Files
pigo/examples/talk_detector/talkdet.go
2020-10-21 11:03:06 +03:00

212 lines
6.8 KiB
Go

package main
import "C"
import (
"io/ioutil"
"log"
"math"
"runtime"
"unsafe"
pigo "github.com/esimov/pigo/core"
)
type point struct {
x, y int
}
var (
cascade []byte
puplocCascade []byte
faceClassifier *pigo.Pigo
puplocClassifier *pigo.PuplocCascade
flpcs map[string][]*pigo.FlpCascade
imgParams *pigo.ImageParams
err error
)
var (
eyeCascades = []string{"lp46", "lp44", "lp42", "lp38", "lp312"}
mouthCascade = []string{"lp93", "lp84", "lp82", "lp81"}
)
func main() {}
//export FindFaces
func FindFaces(pixels []uint8) uintptr {
pointCh := make(chan uintptr)
results := clusterDetection(pixels, 480, 640)
dets := make([][]int, len(results))
for i := 0; i < len(results); i++ {
// Hack: the fifth value in the slice represents the detection type: face, pupils, landmark points.
// The sixt value was included only to transfer the mouth aspect ratio.
dets[i] = append(dets[i], results[i].Row, results[i].Col, results[i].Scale, int(results[i].Q), 0, 1)
// left eye
puploc := &pigo.Puploc{
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
Col: results[i].Col - int(0.185*float32(results[i].Scale)),
Scale: float32(results[i].Scale) * 0.4,
Perturbs: 63,
}
leftEye := puplocClassifier.RunDetector(*puploc, *imgParams, 0.0, false)
if leftEye.Row > 0 && leftEye.Col > 0 {
dets[i] = append(dets[i], leftEye.Row, leftEye.Col, int(leftEye.Scale), int(results[i].Q), 1, 1)
}
// right eye
puploc = &pigo.Puploc{
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
Col: results[i].Col + int(0.185*float32(results[i].Scale)),
Scale: float32(results[i].Scale) * 0.4,
Perturbs: 63,
}
rightEye := puplocClassifier.RunDetector(*puploc, *imgParams, 0.0, false)
if rightEye.Row > 0 && rightEye.Col > 0 {
dets[i] = append(dets[i], rightEye.Row, rightEye.Col, int(rightEye.Scale), int(results[i].Q), 1, 1)
}
// Traverse all the eye cascades and run the detector on each of them.
for _, eye := range eyeCascades {
for _, flpc := range flpcs[eye] {
flp := flpc.FindLandmarkPoints(leftEye, rightEye, *imgParams, puploc.Perturbs, false)
if flp.Row > 0 && flp.Col > 0 {
dets[i] = append(dets[i], flp.Row, flp.Col, int(flp.Scale), int(results[i].Q), 2, 1)
}
flp = flpc.FindLandmarkPoints(leftEye, rightEye, *imgParams, puploc.Perturbs, true)
if flp.Row > 0 && flp.Col > 0 {
dets[i] = append(dets[i], flp.Row, flp.Col, int(flp.Scale), int(results[i].Q), 2, 1)
}
}
}
mouthPoints := []int{}
// Traverse all the mouth cascades and run the detector on each of them.
for _, mouth := range mouthCascade {
for _, flpc := range flpcs[mouth] {
flp := flpc.FindLandmarkPoints(leftEye, rightEye, *imgParams, puploc.Perturbs, false)
if flp.Row > 0 && flp.Col > 0 {
mouthPoints = append(mouthPoints, flp.Row, flp.Col)
dets[i] = append(dets[i], flp.Row, flp.Col, int(flp.Scale), int(results[i].Q), 2, 1)
}
}
}
flp := flpcs["lp84"][0].FindLandmarkPoints(leftEye, rightEye, *imgParams, puploc.Perturbs, true)
if flp.Row > 0 && flp.Col > 0 {
mouthPoints = append(mouthPoints, flp.Row, flp.Col)
dets[i] = append(dets[i], flp.Row, flp.Col, int(flp.Scale), int(results[i].Q), 2, 1)
}
// Calculate the distance ratio between the two horizontal and
// two vertical landmark points on the mouth section.
// If the ratio is below 1, it means that the mouth is open, otherwise it means that it's closed.
p1 := &point{x: mouthPoints[2], y: mouthPoints[3]}
p2 := &point{x: mouthPoints[len(mouthPoints)-2], y: mouthPoints[len(mouthPoints)-1]}
p3 := &point{x: mouthPoints[4], y: mouthPoints[5]}
p4 := &point{x: mouthPoints[len(mouthPoints)-4], y: mouthPoints[len(mouthPoints)-3]}
dist1 := math.Sqrt(math.Pow(float64(p2.y-p1.y), 2) + math.Pow(float64(p2.x-p1.x), 2))
dist2 := math.Sqrt(math.Pow(float64(p4.y-p3.y), 2) + math.Pow(float64(p4.x-p3.x), 2))
mar := int(round((dist1 / dist2) * 0.19))
dets[i] = append(dets[i], flp.Row, flp.Col, int(flp.Scale), int(results[i].Q), 3, mar)
}
coords := make([]int, 0, len(dets))
go func() {
// Since in Go we cannot transfer a 2d array through an array pointer
// we have to transform it into 1d array.
for _, v := range dets {
coords = append(coords, v...)
}
// Include as a first slice element the number of detected faces.
// We need to transfer this value in order to define the Python array buffer length.
coords = append([]int{len(dets), 0, 0, 0, 0, 0}, coords...)
// Convert the slice into an array pointer.
s := *(*[]uint8)(unsafe.Pointer(&coords))
p := uintptr(unsafe.Pointer(&s[0]))
// Ensure `det` is not freed up by GC prematurely.
runtime.KeepAlive(coords)
// return the pointer address
pointCh <- p
}()
return <-pointCh
}
// clusterDetection runs Pigo face detector core methods
// and returns a cluster with the detected faces coordinates.
func clusterDetection(pixels []uint8, rows, cols int) []pigo.Detection {
imgParams = &pigo.ImageParams{
Pixels: pixels,
Rows: rows,
Cols: cols,
Dim: cols,
}
cParams := pigo.CascadeParams{
MinSize: 100,
MaxSize: 600,
ShiftFactor: 0.1,
ScaleFactor: 1.1,
ImageParams: *imgParams,
}
// Ensure that the face detection classifier is loaded only once.
if len(cascade) == 0 {
cascade, err = ioutil.ReadFile("../../cascade/facefinder")
if err != nil {
log.Fatalf("Error reading the cascade file: %v", err)
}
p := pigo.NewPigo()
// Unpack the binary file. This will return the number of cascade trees,
// the tree depth, the threshold and the prediction from tree's leaf nodes.
faceClassifier, err = p.Unpack(cascade)
if err != nil {
log.Fatalf("Error unpacking the cascade file: %s", err)
}
}
// Ensure that we load the pupil localization cascade only once
if len(puplocCascade) == 0 {
puplocCascade, err := ioutil.ReadFile("../../cascade/puploc")
if err != nil {
log.Fatalf("Error reading the puploc cascade file: %s", err)
}
puplocClassifier, err = puplocClassifier.UnpackCascade(puplocCascade)
if err != nil {
log.Fatalf("Error unpacking the puploc cascade file: %s", err)
}
flpcs, err = puplocClassifier.ReadCascadeDir("../../cascade/lps")
if err != nil {
log.Fatalf("Error unpacking the facial landmark detection cascades: %s", err)
}
}
// Run the classifier over the obtained leaf nodes and return the detection results.
// The result contains quadruplets representing the row, column, scale and detection score.
dets := faceClassifier.RunCascade(cParams, 0.0)
// Calculate the intersection over union (IoU) of two clusters.
dets = faceClassifier.ClusterDetections(dets, 0.0)
return dets
}
// round returns the nearest integer, rounding ties away from zero.
func round(x float64) float64 {
t := math.Trunc(x)
if math.Abs(x-t) >= 0.5 {
return t + math.Copysign(1, x)
}
return t
}