Files
pigo/examples/facedet/faceblur.py
2020-10-21 11:03:06 +03:00

76 lines
2.3 KiB
Python

from ctypes import *
import subprocess
import numpy as np
import os
import cv2
import time
os.system('go build -o pigo.so -buildmode=c-shared pigo.go')
pigo = cdll.LoadLibrary('./pigo.so')
os.system('rm pigo.so')
MAX_NDETS = 2048
# define class GoPixelSlice to map to:
# C type struct { void *data; GoInt len; GoInt cap; }
class GoPixelSlice(Structure):
_fields_ = [
("pixels", POINTER(c_ubyte)), ("len", c_longlong), ("cap", c_longlong),
]
# Obtain the camera pixels and transfer them to Go through Ctypes.
def process_frame(pixs):
dets = np.zeros(3 * MAX_NDETS, dtype=np.float32)
pixels = cast((c_ubyte * len(pixs))(*pixs), POINTER(c_ubyte))
# call FindFaces
faces = GoPixelSlice(pixels, len(pixs), len(pixs))
pigo.FindFaces.argtypes = [GoPixelSlice]
pigo.FindFaces.restype = c_void_p
# Call the exported FindFaces function from Go.
ndets = pigo.FindFaces(faces)
data_pointer = cast(ndets, POINTER((c_longlong * 3) * MAX_NDETS))
if data_pointer :
buffarr = ((c_longlong * 3) * MAX_NDETS).from_address(addressof(data_pointer.contents))
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, 3,))
# The first value of the buffer aray represents the buffer length.
dets_len = res[0][0]
res = np.delete(res, 0, 0) # delete the first element from the array
dets = list(res.reshape(-1, 3))[0:dets_len]
return dets
width, height = 640, 480
# initialize the camera
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
# Changing the camera resolution introduce a short delay in the camera initialization.
# For this reason we should delay the object detection process with a few milliseconds.
time.sleep(0.4)
while(True):
ret, frame = cap.read()
pixs = np.ascontiguousarray(frame[:, :, 1]).flatten()
# Verify if camera is intialized by checking if pixel array is not empty.
if np.any(pixs):
dets = process_frame(pixs) # pixs needs to be np.uint8 array
if dets is not None:
for det in dets:
mask = np.zeros((height, width, 3), dtype=np.uint8)
mask = cv2.circle(mask, (int(det[1]), int(det[0])), int(det[2]/1.8), np.array([255, 255, 255]), -1)
frame = np.where(mask!=np.array([255, 255, 255]), frame, cv2.blur(frame, (30, 30), 0))
cv2.imshow('', frame)
if cv2.waitKey(5) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()