mirror of
https://github.com/esimov/pigo.git
synced 2025-10-16 05:00:35 +08:00
Hough circle transform based blink detection
This commit is contained in:
125
examples/blinkdet/blinkdet.py
Normal file
125
examples/blinkdet/blinkdet.py
Normal file
@@ -0,0 +1,125 @@
|
||||
from ctypes import *
|
||||
|
||||
import subprocess
|
||||
import numpy as np
|
||||
import os
|
||||
import cv2
|
||||
import time
|
||||
|
||||
os.system('go build -o blinkdet.so -buildmode=c-shared blinkdet.go')
|
||||
pigo = cdll.LoadLibrary('./blinkdet.so')
|
||||
os.system('rm blinkdet.so')
|
||||
|
||||
MAX_NDETS = 2024
|
||||
ARRAY_DIM = 6
|
||||
|
||||
# define class GoPixelSlice to map to:
|
||||
# C type struct { void *data; GoInt len; GoInt cap; }
|
||||
class GoPixelSlice(Structure):
|
||||
_fields_ = [
|
||||
("pixels", POINTER(c_ubyte)), ("len", c_longlong), ("cap", c_longlong),
|
||||
]
|
||||
|
||||
# Obtain the camera pixels and transfer them to Go trough Ctypes.
|
||||
def process_frame(pixs):
|
||||
dets = np.zeros(ARRAY_DIM * MAX_NDETS, dtype=np.float32)
|
||||
pixels = cast((c_ubyte * len(pixs))(*pixs), POINTER(c_ubyte))
|
||||
|
||||
# call FindFaces
|
||||
faces = GoPixelSlice(pixels, len(pixs), len(pixs))
|
||||
pigo.FindFaces.argtypes = [GoPixelSlice]
|
||||
pigo.FindFaces.restype = c_void_p
|
||||
|
||||
# Call the exported FindFaces function from Go.
|
||||
ndets = pigo.FindFaces(faces)
|
||||
data_pointer = cast(ndets, POINTER((c_longlong * ARRAY_DIM) * MAX_NDETS))
|
||||
|
||||
if data_pointer :
|
||||
buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents))
|
||||
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, 5,))
|
||||
|
||||
# The first value of the buffer aray represents the buffer length.
|
||||
dets_len = res[0][0]
|
||||
res = np.delete(res, 0, 0) # delete the first element from the array
|
||||
|
||||
# We have to consider the pupil pair added into the list.
|
||||
# That's why we are multiplying the detection length with 3.
|
||||
dets = list(res.reshape(-1, 5))[0:dets_len*3]
|
||||
return dets
|
||||
|
||||
# initialize the camera
|
||||
cap = cv2.VideoCapture(0)
|
||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
|
||||
|
||||
# Changing the camera resolution introduce a short delay in the camera initialization.
|
||||
# For this reason we should delay the object detection process with a few milliseconds.
|
||||
time.sleep(0.4)
|
||||
|
||||
showPupil = True
|
||||
showEyes = False
|
||||
|
||||
while(True):
|
||||
ret, frame = cap.read()
|
||||
pixs = np.ascontiguousarray(frame[:, :, 1].reshape((frame.shape[0], frame.shape[1])))
|
||||
pixs = pixs.flatten()
|
||||
|
||||
# Verify if camera is intialized by checking if pixel array is not empty.
|
||||
if np.any(pixs):
|
||||
dets = process_frame(pixs) # pixs needs to be numpy.uint8 array
|
||||
|
||||
if dets is not None:
|
||||
# We know that the detected faces are taking place in the first positions of the multidimensional array.
|
||||
for det in dets:
|
||||
if det[4] == 1: # 1 == face; 0 == pupil
|
||||
cv2.rectangle(frame,
|
||||
(int(det[1])-int(det[2]/2), int(det[0])-int(det[2]/2)),
|
||||
(int(det[1])+int(det[2]/2), int(det[0])+int(det[2]/2)),
|
||||
(0, 0, 255), 2
|
||||
)
|
||||
else:
|
||||
if showPupil:
|
||||
x1, x2 = int(det[0])-int(det[2]*1.2), int(det[0])+int(det[2]*1.2)
|
||||
y1, y2 = int(det[1])-int(det[2]*1.2), int(det[1])+int(det[2]*1.2)
|
||||
subimg = frame[x1:x2, y1:y2]
|
||||
|
||||
if subimg is not None:
|
||||
gray = cv2.cvtColor(subimg, cv2.COLOR_BGR2GRAY)
|
||||
img_blur = cv2.medianBlur(gray, 3)
|
||||
|
||||
if img_blur is not None:
|
||||
max_radius = int(det[2]*0.45)
|
||||
circles = cv2.HoughCircles(img_blur, cv2.HOUGH_GRADIENT, 1, int(det[2]*0.3),
|
||||
param1=60, param2=18, minRadius=4, maxRadius=max_radius)
|
||||
|
||||
if circles is not None:
|
||||
circles = np.uint16(np.around(circles))
|
||||
for i in circles[0, :]:
|
||||
if i[2] < max_radius and i[2] > 0:
|
||||
# Draw outer circle
|
||||
print(i)
|
||||
cv2.circle(frame, (int(det[1]), int(det[0])), i[2], (0, 255, 0), 2)
|
||||
# Draw inner circle
|
||||
cv2.circle(frame, (int(det[1]), int(det[0])), 2, (255, 0, 255), 3)
|
||||
|
||||
cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 0, 255), -1, 8, 0)
|
||||
|
||||
if showEyes:
|
||||
cv2.rectangle(frame,
|
||||
(int(det[1])-int(det[2]), int(det[0])-int(det[2])),
|
||||
(int(det[1])+int(det[2]), int(det[0])+int(det[2])),
|
||||
(0, 255, 0), 2
|
||||
)
|
||||
|
||||
cv2.imshow('', frame)
|
||||
|
||||
key = cv2.waitKey(1)
|
||||
if key & 0xFF == ord('q'):
|
||||
break
|
||||
elif key & 0xFF == ord('w'):
|
||||
showPupil = not showPupil
|
||||
elif key & 0xFF == ord('e'):
|
||||
showEyes = not showEyes
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
Reference in New Issue
Block a user