package pigo_test import ( "io/ioutil" "log" "testing" pigo "github.com/esimov/pigo/core" ) var flpc []byte const perturbation = 63 func init() { var err error flpc, err = ioutil.ReadFile("../cascade/lps/lp42") if err != nil { log.Fatalf("missing cascade file: %v", err) } } func TestFlploc_UnpackCascadeFileShouldNotBeNil(t *testing.T) { var ( err error pl = pigo.NewPuplocCascade() ) plc, err = pl.UnpackCascade(flpc) if err != nil { t.Fatalf("failed unpacking the cascade file: %v", err) } } func TestFlploc_LandmarkPointsDetectorShouldReturnDetectionPoints(t *testing.T) { p := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err := p.Unpack(pigoCascade) if err != nil { t.Fatalf("error reading the cascade file: %s", err) } // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. faces := classifier.RunCascade(*cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. faces = classifier.ClusterDetections(faces, 0.1) landMarkPoints := []pigo.Puploc{} for _, face := range faces { if face.Scale > 50 { // left eye puploc := &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col - int(0.175*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) // right eye puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col + int(0.185*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) flp := plc.FindLandmarkPoints(leftEye, rightEye, *imgParams, perturbation, false) landMarkPoints = append(landMarkPoints, *flp) } } if len(landMarkPoints) == 0 { t.Fatal("should have been detected facial landmark points") } } func TestFlploc_LandmarkPointsDetectorShouldReturnCorrectDetectionPoints(t *testing.T) { var ( eyeCascades = []string{"lp46", "lp44", "lp42", "lp38", "lp312"} mouthCascades = []string{"lp93", "lp84", "lp82", "lp81"} flpcs map[string][]*pigo.FlpCascade detectedLandmarkPoints int ) p := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err := p.Unpack(pigoCascade) if err != nil { t.Fatalf("error reading the cascade file: %s", err) } // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. faces := classifier.RunCascade(*cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. faces = classifier.ClusterDetections(faces, 0.1) flpcs, err = plc.ReadCascadeDir("../cascade/lps/") if err != nil { t.Fatalf("error reading the facial landmark points cascade directory: %s", err) } for _, face := range faces { if face.Scale > 50 { // left eye puploc := &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col - int(0.175*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) // right eye puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col + int(0.185*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) for _, eye := range eyeCascades { for _, flpc := range flpcs[eye] { flp := flpc.FindLandmarkPoints(leftEye, rightEye, *imgParams, perturbation, false) if flp.Row > 0 && flp.Col > 0 { detectedLandmarkPoints++ } flp = flpc.FindLandmarkPoints(leftEye, rightEye, *imgParams, perturbation, true) if flp.Row > 0 && flp.Col > 0 { detectedLandmarkPoints++ } } } for _, mouth := range mouthCascades { for _, flpc := range flpcs[mouth] { flp := flpc.FindLandmarkPoints(leftEye, rightEye, *imgParams, perturbation, false) if flp.Row > 0 && flp.Col > 0 { detectedLandmarkPoints++ } } } flp := flpcs["lp84"][0].FindLandmarkPoints(leftEye, rightEye, *imgParams, perturbation, true) if flp.Row > 0 && flp.Col > 0 { detectedLandmarkPoints++ } } } expectedLandmarkPoints := 2*len(eyeCascades) + len(mouthCascades) + 1 // lendmark points of the left/right eyes, mouth + nose if expectedLandmarkPoints != detectedLandmarkPoints { t.Fatalf("expected facial landmark points to be detected: %d, got: %d", expectedLandmarkPoints, detectedLandmarkPoints) } } func BenchmarkFlploc(b *testing.B) { pg := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err := pg.Unpack(pigoCascade) if err != nil { b.Fatalf("error reading the cascade file: %s", err) } pl := pigo.PuplocCascade{} plc, err := pl.UnpackCascade(puplocCascade) if err != nil { b.Fatalf("error reading the cascade file: %s", err) } var faces []pigo.Detection b.ResetTimer() for i := 0; i < b.N; i++ { pixs := pigo.RgbToGrayscale(srcImg) cParams.Pixels = pixs // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. faces = classifier.RunCascade(*cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. faces = classifier.ClusterDetections(faces, 0.1) for _, face := range faces { if face.Scale > 50 { // left eye puploc := &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col - int(0.175*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } leftEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) // right eye puploc = &pigo.Puploc{ Row: face.Row - int(0.075*float32(face.Scale)), Col: face.Col + int(0.185*float32(face.Scale)), Scale: float32(face.Scale) * 0.25, Perturbs: 50, } rightEye := plc.RunDetector(*puploc, *imgParams, 0.0, false) plc.FindLandmarkPoints(leftEye, rightEye, *imgParams, 63, false) } } } _ = faces }