from ctypes import * import numpy as np import os import cv2 import time os.system('go build -o puploc.so -buildmode=c-shared puploc.go') pigo = cdll.LoadLibrary('./puploc.so') MAX_NDETS = 2024 ARRAY_DIM = 5 # define class GoPixelSlice to map to: # C type struct { void *data; GoInt len; GoInt cap; } class GoPixelSlice(Structure): _fields_ = [ ("pixels", POINTER(c_ubyte)), ("len", c_longlong), ("cap", c_longlong), ] # Obtain the camera pixels and transfer them to Go through Ctypes. def process_frame(pixs): dets = np.zeros(ARRAY_DIM * MAX_NDETS, dtype=np.float32) pixels = cast((c_ubyte * len(pixs))(*pixs), POINTER(c_ubyte)) # call FindFaces faces = GoPixelSlice(pixels, len(pixs), len(pixs)) pigo.FindFaces.argtypes = [GoPixelSlice] pigo.FindFaces.restype = c_void_p # Call the exported FindFaces function from Go. ndets = pigo.FindFaces(faces) data_pointer = cast(ndets, POINTER((c_longlong * ARRAY_DIM) * MAX_NDETS)) if data_pointer : buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents)) res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(ARRAY_DIM, ARRAY_DIM)) # The first value of the buffer aray represents the buffer length. dets_len = res[0][0] res = np.delete(res, 0, 0) # delete the first element from the array # We have to consider the pupil pair added into the list. # That's why we are multiplying the detection length with 3. dets = list(res.reshape(-1, ARRAY_DIM))[0:dets_len*3] return dets # initialize the camera width, height = 640, 480 cap = cv2.VideoCapture(0) cap.set(cv2.CAP_PROP_FRAME_WIDTH, width) cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height) showPupil = True showEyes = False while(True): ret, frame = cap.read() pixs = np.ascontiguousarray(frame[:, :, 1].reshape((frame.shape[0], frame.shape[1]))) pixs = pixs.flatten() # We need to make sure that the whole frame size is transfered over Go, # otherwise we might getting an index out of range panic error. if len(pixs) == width*height: dets = process_frame(pixs) # pixs needs to be numpy.uint8 array if dets is not None: # We know that the detected faces are taking place in the first positions of the multidimensional array. for det in dets: if det[3] > 50: if det[4] == 1: # 1 == face; 0 == pupil cv2.circle(frame, (int(det[1]), int(det[0])), int(det[2]/2.0), (0, 0, 255), 2) else: if showPupil: cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 0, 255), -1, 8, 0) if showEyes: cv2.rectangle(frame, (int(det[1])-int(det[2]), int(det[0])-int(det[2])), (int(det[1])+int(det[2]), int(det[0])+int(det[2])), (0, 255, 0), 2 ) cv2.imshow('Pupil / eyes localization', frame) key = cv2.waitKey(1) if key & 0xFF == ord('q'): break elif key & 0xFF == ord('w'): showPupil = not showPupil elif key & 0xFF == ord('e'): showEyes = not showEyes cap.release() cv2.destroyAllWindows()