mirror of
https://github.com/esimov/pigo.git
synced 2025-11-02 12:14:08 +08:00
Resolved issues with multiple face detection
This commit is contained in:
@@ -30,18 +30,17 @@ func FindFaces(pixels []uint8) uintptr {
|
|||||||
dets := make([][]int, len(results))
|
dets := make([][]int, len(results))
|
||||||
|
|
||||||
for i := 0; i < len(results); i++ {
|
for i := 0; i < len(results); i++ {
|
||||||
dets[i] = append(dets[i], results[i].Row, results[i].Col, results[i].Scale, int(results[i].Q))
|
dets[i] = append(dets[i], results[i].Row, results[i].Col, results[i].Scale, int(results[i].Q), 1)
|
||||||
|
|
||||||
// left eye
|
// left eye
|
||||||
puploc := &pigo.Puploc{
|
puploc := &pigo.Puploc{
|
||||||
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
|
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
|
||||||
Col: results[i].Col - int(0.185*float32(results[i].Scale)),
|
Col: results[i].Col - int(0.185*float32(results[i].Scale)),
|
||||||
Scale: float32(results[i].Scale) * 0.4,
|
Scale: float32(results[i].Scale) * 0.4,
|
||||||
Perturbs: 100,
|
Perturbs: 50,
|
||||||
}
|
}
|
||||||
det := puplocClassifier.RunDetector(*puploc, *imageParams)
|
det := puplocClassifier.RunDetector(*puploc, *imageParams)
|
||||||
if det.Row > 0 && det.Col > 0 {
|
if det.Row > 0 && det.Col > 0 {
|
||||||
dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q))
|
dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q), 0)
|
||||||
}
|
}
|
||||||
|
|
||||||
// right eye
|
// right eye
|
||||||
@@ -49,12 +48,12 @@ func FindFaces(pixels []uint8) uintptr {
|
|||||||
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
|
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
|
||||||
Col: results[i].Col + int(0.185*float32(results[i].Scale)),
|
Col: results[i].Col + int(0.185*float32(results[i].Scale)),
|
||||||
Scale: float32(results[i].Scale) * 0.4,
|
Scale: float32(results[i].Scale) * 0.4,
|
||||||
Perturbs: 100,
|
Perturbs: 50,
|
||||||
}
|
}
|
||||||
|
|
||||||
det = puplocClassifier.RunDetector(*puploc, *imageParams)
|
det = puplocClassifier.RunDetector(*puploc, *imageParams)
|
||||||
if det.Row > 0 && det.Col > 0 {
|
if det.Row > 0 && det.Col > 0 {
|
||||||
dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q))
|
dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q), 0)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@@ -68,7 +67,7 @@ func FindFaces(pixels []uint8) uintptr {
|
|||||||
|
|
||||||
// Include as a first slice element the number of detected faces.
|
// Include as a first slice element the number of detected faces.
|
||||||
// We need to transfer this value in order to define the Python array buffer length.
|
// We need to transfer this value in order to define the Python array buffer length.
|
||||||
coords = append([]int{len(dets), 0, 0, 0}, coords...)
|
coords = append([]int{len(dets), 0, 0, 0, 0}, coords...)
|
||||||
|
|
||||||
// Convert the slice into an array pointer.
|
// Convert the slice into an array pointer.
|
||||||
s := *(*[]uint8)(unsafe.Pointer(&coords))
|
s := *(*[]uint8)(unsafe.Pointer(&coords))
|
||||||
@@ -93,7 +92,7 @@ func clusterDetection(pixels []uint8, rows, cols int) []pigo.Detection {
|
|||||||
Dim: cols,
|
Dim: cols,
|
||||||
}
|
}
|
||||||
cParams := pigo.CascadeParams{
|
cParams := pigo.CascadeParams{
|
||||||
MinSize: 100,
|
MinSize: 60,
|
||||||
MaxSize: 600,
|
MaxSize: 600,
|
||||||
ShiftFactor: 0.1,
|
ShiftFactor: 0.1,
|
||||||
ScaleFactor: 1.1,
|
ScaleFactor: 1.1,
|
||||||
@@ -133,7 +132,7 @@ func clusterDetection(pixels []uint8, rows, cols int) []pigo.Detection {
|
|||||||
dets := faceClassifier.RunCascade(cParams, 0.0)
|
dets := faceClassifier.RunCascade(cParams, 0.0)
|
||||||
|
|
||||||
// Calculate the intersection over union (IoU) of two clusters.
|
// Calculate the intersection over union (IoU) of two clusters.
|
||||||
dets = faceClassifier.ClusterDetections(dets, 0.05)
|
dets = faceClassifier.ClusterDetections(dets, 0.0)
|
||||||
|
|
||||||
return dets
|
return dets
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -36,7 +36,7 @@ def process_frame(pixs):
|
|||||||
|
|
||||||
if data_pointer :
|
if data_pointer :
|
||||||
buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents))
|
buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents))
|
||||||
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, 4,))
|
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, 5,))
|
||||||
|
|
||||||
# The first value of the buffer aray represents the buffer length.
|
# The first value of the buffer aray represents the buffer length.
|
||||||
dets_len = res[0][0]
|
dets_len = res[0][0]
|
||||||
@@ -44,7 +44,7 @@ def process_frame(pixs):
|
|||||||
|
|
||||||
# We have to consider the pupil pair added into the list.
|
# We have to consider the pupil pair added into the list.
|
||||||
# That's why we are multiplying the detection length with 3.
|
# That's why we are multiplying the detection length with 3.
|
||||||
dets = list(res.reshape(-1, 4))[0:dets_len*3]
|
dets = list(res.reshape(-1, 5))[0:dets_len*3]
|
||||||
return dets
|
return dets
|
||||||
|
|
||||||
# initialize the camera
|
# initialize the camera
|
||||||
@@ -69,21 +69,21 @@ while(True):
|
|||||||
dets = process_frame(pixs) # pixs needs to be numpy.uint8 array
|
dets = process_frame(pixs) # pixs needs to be numpy.uint8 array
|
||||||
|
|
||||||
if dets is not None:
|
if dets is not None:
|
||||||
for det in dets[0:1]:
|
# We know that the detected faces are taking place in the first positions of the multidimensional array.
|
||||||
|
for det in dets:
|
||||||
if det[3] > 50:
|
if det[3] > 50:
|
||||||
cv2.circle(frame, (int(det[1]), int(det[0])), int(det[2]/2.0), (0, 0, 255), 2)
|
if det[4] == 1: # 1 == face; 0 == pupil
|
||||||
|
cv2.circle(frame, (int(det[1]), int(det[0])), int(det[2]/2.0), (0, 0, 255), 2)
|
||||||
|
else:
|
||||||
|
if showPupil:
|
||||||
|
cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 0, 255), -1, 8, 0)
|
||||||
|
if showEyes:
|
||||||
|
cv2.rectangle(frame,
|
||||||
|
(int(det[1])-int(det[2]), int(det[0])-int(det[2])),
|
||||||
|
(int(det[1])+int(det[2]), int(det[0])+int(det[2])),
|
||||||
|
(0, 255, 0), 2
|
||||||
|
)
|
||||||
|
|
||||||
for det in dets[1:]:
|
|
||||||
if det[3] > 50:
|
|
||||||
if showPupil:
|
|
||||||
cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 0, 255), -1, 8, 0)
|
|
||||||
if showEyes:
|
|
||||||
cv2.rectangle(frame,
|
|
||||||
(int(det[1])-int(det[2]), int(det[0])-int(det[2])),
|
|
||||||
(int(det[1])+int(det[2]), int(det[0])+int(det[2])),
|
|
||||||
(0, 255, 0), 2
|
|
||||||
)
|
|
||||||
|
|
||||||
cv2.imshow('', frame)
|
cv2.imshow('', frame)
|
||||||
|
|
||||||
key = cv2.waitKey(1)
|
key = cv2.waitKey(1)
|
||||||
|
|||||||
Reference in New Issue
Block a user