.isSocket || !e.sendMsgX {
var written int
var err tcpip.Error
for written < len(pkts) {
if err = e.writePacket(pkts[written]); err != nil {
break
}
written++
}
return written, err
}
// Send a batch of packets through batchFD.
batchFD := batchFDInfo.fd
mmsgHdrsStorage := make([]rawfile.MsgHdrX, 0, len(pkts))
packets := 0
for packets < len(pkts) {
mmsgHdrs := mmsgHdrsStorage
batch := pkts[packets:]
syscallHeaderBytes := uintptr(0)
for _, pkt := range batch {
var vnetHdrBuf []byte
if pkt.NetworkProtocolNumber == header.IPv4ProtocolNumber {
vnetHdrBuf = packetHeader4
} else {
vnetHdrBuf = packetHeader6
}
views, offset := pkt.AsViewList()
var skipped int
var view *buffer.View
for view = views.Front(); view != nil && offset >= view.Size(); view = view.Next() {
offset -= view.Size()
skipped++
}
// We've made it to the usable views.
numIovecs := views.Len() - skipped
if len(vnetHdrBuf) != 0 {
numIovecs++
}
if numIovecs > rawfile.MaxIovs {
numIovecs = rawfile.MaxIovs
}
if e.maxSyscallHeaderBytes != 0 {
syscallHeaderBytes += rawfile.SizeofMsgHdrX + uintptr(numIovecs)*rawfile.SizeofIovec
if syscallHeaderBytes > e.maxSyscallHeaderBytes {
// We can't fit this packet into this call to sendmmsg().
// We could potentially do so if we reduced numIovecs
// further, but this might incur considerable extra
// copying. Leave it to the next batch instead.
break
}
}
// We can't easily allocate iovec arrays on the stack here since
// they will escape this loop iteration via mmsgHdrs.
iovecs := make([]unix.Iovec, 0, numIovecs)
iovecs = rawfile.AppendIovecFromBytes(iovecs, vnetHdrBuf, numIovecs)
// At most one slice has a non-zero offset.
iovecs = rawfile.AppendIovecFromBytes(iovecs, view.AsSlice()[offset:], numIovecs)
for view = view.Next(); view != nil; view = view.Next() {
iovecs = rawfile.AppendIovecFromBytes(iovecs, view.AsSlice(), numIovecs)
}
var mmsgHdr rawfile.MsgHdrX
mmsgHdr.Msg.Iov = &iovecs[0]
mmsgHdr.Msg.SetIovlen(len(iovecs))
// mmsgHdr.DataLen = uint32(len(iovecs))
mmsgHdrs = append(mmsgHdrs, mmsgHdr)
}
if len(mmsgHdrs) == 0 {
// We can't fit batch[0] into a mmsghdr while staying under
// e.maxSyscallHeaderBytes. Use WritePacket, which will avoid the
// mmsghdr (by using writev) and re-buffer iovecs more aggressively
// if necessary (by using e.writevMaxIovs instead of
// rawfile.MaxIovs).
pkt := batch[0]
if err := e.writePacket(pkt); err != nil {
return packets, err
}
packets++
} else {
for len(mmsgHdrs) > 0 {
sent, errno := rawfile.NonBlockingSendMMsg(batchFD, mmsgHdrs)
if errno != 0 {
return packets, TranslateErrno(errno)
}
packets += sent
mmsgHdrs = mmsgHdrs[sent:]
}
}
}
return packets, nil
}
// WritePackets writes outbound packets to the underlying file descriptors. If
// one is not currently writable, the packet is dropped.
//
// Being a batch API, each packet in pkts should have the following
// fields populated:
// - pkt.EgressRoute
// - pkt.GSOOptions
// - pkt.NetworkProtocolNumber
func (e *endpoint) WritePackets(pkts stack.PacketBufferList) (int, tcpip.Error) {
// Preallocate to avoid repeated reallocation as we append to batch.
batch := make([]*stack.PacketBuffer, 0, e.batchSize)
batchFDInfo := fdInfo{fd: -1, isSocket: false}
sentPackets := 0
for _, pkt := range pkts.AsSlice() {
if len(batch) == 0 {
batchFDInfo = e.fds[pkt.Hash%uint32(len(e.fds))]
}
pktFDInfo := e.fds[pkt.Hash%uint32(len(e.fds))]
if sendNow := pktFDInfo != batchFDInfo; !sendNow {
batch = append(batch, pkt)
continue
}
n, err := e.sendBatch(batchFDInfo, batch)
sentPackets += n
if err != nil {
return sentPackets, err
}
batch = batch[:0]
batch = append(batch, pkt)
batchFDInfo = pktFDInfo
}
if len(batch) != 0 {
n, err := e.sendBatch(batchFDInfo, batch)
sentPackets += n
if err != nil {
return sentPackets, err
}
}
return sentPackets, nil
}
// dispatchLoop reads packets from the file descriptor in a loop and dispatches
// them to the network stack.
func (e *endpoint) dispatchLoop(inboundDispatcher linkDispatcher) tcpip.Error {
for {
cont, err := inboundDispatcher.dispatch()
if err != nil || !cont {
if e.closed != nil {
e.closed(err)
}
inboundDispatcher.release()
return err
}
}
}
// GSOMaxSize implements stack.GSOEndpoint.
func (e *endpoint) GSOMaxSize() uint32 {
return 0
}
// SupportedGSO implements stack.GSOEndpoint.
func (e *endpoint) SupportedGSO() stack.SupportedGSO {
return stack.GSONotSupported
}
// ARPHardwareType implements stack.LinkEndpoint.ARPHardwareType.
func (e *endpoint) ARPHardwareType() header.ARPHardwareType {
if e.hdrSize > 0 {
return header.ARPHardwareEther
}
return header.ARPHardwareNone
}
// Close implements stack.LinkEndpoint.
func (e *endpoint) Close() {}
// SetOnCloseAction implements stack.LinkEndpoint.
func (*endpoint) SetOnCloseAction(func()) {}