mirror of
https://github.com/esimov/pigo.git
synced 2025-10-13 03:43:47 +08:00
test: included new benchmark tests
This commit is contained in:
@@ -3,6 +3,7 @@ package pigo_test
|
||||
import (
|
||||
"io/ioutil"
|
||||
"log"
|
||||
"runtime"
|
||||
"testing"
|
||||
|
||||
pigo "github.com/esimov/pigo/core"
|
||||
@@ -159,7 +160,37 @@ func TestFlploc_LandmarkDetectorShouldReturnCorrectDetectionPoints(t *testing.T)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkFlploc(b *testing.B) {
|
||||
func BenchmarkFlplocReadCascadeDir(b *testing.B) {
|
||||
for i := 0; i < b.N; i++ {
|
||||
plc.ReadCascadeDir("../cascade/lps/")
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkFlplocGetLendmarkPoint(b *testing.B) {
|
||||
pl := pigo.PuplocCascade{}
|
||||
plc, err := pl.UnpackCascade(puplocCascade)
|
||||
if err != nil {
|
||||
b.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
|
||||
flploc := &pigo.Puploc{Row: 10, Col: 10, Scale: 20, Perturbs: 50}
|
||||
// For benchmarking we are using common values for left and right eye.
|
||||
puploc := plc.RunDetector(*flploc, *imgParams, 0.0, false)
|
||||
|
||||
b.ResetTimer()
|
||||
runtime.GC()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
plc.GetLandmarkPoint(puploc, puploc, *imgParams, 63, false)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkFlplocDetection(b *testing.B) {
|
||||
var faces []pigo.Detection
|
||||
|
||||
pg := pigo.NewPigo()
|
||||
// Unpack the binary file. This will return the number of cascade trees,
|
||||
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
||||
@@ -174,19 +205,19 @@ func BenchmarkFlploc(b *testing.B) {
|
||||
b.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
var faces []pigo.Detection
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
|
||||
b.ResetTimer()
|
||||
runtime.GC()
|
||||
|
||||
// Run the classifier over the obtained leaf nodes and return the detection results.
|
||||
// The result contains quadruplets representing the row, column, scale and detection score.
|
||||
faces = classifier.RunCascade(*cParams, 0.0)
|
||||
// Calculate the intersection over union (IoU) of two clusters.
|
||||
faces = classifier.ClusterDetections(faces, 0.1)
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
// Run the classifier over the obtained leaf nodes and return the detection results.
|
||||
// The result contains quadruplets representing the row, column, scale and detection score.
|
||||
faces = classifier.RunCascade(*cParams, 0.0)
|
||||
// Calculate the intersection over union (IoU) of two clusters.
|
||||
faces = classifier.ClusterDetections(faces, 0.1)
|
||||
|
||||
for _, face := range faces {
|
||||
if face.Scale > 50 {
|
||||
// left eye
|
||||
|
@@ -5,6 +5,7 @@ import (
|
||||
"io/ioutil"
|
||||
"log"
|
||||
"path/filepath"
|
||||
"runtime"
|
||||
"testing"
|
||||
|
||||
pigo "github.com/esimov/pigo/core"
|
||||
@@ -68,43 +69,82 @@ func TestPigo_InputImageShouldBeGrayscale(t *testing.T) {
|
||||
}
|
||||
|
||||
func TestPigo_Detector_ShouldDetectFace(t *testing.T) {
|
||||
// Unpack the binary file. This will return the number of cascade trees,
|
||||
// Unpack the facefinder binary cascade file. This will return the number of cascade trees,
|
||||
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
||||
classifier, err := p.Unpack(pigoCascade)
|
||||
p, err := p.Unpack(pigoCascade)
|
||||
if err != nil {
|
||||
t.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
// Run the classifier over the obtained leaf nodes and return the detection results.
|
||||
// The result contains quadruplets representing the row, column, scale and detection score.
|
||||
faces := classifier.RunCascade(*cParams, 0.0)
|
||||
faces := p.RunCascade(*cParams, 0.0)
|
||||
// Calculate the intersection over union (IoU) of two clusters.
|
||||
faces = classifier.ClusterDetections(faces, 0.1)
|
||||
faces = p.ClusterDetections(faces, 0.1)
|
||||
if len(faces) == 0 {
|
||||
t.Fatalf("face should've been detected")
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPigo(b *testing.B) {
|
||||
func BenchmarkPigoUnpackCascade(b *testing.B) {
|
||||
pg := pigo.NewPigo()
|
||||
// Unpack the binary file. This will return the number of cascade trees,
|
||||
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
||||
classifier, err := pg.Unpack(pigoCascade)
|
||||
if err != nil {
|
||||
log.Fatalf("Error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
var dets []pigo.Detection
|
||||
b.ResetTimer()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
// Unpack the facefinder binary cascade file.
|
||||
_, err := pg.Unpack(pigoCascade)
|
||||
if err != nil {
|
||||
log.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPigoFaceDetection(b *testing.B) {
|
||||
var dets []pigo.Detection
|
||||
|
||||
pg := pigo.NewPigo()
|
||||
p, err := pg.Unpack(pigoCascade)
|
||||
if err != nil {
|
||||
log.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
|
||||
b.ResetTimer()
|
||||
runtime.GC()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
// Run the classifier over the obtained leaf nodes and return the detection results.
|
||||
// The result contains quadruplets representing the row, column, scale and detection score.
|
||||
dets = classifier.RunCascade(*cParams, 0.0)
|
||||
dets = p.RunCascade(*cParams, 0.0)
|
||||
// Calculate the intersection over union (IoU) of two clusters.
|
||||
dets = classifier.ClusterDetections(dets, 0.1)
|
||||
dets = p.ClusterDetections(dets, 0.1)
|
||||
}
|
||||
_ = dets
|
||||
}
|
||||
|
||||
func BenchmarkPigoClusterDetection(b *testing.B) {
|
||||
var dets []pigo.Detection
|
||||
|
||||
pg := pigo.NewPigo()
|
||||
p, err := pg.Unpack(pigoCascade)
|
||||
if err != nil {
|
||||
log.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
|
||||
b.ResetTimer()
|
||||
runtime.GC()
|
||||
|
||||
// Run the classifier over the obtained leaf nodes and return the detection results.
|
||||
// The result contains quadruplets representing the row, column, scale and detection score.
|
||||
dets = p.RunCascade(*cParams, 0.0)
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
// Calculate the intersection over union (IoU) of two clusters.
|
||||
dets = p.ClusterDetections(dets, 0.1)
|
||||
}
|
||||
_ = dets
|
||||
}
|
||||
|
@@ -3,6 +3,7 @@ package pigo_test
|
||||
import (
|
||||
"io/ioutil"
|
||||
"log"
|
||||
"runtime"
|
||||
"testing"
|
||||
|
||||
pigo "github.com/esimov/pigo/core"
|
||||
@@ -36,18 +37,18 @@ func TestPuploc_UnpackCascadeFileShouldNotBeNil(t *testing.T) {
|
||||
|
||||
func TestPuploc_Detector_ShouldDetectEyes(t *testing.T) {
|
||||
p := pigo.NewPigo()
|
||||
// Unpack the binary file. This will return the number of cascade trees,
|
||||
// Unpack the facefinder binary cascade file. This will return the number of cascade trees,
|
||||
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
||||
classifier, err := p.Unpack(pigoCascade)
|
||||
p, err := p.Unpack(pigoCascade)
|
||||
if err != nil {
|
||||
t.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
// Run the classifier over the obtained leaf nodes and return the detection results.
|
||||
// The result contains quadruplets representing the row, column, scale and detection score.
|
||||
faces := classifier.RunCascade(*cParams, 0.0)
|
||||
faces := p.RunCascade(*cParams, 0.0)
|
||||
// Calculate the intersection over union (IoU) of two clusters.
|
||||
faces = classifier.ClusterDetections(faces, 0.1)
|
||||
faces = p.ClusterDetections(faces, 0.1)
|
||||
|
||||
eyes := []pigo.Puploc{}
|
||||
|
||||
@@ -79,11 +80,50 @@ func TestPuploc_Detector_ShouldDetectEyes(t *testing.T) {
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPuploc(b *testing.B) {
|
||||
func BenchmarkPuplocUnpackCascade(b *testing.B) {
|
||||
pg := pigo.NewPigo()
|
||||
// Unpack the binary file. This will return the number of cascade trees,
|
||||
// the tree depth, the threshold and the prediction from tree's leaf nodes.
|
||||
classifier, err := pg.Unpack(pigoCascade)
|
||||
|
||||
// Unpack the facefinder binary cascade file.
|
||||
_, err := pg.Unpack(pigoCascade)
|
||||
if err != nil {
|
||||
log.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
b.ResetTimer()
|
||||
runtime.GC()
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
pl := pigo.PuplocCascade{}
|
||||
// Unpack the pupil localization cascade file.
|
||||
_, err = pl.UnpackCascade(puplocCascade)
|
||||
if err != nil {
|
||||
b.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPuplocDetectorRun(b *testing.B) {
|
||||
pl := pigo.PuplocCascade{}
|
||||
|
||||
plc, err := pl.UnpackCascade(puplocCascade)
|
||||
if err != nil {
|
||||
b.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
|
||||
puploc := &pigo.Puploc{Row: 10, Col: 10, Scale: 20, Perturbs: 50}
|
||||
for i := 0; i < b.N; i++ {
|
||||
plc.RunDetector(*puploc, *imgParams, 0.0, false)
|
||||
}
|
||||
}
|
||||
|
||||
func BenchmarkPuplocDetection(b *testing.B) {
|
||||
var faces []pigo.Detection
|
||||
|
||||
pg := pigo.NewPigo()
|
||||
p, err := pg.Unpack(pigoCascade)
|
||||
if err != nil {
|
||||
b.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
@@ -94,19 +134,19 @@ func BenchmarkPuploc(b *testing.B) {
|
||||
b.Fatalf("error reading the cascade file: %s", err)
|
||||
}
|
||||
|
||||
var faces []pigo.Detection
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
|
||||
b.ResetTimer()
|
||||
runtime.GC()
|
||||
|
||||
// Run the classifier over the obtained leaf nodes and return the detection results.
|
||||
// The result contains quadruplets representing the row, column, scale and detection score.
|
||||
faces = p.RunCascade(*cParams, 0.0)
|
||||
// Calculate the intersection over union (IoU) of two clusters.
|
||||
faces = p.ClusterDetections(faces, 0.1)
|
||||
|
||||
for i := 0; i < b.N; i++ {
|
||||
pixs := pigo.RgbToGrayscale(srcImg)
|
||||
cParams.Pixels = pixs
|
||||
// Run the classifier over the obtained leaf nodes and return the detection results.
|
||||
// The result contains quadruplets representing the row, column, scale and detection score.
|
||||
faces = classifier.RunCascade(*cParams, 0.0)
|
||||
// Calculate the intersection over union (IoU) of two clusters.
|
||||
faces = classifier.ClusterDetections(faces, 0.1)
|
||||
|
||||
for _, face := range faces {
|
||||
if face.Scale > 50 {
|
||||
// left eye
|
||||
|
Reference in New Issue
Block a user