Files
pigo/examples/puploc_masquerade/puploc.py
2020-10-21 11:03:06 +03:00

154 lines
4.8 KiB
Python

from ctypes import *
import subprocess
import numpy as np
import os
import cv2
import time
os.system('go build -o puploc.so -buildmode=c-shared puploc.go')
pigo = cdll.LoadLibrary('./puploc.so')
os.system('rm puploc.so')
MAX_NDETS = 2024
ARRAY_DIM = 5
px, py = None, None
show_face = False
base_dir = "images"
source_imgs = ["sunglasses.png", "neon-yellow.png", "neon-green.png", "carnival.png", "carnival2.png", "neon-disco.png"]
img_idx = 0
# define class GoPixelSlice to map to:
# C type struct { void *data; GoInt len; GoInt cap; }
class GoPixelSlice(Structure):
_fields_ = [
("pixels", POINTER(c_ubyte)), ("len", c_longlong), ("cap", c_longlong),
]
def rotateImage(image, angle):
image_center = tuple(np.array(image.shape[1::-1]) / 2)
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR)
return result
# Obtain the camera pixels and transfer them to Go through Ctypes.
def process_frame(pixs):
dets = np.zeros(ARRAY_DIM * MAX_NDETS, dtype=np.float32)
pixels = cast((c_ubyte * len(pixs))(*pixs), POINTER(c_ubyte))
# call FindFaces
faces = GoPixelSlice(pixels, len(pixs), len(pixs))
pigo.FindFaces.argtypes = [GoPixelSlice]
pigo.FindFaces.restype = c_void_p
# Call the exported FindFaces function from Go.
ndets = pigo.FindFaces(faces)
data_pointer = cast(ndets, POINTER((c_longlong * ARRAY_DIM) * MAX_NDETS))
if data_pointer :
buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents))
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, ARRAY_DIM,))
# The first value of the buffer aray represents the buffer length.
dets_len = res[0][0]
res = np.delete(res, 0, 0) # delete the first element from the array
# We have to consider the pupil pair added into the list.
# That's why we are multiplying the detection length with 3.
dets = list(res.reshape(-1, ARRAY_DIM))[0:dets_len*3]
return dets
# initialize the camera
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
# Changing the camera resolution introduce a short delay in the camera initialization.
# For this reason we should delay the object detection process with a few milliseconds.
time.sleep(0.4)
while(True):
ret, frame = cap.read()
pixs = np.ascontiguousarray(frame[:, :, 1].reshape((frame.shape[0], frame.shape[1])))
pixs = pixs.flatten()
# Verify if camera is intialized by checking if pixel array is not empty.
if np.any(pixs):
dets = process_frame(pixs) # pixs needs to be numpy.uint8 array
if dets is not None:
# We know that the detected faces are taking place in the first positions of the multidimensional array.
for row, col, scale, q, angle in dets:
if q > 50:
if angle == 0:
px, py = col, row
elif angle > 0:
if show_face:
cv2.rectangle(frame, (col-scale/2, row-scale/2), (col+scale/2, row+scale/2), (0, 0, 255), 2)
src_img = cv2.imread(base_dir + "/" + source_imgs[img_idx], cv2.IMREAD_UNCHANGED)
img_height, img_width, img_depth = src_img.shape
if img_depth < 4:
print("The provided image does not have an alpha channel.")
exit(2)
source_img = rotateImage(src_img, (angle-90))
# Create the mask for the source image
orig_mask = source_img[:,:,3]
# Create the inverted mask for the source image
orig_mask_inv = cv2.bitwise_not(orig_mask)
# Convert the image to BGR
source_img = source_img[:,:,:3]
if scale < img_height or scale < img_width:
if img_height > img_width:
img_scale = float(scale)/float(img_height)
else:
img_scale = float(scale)/float(img_width)
width, height = int(img_width*img_scale), int(img_height*img_scale)
img = cv2.resize(source_img, (width, height), cv2.INTER_AREA)
mask = cv2.resize(orig_mask, (width, height), cv2.INTER_AREA)
mask_inv = cv2.resize(orig_mask_inv, (width, height), cv2.INTER_AREA)
if px == None or py == None:
continue
y1 = row-scale/2+(row-scale/2-(py-height))
y2 = row-scale/2+height+(row-scale/2-(py-height))
x1 = col-scale/2
x2 = col-scale/2+width
if y1 < 0 or y2 < 0:
continue
roi = frame[y1:y2, x1:x2]
roi_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
roi_fg = cv2.bitwise_and(img, img, mask=mask)
# join the roi_bg and roi_fg
dst = cv2.add(roi_bg, roi_fg)
frame[y1:y2, x1:x2] = dst
cv2.imshow('', frame)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
elif key & 0xFF == ord('w'):
show_face = not show_face
elif key & 0xFF == ord('e'):
img_idx += 1
if img_idx > len(source_imgs)-1:
img_idx = 0
elif key & 0xFF == ord('r'):
img_idx -= 1
if img_idx < 0:
img_idx = len(source_imgs)-1
cap.release()
cv2.destroyAllWindows()