Files
pigo/examples/talk_detector/talkdet.py

105 lines
3.3 KiB
Python

from ctypes import *
import subprocess
import numpy as np
import os
import cv2
import time
os.system('go build -o talkdet.so -buildmode=c-shared talkdet.go')
pigo = cdll.LoadLibrary('./talkdet.so')
os.system('rm talkdet.so')
MAX_NDETS = 2024
ARRAY_DIM = 6
# define class GoPixelSlice to map to:
# C type struct { void *data; GoInt len; GoInt cap; }
class GoPixelSlice(Structure):
_fields_ = [
("pixels", POINTER(c_ubyte)), ("len", c_longlong), ("cap", c_longlong),
]
# Obtain the camera pixels and transfer them to Go trough Ctypes.
def process_frame(pixs):
dets = np.zeros(ARRAY_DIM * MAX_NDETS, dtype=np.float32)
pixels = cast((c_ubyte * len(pixs))(*pixs), POINTER(c_ubyte))
# call FindFaces
faces = GoPixelSlice(pixels, len(pixs), len(pixs))
pigo.FindFaces.argtypes = [GoPixelSlice]
pigo.FindFaces.restype = c_void_p
# Call the exported FindFaces function from Go.
ndets = pigo.FindFaces(faces)
data_pointer = cast(ndets, POINTER((c_longlong * ARRAY_DIM) * MAX_NDETS))
if data_pointer :
buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents))
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, ARRAY_DIM,))
# The first value of the buffer aray represents the buffer length.
dets_len = res[0][0]
res = np.delete(res, 0, 0) # delete the first element from the array
# We have to multiply the detection length with the total
# detection points(face, pupils and facial lendmark points), in total 18
dets = list(res.reshape(-1, ARRAY_DIM))[0:dets_len*19]
return dets
# initialize the camera
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
# Changing the camera resolution introduce a short delay in the camera initialization.
# For this reason we should delay the object detection process with a few milliseconds.
time.sleep(0.4)
showFaceDet = True
showPupil = True
showLandmarkPoints = True
while(True):
ret, frame = cap.read()
pixs = np.ascontiguousarray(frame[:, :, 1].reshape((frame.shape[0], frame.shape[1])))
pixs = pixs.flatten()
# Verify if camera is intialized by checking if pixel array is not empty.
if np.any(pixs):
dets = process_frame(pixs) # pixs needs to be numpy.uint8 array
if dets is not None:
# We know that the detected faces are taking place in the first positions of the multidimensional array.
for det in dets:
if det[3] > 50:
if det[4] == 0: # 0 == face;
if showFaceDet:
cv2.rectangle(frame,
(int(det[1])-int(det[2]/2), int(det[0])-int(det[2]/2)),
(int(det[1])+int(det[2]/2), int(det[0])+int(det[2]/2)),
(0, 0, 255), 2
)
elif det[4] == 1: # 1 == pupil;
if showPupil:
cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 0, 255), -1, 8, 0)
elif det[4] == 2: # 2 == facial landmark;
if showLandmarkPoints:
cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 255, 0), -1, 8, 0)
elif det[4] == 3:
print(det[5])
cv2.imshow('', frame)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
elif key & 0xFF == ord('w'):
showFaceDet = not showFaceDet
elif key & 0xFF == ord('e'):
showPupil = not showPupil
elif key & 0xFF == ord('r'):
showLandmarkPoints = not showLandmarkPoints
cap.release()
cv2.destroyAllWindows()