package main import "C" import ( "io/ioutil" "log" "runtime" "unsafe" pigo "github.com/esimov/pigo/core" ) var ( cascade []byte err error classifier *pigo.Pigo ) func main() {} //export FindFaces func FindFaces(pixels []uint8) uintptr { pointCh := make(chan uintptr) dets := clusterDetection(pixels, 480, 640) result := make([][]int, len(dets)) for i := 0; i < len(dets); i++ { if dets[i].Q >= 5.0 { result[i] = append(result[i], dets[i].Row, dets[i].Col, dets[i].Scale) } } det := make([]int, 0, len(result)) go func() { // Since in Go we cannot transfer a 2d array through an array pointer // we have to transform it into 1d array. for _, v := range result { det = append(det, v...) } // Include as a first slice element the number of detected faces. // We need to transfer this value in order to define the Python array buffer length. det = append([]int{len(result), 0, 0}, det...) // Convert the slice into an array pointer. s := *(*[]uint8)(unsafe.Pointer(&det)) p := uintptr(unsafe.Pointer(&s[0])) // Ensure `det` is not freed up by GC prematurely. runtime.KeepAlive(det) // return the pointer address pointCh <- p }() return <-pointCh } // clusterDetection runs Pigo face detector core methods // and returns a cluster with the detected faces coordinates. func clusterDetection(pixels []uint8, rows, cols int) []pigo.Detection { cParams := pigo.CascadeParams{ MinSize: 100, MaxSize: 600, ShiftFactor: 0.15, ScaleFactor: 1.1, ImageParams: pigo.ImageParams{ Pixels: pixels, Rows: rows, Cols: cols, Dim: cols, }, } if len(cascade) == 0 { cascade, err = ioutil.ReadFile("../../cascade/facefinder") if err != nil { log.Fatalf("Error reading the cascade file: %s", err) } p := pigo.NewPigo() // Unpack the binary file. This will return the number of cascade trees, // the tree depth, the threshold and the prediction from tree's leaf nodes. classifier, err = p.Unpack(cascade) if err != nil { log.Fatalf("Error unpacking the cascade file: %s", err) } } // Run the classifier over the obtained leaf nodes and return the detection results. // The result contains quadruplets representing the row, column, scale and detection score. dets := classifier.RunCascade(cParams, 0.0) // Calculate the intersection over union (IoU) of two clusters. dets = classifier.ClusterDetections(dets, 0) return dets }