mirror of
https://github.com/esimov/pigo.git
synced 2025-10-06 08:36:54 +08:00
Talk detection example
This commit is contained in:
103
examples/talk_detector/talkdet.py
Normal file
103
examples/talk_detector/talkdet.py
Normal file
@@ -0,0 +1,103 @@
|
||||
from ctypes import *
|
||||
|
||||
import subprocess
|
||||
import numpy as np
|
||||
import os
|
||||
import cv2
|
||||
import time
|
||||
|
||||
os.system('go build -o talkdet.so -buildmode=c-shared talkdet.go')
|
||||
pigo = cdll.LoadLibrary('./talkdet.so')
|
||||
os.system('rm talkdet.so')
|
||||
|
||||
MAX_NDETS = 2024
|
||||
ARRAY_DIM = 5
|
||||
|
||||
# define class GoPixelSlice to map to:
|
||||
# C type struct { void *data; GoInt len; GoInt cap; }
|
||||
class GoPixelSlice(Structure):
|
||||
_fields_ = [
|
||||
("pixels", POINTER(c_ubyte)), ("len", c_longlong), ("cap", c_longlong),
|
||||
]
|
||||
|
||||
# Obtain the camera pixels and transfer them to Go trough Ctypes.
|
||||
def process_frame(pixs):
|
||||
dets = np.zeros(ARRAY_DIM * MAX_NDETS, dtype=np.float32)
|
||||
pixels = cast((c_ubyte * len(pixs))(*pixs), POINTER(c_ubyte))
|
||||
|
||||
# call FindFaces
|
||||
faces = GoPixelSlice(pixels, len(pixs), len(pixs))
|
||||
pigo.FindFaces.argtypes = [GoPixelSlice]
|
||||
pigo.FindFaces.restype = c_void_p
|
||||
|
||||
# Call the exported FindFaces function from Go.
|
||||
ndets = pigo.FindFaces(faces)
|
||||
data_pointer = cast(ndets, POINTER((c_longlong * ARRAY_DIM) * MAX_NDETS))
|
||||
|
||||
if data_pointer :
|
||||
buffarr = ((c_longlong * ARRAY_DIM) * MAX_NDETS).from_address(addressof(data_pointer.contents))
|
||||
res = np.ndarray(buffer=buffarr, dtype=c_longlong, shape=(MAX_NDETS, ARRAY_DIM,))
|
||||
|
||||
# The first value of the buffer aray represents the buffer length.
|
||||
dets_len = res[0][0]
|
||||
res = np.delete(res, 0, 0) # delete the first element from the array
|
||||
|
||||
# We have to multiply the detection length with the total
|
||||
# detection points(face, pupils and facial lendmark points), in total 18
|
||||
dets = list(res.reshape(-1, ARRAY_DIM))[0:dets_len*18]
|
||||
return dets
|
||||
|
||||
# initialize the camera
|
||||
cap = cv2.VideoCapture(0)
|
||||
cap.set(cv2.CAP_PROP_FRAME_WIDTH, 640)
|
||||
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, 480)
|
||||
|
||||
# Changing the camera resolution introduce a short delay in the camera initialization.
|
||||
# For this reason we should delay the object detection process with a few milliseconds.
|
||||
time.sleep(0.4)
|
||||
|
||||
showFaceDet = True
|
||||
showPupil = True
|
||||
showLandmarkPoints = True
|
||||
|
||||
while(True):
|
||||
ret, frame = cap.read()
|
||||
pixs = np.ascontiguousarray(frame[:, :, 1].reshape((frame.shape[0], frame.shape[1])))
|
||||
pixs = pixs.flatten()
|
||||
|
||||
# Verify if camera is intialized by checking if pixel array is not empty.
|
||||
if np.any(pixs):
|
||||
dets = process_frame(pixs) # pixs needs to be numpy.uint8 array
|
||||
|
||||
if dets is not None:
|
||||
# We know that the detected faces are taking place in the first positions of the multidimensional array.
|
||||
for det in dets:
|
||||
if det[3] > 50:
|
||||
if det[4] == 0: # 0 == face;
|
||||
if showFaceDet:
|
||||
cv2.rectangle(frame,
|
||||
(int(det[1])-int(det[2]/2), int(det[0])-int(det[2]/2)),
|
||||
(int(det[1])+int(det[2]/2), int(det[0])+int(det[2]/2)),
|
||||
(0, 0, 255), 2
|
||||
)
|
||||
elif det[4] == 1: # 1 == pupil;
|
||||
if showPupil:
|
||||
cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 0, 255), -1, 8, 0)
|
||||
elif det[4] == 2: # 2 == facial landmark;
|
||||
if showLandmarkPoints:
|
||||
cv2.circle(frame, (int(det[1]), int(det[0])), 4, (0, 255, 0), -1, 8, 0)
|
||||
|
||||
cv2.imshow('', frame)
|
||||
|
||||
key = cv2.waitKey(1)
|
||||
if key & 0xFF == ord('q'):
|
||||
break
|
||||
elif key & 0xFF == ord('w'):
|
||||
showFaceDet = not showFaceDet
|
||||
elif key & 0xFF == ord('e'):
|
||||
showPupil = not showPupil
|
||||
elif key & 0xFF == ord('r'):
|
||||
showLandmarkPoints = not showLandmarkPoints
|
||||
|
||||
cap.release()
|
||||
cv2.destroyAllWindows()
|
Reference in New Issue
Block a user