mirror of
https://github.com/esimov/pigo.git
synced 2025-10-05 08:07:02 +08:00
154 lines
4.8 KiB
Python
154 lines
4.8 KiB
Python
from ctypes import *
|
|
|
|
import subprocess
|
|
import numpy as np
|
|
import os
|
|
import cv2
|
|
import time
|
|
|
|
os.system('go build -o puploc.so -buildmode=c-shared puploc.go')
|
|
pigo = cdll.LoadLibrary('./puploc.so')
|
|
os.system('rm puploc.so')
|
|
|
|
MAX_NDETS = 2024
|
|
ARRAY_DIM = 5
|
|
px, py = None, None
|
|
|
|
show_face = False
|
|
|
|
base_dir = "images"
|
|
source_imgs = ["sunglasses.png", "neon-yellow.png", "neon-green.png", "carnival.png", "carnival2.png", "neon-disco.png"]
|
|
img_idx = 0
|
|
|
|
# define class GoPixelSlice to map to:
|
|
# C type struct { void *data; GoInt len; GoInt cap; }
|
|
class GoPixelSlice(Structure):
|
|
_fields_ = [
|
|
("pixels", POINTER(c_ubyte)), ("len", c_longlong), ("cap", c_longlong),
|
|
]
|
|
|
|
def rotateImage(image, angle):
|
|
image_center = tuple(np.array(image.shape[1::-1]) / 2)
|
|
rot_mat = cv2.getRotationMatrix2D(image_center, angle, 1.0)
|
|
result = cv2.warpAffine(image, rot_mat, image.shape[1::-1], flags=cv2.INTER_LINEAR)
|
|
|
|
return result
|
|
|
|
# Obtain the camera pixels and transfer them to Go through Ctypes.
|
|
def process_frame(pixs):
|
|
dets = np.zeros(ARRAY_DIM * MAX_NDETS, dtype=np.float32)
|
|
pixels = cast((c_ubyte * len(pixs))(*pixs), POINTER(c_ubyte))
|
|
|
|
# call FindFaces
|
|
faces = GoPixelSlice(pixels, len(pixs), len(pixs))
|
|
pigo.FindFaces.argtypes = [GoPixelSlice]
|
|
pigo.FindFaces.restype = c_void_p
|
|
|
|
# Call the exported FindFaces function from Go.
|
|
ndets = pigo.FindFaces(faces)
|
|
data_pointer = cast(ndets, POINTER((c_longlong * ARRAY_DIM) * MAX_NDETS))
|
|
|
|
if data_pointer :
|
|
buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents))
|
|
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, ARRAY_DIM,))
|
|
|
|
# The first value of the buffer aray represents the buffer length.
|
|
dets_len = res[0][0]
|
|
res = np.delete(res, 0, 0) # delete the first element from the array
|
|
|
|
# We have to consider the pupil pair added into the list.
|
|
# That's why we are multiplying the detection length with 3.
|
|
dets = list(res.reshape(-1, ARRAY_DIM))[0:dets_len*3]
|
|
return dets
|
|
|
|
# initialize the camera
|
|
cap = cv2.VideoCapture(0)
|
|
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
|
|
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
|
|
|
|
# Changing the camera resolution introduce a short delay in the camera initialization.
|
|
# For this reason we should delay the object detection process with a few milliseconds.
|
|
time.sleep(0.4)
|
|
|
|
while(True):
|
|
ret, frame = cap.read()
|
|
pixs = np.ascontiguousarray(frame[:, :, 1].reshape((frame.shape[0], frame.shape[1])))
|
|
pixs = pixs.flatten()
|
|
|
|
# Verify if camera is intialized by checking if pixel array is not empty.
|
|
if np.any(pixs):
|
|
dets = process_frame(pixs) # pixs needs to be numpy.uint8 array
|
|
|
|
if dets is not None:
|
|
# We know that the detected faces are taking place in the first positions of the multidimensional array.
|
|
for row, col, scale, q, angle in dets:
|
|
if q > 50:
|
|
if angle == 0:
|
|
px, py = col, row
|
|
elif angle > 0:
|
|
if show_face:
|
|
cv2.rectangle(frame, (col-scale/2, row-scale/2), (col+scale/2, row+scale/2), (0, 0, 255), 2)
|
|
|
|
src_img = cv2.imread(base_dir + "/" + source_imgs[img_idx], cv2.IMREAD_UNCHANGED)
|
|
img_height, img_width, img_depth = src_img.shape
|
|
|
|
if img_depth < 4:
|
|
print("The provided image does not have an alpha channel.")
|
|
exit(2)
|
|
|
|
source_img = rotateImage(src_img, (angle-90))
|
|
|
|
# Create the mask for the source image
|
|
orig_mask = source_img[:,:,3]
|
|
# Create the inverted mask for the source image
|
|
orig_mask_inv = cv2.bitwise_not(orig_mask)
|
|
# Convert the image to BGR
|
|
source_img = source_img[:,:,:3]
|
|
|
|
if scale < img_height or scale < img_width:
|
|
if img_height > img_width:
|
|
img_scale = float(scale)/float(img_height)
|
|
else:
|
|
img_scale = float(scale)/float(img_width)
|
|
width, height = int(img_width*img_scale), int(img_height*img_scale)
|
|
|
|
img = cv2.resize(source_img, (width, height), cv2.INTER_AREA)
|
|
mask = cv2.resize(orig_mask, (width, height), cv2.INTER_AREA)
|
|
mask_inv = cv2.resize(orig_mask_inv, (width, height), cv2.INTER_AREA)
|
|
|
|
if px == None or py == None:
|
|
continue
|
|
|
|
y1 = row-scale/2+(row-scale/2-(py-height))
|
|
y2 = row-scale/2+height+(row-scale/2-(py-height))
|
|
x1 = col-scale/2
|
|
x2 = col-scale/2+width
|
|
|
|
if y1 < 0 or y2 < 0:
|
|
continue
|
|
roi = frame[y1:y2, x1:x2]
|
|
roi_bg = cv2.bitwise_and(roi, roi, mask=mask_inv)
|
|
roi_fg = cv2.bitwise_and(img, img, mask=mask)
|
|
|
|
# join the roi_bg and roi_fg
|
|
dst = cv2.add(roi_bg, roi_fg)
|
|
frame[y1:y2, x1:x2] = dst
|
|
|
|
cv2.imshow('', frame)
|
|
|
|
key = cv2.waitKey(1)
|
|
if key & 0xFF == ord('q'):
|
|
break
|
|
elif key & 0xFF == ord('w'):
|
|
show_face = not show_face
|
|
elif key & 0xFF == ord('e'):
|
|
img_idx += 1
|
|
if img_idx > len(source_imgs)-1:
|
|
img_idx = 0
|
|
elif key & 0xFF == ord('r'):
|
|
img_idx -= 1
|
|
if img_idx < 0:
|
|
img_idx = len(source_imgs)-1
|
|
|
|
cap.release()
|
|
cv2.destroyAllWindows() |