Running Pigo in Python example

This commit is contained in:
Endre Simo
2019-02-02 14:02:10 +02:00
parent 721cec1e9b
commit 3ce4f3795c
6 changed files with 0 additions and 0 deletions

119
examples/python/pigo.go Normal file
View File

@@ -0,0 +1,119 @@
package main
import "C"
import (
"fmt"
"io/ioutil"
"log"
"reflect"
"runtime"
"unsafe"
"github.com/esimov/pigo/core"
)
var (
cascade []byte
err error
p *pigo.Pigo
classifier *pigo.Pigo
)
func main() {}
//export FindFaces
func FindFaces(pixels []uint8) uintptr {
dets := clusterDetection(pixels, 480, 640)
result := make([][]int, len(dets))
for i := 0; i < len(dets); i++ {
if dets[i].Q >= 5.0 {
result[i] = append(result[i], dets[i].Row, dets[i].Col, dets[i].Scale)
}
}
//fmt.Println(dets)
fmt.Println(result)
if len(result) > 0 {
det := make([]int, 0, len(result))
for _, v := range result {
det = append(det, v...)
}
det = append([]int{len(result), 0, 0}, det...)
fmt.Println(det)
s := *(*[]int)(unsafe.Pointer(&det))
p := uintptr(unsafe.Pointer(&s[0]))
return p
sh := &reflect.SliceHeader{
Data: p,
Len: len(result),
Cap: len(result),
}
data := *(*[][]int)(unsafe.Pointer(sh))
fmt.Println(data)
runtime.KeepAlive(result)
return uintptr(unsafe.Pointer(&data[0]))
}
return 0
}
func clusterDetection(pixels []uint8, rows, cols int) []pigo.Detection {
// cfp := *(*[]byte)(unsafe.Pointer(&cascadeFile))
// p := uintptr(unsafe.Pointer(&cfp[0]))
// size := len(cascadeFile)
// var data []byte
// sh := (*reflect.SliceHeader)(unsafe.Pointer(&data))
// sh.Data = p
// sh.Len = size
// sh.Cap = size
// fmt.Println(cascadeFile)
// fmt.Println(data)
// fmt.Println(uintptr(unsafe.Pointer(&cfp[0])))
fmt.Println("P:", len(pixels))
fmt.Println("DIM:", rows, cols)
cParams := pigo.CascadeParams{
MinSize: 20,
MaxSize: 1000,
ShiftFactor: 0.22,
ScaleFactor: 1.1,
ImageParams: pigo.ImageParams{
Pixels: pixels,
Rows: rows,
Cols: cols,
Dim: cols,
},
}
if len(cascade) == 0 {
cascade, err = ioutil.ReadFile("../../data/facefinder")
if err != nil {
log.Fatalf("Error reading the cascade file: %v", err)
}
// Unpack the binary file. This will return the number of cascade trees,
// the tree depth, the threshold and the prediction from tree's leaf nodes.
classifier, err = p.Unpack(cascade)
if err != nil {
log.Fatalf("Error reading the cascade file: %s", err)
}
}
// Run the classifier over the obtained leaf nodes and return the detection results.
// The result contains quadruplets representing the row, column, scale and detection score.
dets := classifier.RunCascade(cParams, 0.0)
// Calculate the intersection over union (IoU) of two clusters.
dets = classifier.ClusterDetections(dets, 0)
return dets
}