Hough circle transform based blink detection

This commit is contained in:
esimov
2019-09-08 12:37:41 +03:00
parent 5acef47aa3
commit b292ff777e
3 changed files with 339 additions and 0 deletions

View File

@@ -0,0 +1,138 @@
package main
import "C"
import (
"io/ioutil"
"log"
"runtime"
"unsafe"
pigo "github.com/esimov/pigo/core"
)
var (
cascade []byte
puplocCascade []byte
faceClassifier *pigo.Pigo
puplocClassifier *pigo.PuplocCascade
imageParams *pigo.ImageParams
err error
)
func main() {}
//export FindFaces
func FindFaces(pixels []uint8) uintptr {
pointCh := make(chan uintptr)
results := clusterDetection(pixels, 480, 640)
dets := make([][]int, len(results))
for i := 0; i < len(results); i++ {
dets[i] = append(dets[i], results[i].Row, results[i].Col, results[i].Scale, int(results[i].Q), 1)
// left eye
puploc := &pigo.Puploc{
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
Col: results[i].Col - int(0.185*float32(results[i].Scale)),
Scale: float32(results[i].Scale) * 0.4,
Perturbs: 50,
}
det := puplocClassifier.RunDetector(*puploc, *imageParams)
if det.Row > 0 && det.Col > 0 {
dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q), 0)
}
// right eye
puploc = &pigo.Puploc{
Row: results[i].Row - int(0.085*float32(results[i].Scale)),
Col: results[i].Col + int(0.185*float32(results[i].Scale)),
Scale: float32(results[i].Scale) * 0.4,
Perturbs: 50,
}
det = puplocClassifier.RunDetector(*puploc, *imageParams)
if det.Row > 0 && det.Col > 0 {
dets[i] = append(dets[i], det.Row, det.Col, int(det.Scale), int(results[i].Q), 0)
}
}
coords := make([]int, 0, len(dets))
go func() {
// Since in Go we cannot transfer a 2d array trough an array pointer
// we have to transform it into 1d array.
for _, v := range dets {
coords = append(coords, v...)
}
// Include as a first slice element the number of detected faces.
// We need to transfer this value in order to define the Python array buffer length.
coords = append([]int{len(dets), 0, 0, 0, 0}, coords...)
// Convert the slice into an array pointer.
s := *(*[]uint8)(unsafe.Pointer(&coords))
p := uintptr(unsafe.Pointer(&s[0]))
// Ensure `det` is not freed up by GC prematurely.
runtime.KeepAlive(coords)
// return the pointer address
pointCh <- p
}()
return <-pointCh
}
// clusterDetection runs Pigo face detector core methods
// and returns a cluster with the detected faces coordinates.
func clusterDetection(pixels []uint8, rows, cols int) []pigo.Detection {
imageParams = &pigo.ImageParams{
Pixels: pixels,
Rows: rows,
Cols: cols,
Dim: cols,
}
cParams := pigo.CascadeParams{
MinSize: 200,
MaxSize: 640,
ShiftFactor: 0.1,
ScaleFactor: 1.1,
ImageParams: *imageParams,
}
// Ensure that the face detection classifier is loaded only once.
if len(cascade) == 0 {
cascade, err = ioutil.ReadFile("../../cascade/facefinder")
if err != nil {
log.Fatalf("Error reading the cascade file: %v", err)
}
p := pigo.NewPigo()
// Unpack the binary file. This will return the number of cascade trees,
// the tree depth, the threshold and the prediction from tree's leaf nodes.
faceClassifier, err = p.Unpack(cascade)
if err != nil {
log.Fatalf("Error unpacking the cascade file: %s", err)
}
}
// Ensure that we load the pupil localization cascade only once
if len(puplocCascade) == 0 {
puplocCascade, err := ioutil.ReadFile("../../cascade/puploc")
if err != nil {
log.Fatalf("Error reading the puploc cascade file: %s", err)
}
puplocClassifier, err = puplocClassifier.UnpackCascade(puplocCascade)
if err != nil {
log.Fatalf("Error unpacking the puploc cascade file: %s", err)
}
}
// Run the classifier over the obtained leaf nodes and return the detection results.
// The result contains quadruplets representing the row, column, scale and detection score.
dets := faceClassifier.RunCascade(cParams, 0.0)
// Calculate the intersection over union (IoU) of two clusters.
dets = faceClassifier.ClusterDetections(dets, 0.0)
return dets
}

View File

@@ -0,0 +1,76 @@
/* Code generated by cmd/cgo; DO NOT EDIT. */
/* package command-line-arguments */
#line 1 "cgo-builtin-export-prolog"
#include <stddef.h> /* for ptrdiff_t below */
#ifndef GO_CGO_EXPORT_PROLOGUE_H
#define GO_CGO_EXPORT_PROLOGUE_H
#ifndef GO_CGO_GOSTRING_TYPEDEF
typedef struct { const char *p; ptrdiff_t n; } _GoString_;
#endif
#endif
/* Start of preamble from import "C" comments. */
/* End of preamble from import "C" comments. */
/* Start of boilerplate cgo prologue. */
#line 1 "cgo-gcc-export-header-prolog"
#ifndef GO_CGO_PROLOGUE_H
#define GO_CGO_PROLOGUE_H
typedef signed char GoInt8;
typedef unsigned char GoUint8;
typedef short GoInt16;
typedef unsigned short GoUint16;
typedef int GoInt32;
typedef unsigned int GoUint32;
typedef long long GoInt64;
typedef unsigned long long GoUint64;
typedef GoInt64 GoInt;
typedef GoUint64 GoUint;
typedef __SIZE_TYPE__ GoUintptr;
typedef float GoFloat32;
typedef double GoFloat64;
typedef float _Complex GoComplex64;
typedef double _Complex GoComplex128;
/*
static assertion to make sure the file is being used on architecture
at least with matching size of GoInt.
*/
typedef char _check_for_64_bit_pointer_matching_GoInt[sizeof(void*)==64/8 ? 1:-1];
#ifndef GO_CGO_GOSTRING_TYPEDEF
typedef _GoString_ GoString;
#endif
typedef void *GoMap;
typedef void *GoChan;
typedef struct { void *t; void *v; } GoInterface;
typedef struct { void *data; GoInt len; GoInt cap; } GoSlice;
#endif
/* End of boilerplate cgo prologue. */
#ifdef __cplusplus
extern "C" {
#endif
extern GoUintptr FindFaces(GoSlice p0);
#ifdef __cplusplus
}
#endif

View File

@@ -0,0 +1,125 @@
from ctypes import *
import subprocess
import numpy as np
import os
import cv2
import time
os.system('go build -o blinkdet.so -buildmode=c-shared blinkdet.go')
pigo = cdll.LoadLibrary('./blinkdet.so')
os.system('rm blinkdet.so')
MAX_NDETS = 2024
ARRAY_DIM = 6
# define class GoPixelSlice to map to:
# C type struct { void *data; GoInt len; GoInt cap; }
class GoPixelSlice(Structure):
_fields_ = [
("pixels", POINTER(c_ubyte)), ("len", c_longlong), ("cap", c_longlong),
]
# Obtain the camera pixels and transfer them to Go trough Ctypes.
def process_frame(pixs):
dets = np.zeros(ARRAY_DIM * MAX_NDETS, dtype=np.float32)
pixels = cast((c_ubyte * len(pixs))(*pixs), POINTER(c_ubyte))
# call FindFaces
faces = GoPixelSlice(pixels, len(pixs), len(pixs))
pigo.FindFaces.argtypes = [GoPixelSlice]
pigo.FindFaces.restype = c_void_p
# Call the exported FindFaces function from Go.
ndets = pigo.FindFaces(faces)
data_pointer = cast(ndets, POINTER((c_longlong * ARRAY_DIM) * MAX_NDETS))
if data_pointer :
buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents))
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, 5,))
# The first value of the buffer aray represents the buffer length.
dets_len = res[0][0]
res = np.delete(res, 0, 0) # delete the first element from the array
# We have to consider the pupil pair added into the list.
# That's why we are multiplying the detection length with 3.
dets = list(res.reshape(-1, 5))[0:dets_len*3]
return dets
# initialize the camera
cap = cv2.VideoCapture(0)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
# Changing the camera resolution introduce a short delay in the camera initialization.
# For this reason we should delay the object detection process with a few milliseconds.
time.sleep(0.4)
showPupil = True
showEyes = False
while(True):
ret, frame = cap.read()
pixs = np.ascontiguousarray(frame[:, :, 1].reshape((frame.shape[0], frame.shape[1])))
pixs = pixs.flatten()
# Verify if camera is intialized by checking if pixel array is not empty.
if np.any(pixs):
dets = process_frame(pixs) # pixs needs to be numpy.uint8 array
if dets is not None:
# We know that the detected faces are taking place in the first positions of the multidimensional array.
for det in dets:
if det[4] == 1: # 1 == face; 0 == pupil
cv2.rectangle(frame,
(int(det[1])-int(det[2]/2), int(det[0])-int(det[2]/2)),
(int(det[1])+int(det[2]/2), int(det[0])+int(det[2]/2)),
(0, 0, 255), 2
)
else:
if showPupil:
x1, x2 = int(det[0])-int(det[2]*1.2), int(det[0])+int(det[2]*1.2)
y1, y2 = int(det[1])-int(det[2]*1.2), int(det[1])+int(det[2]*1.2)
subimg = frame[x1:x2, y1:y2]
if subimg is not None:
gray = cv2.cvtColor(subimg, cv2.COLOR_BGR2GRAY)
img_blur = cv2.medianBlur(gray, 3)
if img_blur is not None:
max_radius = int(det[2]*0.45)
circles = cv2.HoughCircles(img_blur, cv2.HOUGH_GRADIENT, 1, int(det[2]*0.3),
param1=60, param2=18, minRadius=4, maxRadius=max_radius)
if circles is not None:
circles = np.uint16(np.around(circles))
for i in circles[0, :]:
if i[2] < max_radius and i[2] > 0:
# Draw outer circle
print(i)
cv2.circle(frame, (int(det[1]), int(det[0])), i[2], (0, 255, 0), 2)
# Draw inner circle
cv2.circle(frame, (int(det[1]), int(det[0])), 2, (255, 0, 255), 3)
cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 0, 255), -1, 8, 0)
if showEyes:
cv2.rectangle(frame,
(int(det[1])-int(det[2]), int(det[0])-int(det[2])),
(int(det[1])+int(det[2]), int(det[0])+int(det[2])),
(0, 255, 0), 2
)
cv2.imshow('', frame)
key = cv2.waitKey(1)
if key & 0xFF == ord('q'):
break
elif key & 0xFF == ord('w'):
showPupil = not showPupil
elif key & 0xFF == ord('e'):
showEyes = not showEyes
cap.release()
cv2.destroyAllWindows()