mirror of
https://github.com/esimov/pigo.git
synced 2025-10-03 15:26:31 +08:00
234 lines
6.7 KiB
Go
234 lines
6.7 KiB
Go
package pigo_test
|
|
|
|
import (
|
|
"io/ioutil"
|
|
"log"
|
|
"runtime"
|
|
"testing"
|
|
|
|
pigo "github.com/esimov/pigo/core"
|
|
)
|
|
|
|
var flpc []byte
|
|
|
|
const perturb = 63
|
|
|
|
func init() {
|
|
flpc, err = ioutil.ReadFile("../cascade/lps/lp42")
|
|
if err != nil {
|
|
log.Fatalf("missing cascade file: %v", err)
|
|
}
|
|
}
|
|
|
|
func TestFlploc_UnpackCascadeFileShouldNotBeNil(t *testing.T) {
|
|
plc, err = pl.UnpackCascade(flpc)
|
|
if err != nil {
|
|
t.Fatalf("failed unpacking the cascade file: %v", err)
|
|
}
|
|
}
|
|
|
|
func TestFlploc_LandmarkDetectorShouldReturnDetectionPoints(t *testing.T) {
|
|
// Unpack the binary file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
p, err = p.Unpack(faceCasc)
|
|
if err != nil {
|
|
t.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets := p.RunCascade(*cParams, 0.0)
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = p.ClusterDetections(dets, 0.1)
|
|
|
|
landMarkPoints := []pigo.Puploc{}
|
|
|
|
for _, det := range dets {
|
|
if det.Scale > 50 {
|
|
// left eye
|
|
puploc := &pigo.Puploc{
|
|
Row: det.Row - int(0.075*float32(det.Scale)),
|
|
Col: det.Col - int(0.175*float32(det.Scale)),
|
|
Scale: float32(det.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
// right eye
|
|
puploc = &pigo.Puploc{
|
|
Row: det.Row - int(0.075*float32(det.Scale)),
|
|
Col: det.Col + int(0.185*float32(det.Scale)),
|
|
Scale: float32(det.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
flp := plc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false)
|
|
landMarkPoints = append(landMarkPoints, *flp)
|
|
}
|
|
}
|
|
if len(landMarkPoints) == 0 {
|
|
t.Fatal("should have been detected facial landmark points")
|
|
}
|
|
}
|
|
|
|
func TestFlploc_LandmarkDetectorShouldReturnCorrectDetectionPoints(t *testing.T) {
|
|
var (
|
|
eyeCascades = []string{"lp46", "lp44", "lp42", "lp38", "lp312"}
|
|
mouthCascades = []string{"lp93", "lp84", "lp82", "lp81"}
|
|
flpcs map[string][]*pigo.FlpCascade
|
|
|
|
detLandmarkPts int
|
|
)
|
|
|
|
// Unpack the binary file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
p, err = p.Unpack(faceCasc)
|
|
if err != nil {
|
|
t.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets := p.RunCascade(*cParams, 0.0)
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = p.ClusterDetections(dets, 0.1)
|
|
|
|
flpcs, err = plc.ReadCascadeDir("../cascade/lps/")
|
|
if err != nil {
|
|
t.Fatalf("error reading the facial landmark points cascade directory: %s", err)
|
|
}
|
|
|
|
for _, det := range dets {
|
|
if det.Scale > 50 {
|
|
// left eye
|
|
puploc := &pigo.Puploc{
|
|
Row: det.Row - int(0.075*float32(det.Scale)),
|
|
Col: det.Col - int(0.175*float32(det.Scale)),
|
|
Scale: float32(det.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
// right eye
|
|
puploc = &pigo.Puploc{
|
|
Row: det.Row - int(0.075*float32(det.Scale)),
|
|
Col: det.Col + int(0.185*float32(det.Scale)),
|
|
Scale: float32(det.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
for _, eye := range eyeCascades {
|
|
for _, flpc := range flpcs[eye] {
|
|
flp := flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false)
|
|
if flp.Row > 0 && flp.Col > 0 {
|
|
detLandmarkPts++
|
|
}
|
|
flp = flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, true)
|
|
if flp.Row > 0 && flp.Col > 0 {
|
|
detLandmarkPts++
|
|
}
|
|
}
|
|
}
|
|
for _, mouth := range mouthCascades {
|
|
for _, flpc := range flpcs[mouth] {
|
|
flp := flpc.GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, false)
|
|
if flp.Row > 0 && flp.Col > 0 {
|
|
detLandmarkPts++
|
|
}
|
|
}
|
|
}
|
|
|
|
flp := flpcs["lp84"][0].GetLandmarkPoint(leftEye, rightEye, *imgParams, perturb, true)
|
|
if flp.Row > 0 && flp.Col > 0 {
|
|
detLandmarkPts++
|
|
}
|
|
|
|
}
|
|
}
|
|
expLandmarkPts := 2*len(eyeCascades) + len(mouthCascades) + 1 // landmark points of the left/right eyes, mouth + nose
|
|
if expLandmarkPts != detLandmarkPts {
|
|
t.Fatalf("expected facial landmark points to be detected: %d, got: %d", expLandmarkPts, detLandmarkPts)
|
|
}
|
|
}
|
|
|
|
func BenchmarkFlplocReadCascadeDir(b *testing.B) {
|
|
for i := 0; i < b.N; i++ {
|
|
plc.ReadCascadeDir("../cascade/lps/")
|
|
}
|
|
}
|
|
|
|
func BenchmarkFlplocGetLendmarkPoint(b *testing.B) {
|
|
plc, err = pl.UnpackCascade(puplocCasc)
|
|
if err != nil {
|
|
b.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
cParams.Pixels = pixs
|
|
|
|
flploc := &pigo.Puploc{Row: 10, Col: 10, Scale: 20, Perturbs: 50}
|
|
// For benchmarking we are using common values for left and right eye.
|
|
puploc := plc.RunDetector(*flploc, *imgParams, 0.0, false)
|
|
|
|
runtime.GC()
|
|
b.ResetTimer()
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
plc.GetLandmarkPoint(puploc, puploc, *imgParams, 63, false)
|
|
}
|
|
}
|
|
|
|
func BenchmarkFlplocDetection(b *testing.B) {
|
|
// Unpack the binary file. This will return the number of cascade trees,
|
|
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
|
p, err := p.Unpack(faceCasc)
|
|
if err != nil {
|
|
b.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
plc, err = pl.UnpackCascade(puplocCasc)
|
|
if err != nil {
|
|
b.Fatalf("error reading the cascade file: %s", err)
|
|
}
|
|
|
|
cParams.Pixels = pixs
|
|
|
|
runtime.GC()
|
|
b.ResetTimer()
|
|
|
|
// Run the classifier over the obtained leaf nodes and return the detection results.
|
|
// The result contains quadruplets representing the row, column, scale and detection score.
|
|
dets := p.RunCascade(*cParams, 0.0)
|
|
// Calculate the intersection over union (IoU) of two clusters.
|
|
dets = p.ClusterDetections(dets, 0.1)
|
|
|
|
for i := 0; i < b.N; i++ {
|
|
for _, det := range dets {
|
|
if det.Scale > 50 {
|
|
// left eye
|
|
puploc := &pigo.Puploc{
|
|
Row: det.Row - int(0.075*float32(det.Scale)),
|
|
Col: det.Col - int(0.175*float32(det.Scale)),
|
|
Scale: float32(det.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
// right eye
|
|
puploc = &pigo.Puploc{
|
|
Row: det.Row - int(0.075*float32(det.Scale)),
|
|
Col: det.Col + int(0.185*float32(det.Scale)),
|
|
Scale: float32(det.Scale) * 0.25,
|
|
Perturbs: 50,
|
|
}
|
|
rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
|
|
|
plc.GetLandmarkPoint(leftEye, rightEye, *imgParams, 63, false)
|
|
|
|
}
|
|
}
|
|
}
|
|
_ = dets
|
|
}
|