Files
mq/dag/ui.go
2025-04-07 11:02:20 +05:45

287 lines
9.4 KiB
Go

package dag
import (
"fmt"
"os"
"os/exec"
"strings"
)
func (tm *DAG) PrintGraph() {
fmt.Println("DAG Graph structure:")
tm.nodes.ForEach(func(_ string, node *Node) bool {
fmt.Printf("Node: %s (%s) -> ", node.Label, node.ID)
if conditions, ok := tm.conditions[node.ID]; ok {
var c []string
for when, then := range conditions {
if target, ok := tm.nodes.Get(then); ok {
c = append(c, fmt.Sprintf("If [%s] Then %s (%s)", when, target.Label, target.ID))
}
}
fmt.Println(strings.Join(c, ", "))
}
var edges []string
for _, target := range node.Edges {
edges = append(edges, fmt.Sprintf("%s (%s)", target.To.Label, target.To.ID))
}
fmt.Println(strings.Join(edges, ", "))
return true
})
}
func (tm *DAG) ClassifyEdges(startNodes ...string) (string, bool, error) {
builder := &strings.Builder{}
startNode := tm.GetStartNode()
if len(startNodes) > 0 && startNodes[0] != "" {
startNode = startNodes[0]
}
visited := make(map[string]bool)
discoveryTime := make(map[string]int)
finishedTime := make(map[string]int)
timeVal := 0
inRecursionStack := make(map[string]bool)
if startNode == "" {
firstNode := tm.findStartNode()
if firstNode != nil {
startNode = firstNode.ID
}
}
if startNode == "" {
return "", false, fmt.Errorf("no start node found")
}
hasCycle, cycleErr := tm.dfs(startNode, visited, discoveryTime, finishedTime, &timeVal, inRecursionStack, builder)
if cycleErr != nil {
return builder.String(), hasCycle, cycleErr
}
return builder.String(), hasCycle, nil
}
func (tm *DAG) dfs(v string, visited map[string]bool, discoveryTime, finishedTime map[string]int, timeVal *int, inRecursionStack map[string]bool, builder *strings.Builder) (bool, error) {
visited[v] = true
inRecursionStack[v] = true
*timeVal++
discoveryTime[v] = *timeVal
node, _ := tm.nodes.Get(v)
hasCycle := false
var err error
for _, edge := range node.Edges {
if !visited[edge.To.ID] {
builder.WriteString(fmt.Sprintf("Traversing Edge: %s -> %s\n", v, edge.To.ID))
hasCycle, err := tm.dfs(edge.To.ID, visited, discoveryTime, finishedTime, timeVal, inRecursionStack, builder)
if err != nil {
return true, err
}
if hasCycle {
return true, nil
}
} else if inRecursionStack[edge.To.ID] {
cycleMsg := fmt.Sprintf("Cycle detected: %s -> %s\n", v, edge.To.ID)
return true, fmt.Errorf(cycleMsg)
}
}
hasCycle, err = tm.handleConditionalEdges(v, visited, discoveryTime, finishedTime, timeVal, inRecursionStack, builder)
if err != nil {
return true, err
}
*timeVal++
finishedTime[v] = *timeVal
inRecursionStack[v] = false
return hasCycle, nil
}
func (tm *DAG) handleConditionalEdges(v string, visited map[string]bool, discoveryTime, finishedTime map[string]int, time *int, inRecursionStack map[string]bool, builder *strings.Builder) (bool, error) {
node, _ := tm.nodes.Get(v)
for when, then := range tm.conditions[node.ID] {
if targetNode, ok := tm.nodes.Get(then); ok {
if !visited[targetNode.ID] {
builder.WriteString(fmt.Sprintf("Traversing Conditional Edge [%s]: %s -> %s\n", when, v, targetNode.ID))
hasCycle, err := tm.dfs(targetNode.ID, visited, discoveryTime, finishedTime, time, inRecursionStack, builder)
if err != nil {
return true, err
}
if hasCycle {
return true, nil
}
} else if inRecursionStack[targetNode.ID] {
cycleMsg := fmt.Sprintf("Cycle detected in Conditional Edge [%s]: %s -> %s\n", when, v, targetNode.ID)
return true, fmt.Errorf(cycleMsg)
}
}
}
return false, nil
}
func (tm *DAG) SaveDOTFile(filename string, direction ...Direction) error {
dotContent := tm.ExportDOT(direction...)
return os.WriteFile(filename, []byte(dotContent), 0644)
}
func (tm *DAG) SaveSVG(svgFile string) error {
return tm.saveImage(svgFile, "-Tsvg")
}
func (tm *DAG) SavePNG(pngFile string) error {
return tm.saveImage(pngFile, "-Tpng")
}
func (tm *DAG) saveImage(fileName string, arg string) error {
dotFile := fileName[:len(fileName)-4] + ".dot"
if err := tm.SaveDOTFile(dotFile); err != nil {
return err
}
defer func() {
_ = os.Remove(dotFile)
}()
cmd := exec.Command("dot", arg, dotFile, "-o", fileName)
if err := cmd.Run(); err != nil {
return fmt.Errorf("failed to convert image: %w", err)
}
return nil
}
// Refactored ExportDOT for a modern, enterprise look.
func (tm *DAG) ExportDOT(direction ...Direction) string {
rankDir := TB
if len(direction) > 0 && direction[0] != "" {
rankDir = direction[0]
}
var sb strings.Builder
// Graph properties with a clean background and smooth layout
sb.WriteString(fmt.Sprintf(`digraph "%s" {`, tm.name))
sb.WriteString("\n")
sb.WriteString(` graph [layout=dot, splines=polyline, overlap=false, bgcolor="#FAFAFA", fontname="Helvetica", fontsize=12];`)
sb.WriteString("\n")
// Nodes get a sophisticated gradient fill, drop shadow effect simulated via penwidth and color, and rounded borders.
sb.WriteString(` node [shape=box, style="filled,rounded", gradientangle=135, fontname="Helvetica", fontsize=10, penwidth=2, color="#2C3E50", fillcolor="#FFFFFF"];`)
sb.WriteString("\n")
// Edges with smooth curves and subtle colors.
sb.WriteString(` edge [fontname="Helvetica", fontsize=9, color="#7F8C8D", arrowsize=0.8, style=solid];`)
sb.WriteString("\n")
sb.WriteString(fmt.Sprintf(` rankdir=%s;`, rankDir))
sb.WriteString("\n")
// Render nodes with advanced styling
sortedNodes := tm.TopologicalSort()
for _, nodeKey := range sortedNodes {
node, _ := tm.nodes.Get(nodeKey)
renderNode(&sb, node, " ")
}
// Render normal edges with enhanced styling.
for _, nodeKey := range sortedNodes {
node, _ := tm.nodes.Get(nodeKey)
renderEdges(&sb, node, " ")
}
// Render subgraphs for sub-DAGs with a distinct dashed border.
for _, nodeKey := range sortedNodes {
node, _ := tm.nodes.Get(nodeKey)
if node.processor != nil {
if subDAG, ok := isDAGNode(node); ok && subDAG.consumerTopic != "" {
sb.WriteString(fmt.Sprintf(" subgraph cluster_%s {\n", subDAG.name))
sb.WriteString(fmt.Sprintf(" label = \"Sub-DAG: %s\";\n", subDAG.name))
sb.WriteString(" style = dashed;\n")
sb.WriteString(" color = \"#A6ACAF\";\n")
for _, subNodeKey := range subDAG.TopologicalSort() {
subNode, _ := subDAG.nodes.Get(subNodeKey)
renderNode(&sb, subNode, " ", subDAG.name+"_")
}
for _, subNodeKey := range subDAG.TopologicalSort() {
subNode, _ := subDAG.nodes.Get(subNodeKey)
renderEdges(&sb, subNode, " ", subDAG.name+"_")
}
sb.WriteString(" }\n")
if startNodeKey := subDAG.TopologicalSort()[0]; startNodeKey != "" {
sb.WriteString(fmt.Sprintf(" \"%s\" -> \"%s%s\" [label=\"Subconnect\", color=\"#16A085\", style=bold, fontsize=10];\n", nodeKey, subDAG.name+"_", startNodeKey))
}
}
}
}
// Render conditional edges with dotted style.
for fromNodeKey, conditions := range tm.conditions {
for when, then := range conditions {
if toNode, ok := tm.nodes.Get(then); ok {
sb.WriteString(fmt.Sprintf(" \"%s\" -> \"%s\" [label=\"%s\", color=\"#8E44AD\", style=dotted, fontsize=9, arrowsize=0.6];\n", fromNodeKey, toNode.ID, when))
}
}
}
sb.WriteString("}\n")
return sb.String()
}
// Enhanced renderNode with a modern professional style.
func renderNode(sb *strings.Builder, node *Node, indent string, prefix ...string) {
prefixedID := fmt.Sprintf("%s%s", strings.Join(prefix, ""), node.ID)
labelSuffix := ""
nodeFill := "#F0F3F4" // Default light tone
switch node.NodeType {
case Function:
nodeFill = "#D4EFDF" // soft green
labelSuffix = " ƒ(x)"
case Page:
nodeFill = "#FADBD8" // soft red
labelSuffix = " 📄"
default:
nodeFill = "#F0F3F4"
}
// Apply gradient simulation and enhanced border styling.
sb.WriteString(fmt.Sprintf("%s\"%s\" [label=\"%s%s\", fontcolor=\"#2C3E50\", fillcolor=\"%s\", style=\"filled,rounded\", penwidth=2, gradientangle=135];\n",
indent, prefixedID, node.Label, labelSuffix, nodeFill))
}
// Refined renderEdges with modern aesthetics.
func renderEdges(sb *strings.Builder, node *Node, indent string, prefix ...string) {
prefixedID := fmt.Sprintf("%s%s", strings.Join(prefix, ""), node.ID)
for _, edge := range node.Edges {
edgeStyle := "solid"
edgeColor := "#7F8C8D"
labelSuffix := ""
switch edge.Type {
case Iterator:
edgeStyle = "dashed"
edgeColor = "#5DADE2"
labelSuffix = " [Iter]"
case Simple:
edgeStyle = "solid"
edgeColor = "#7F8C8D"
}
toPrefixedID := fmt.Sprintf("%s%s", strings.Join(prefix, ""), edge.To.ID)
sb.WriteString(fmt.Sprintf("%s\"%s\" -> \"%s\" [label=\"%s%s\", color=\"%s\", style=\"%s\", penwidth=1];\n",
indent, prefixedID, toPrefixedID, edge.Label, labelSuffix, edgeColor, edgeStyle))
}
}
func (tm *DAG) TopologicalSort() (stack []string) {
visited := make(map[string]bool)
tm.nodes.ForEach(func(_ string, node *Node) bool {
if !visited[node.ID] {
tm.topologicalSortUtil(node.ID, visited, &stack)
}
return true
})
for i, j := 0, len(stack)-1; i < j; i, j = i+1, j-1 {
stack[i], stack[j] = stack[j], stack[i]
}
return
}
func (tm *DAG) topologicalSortUtil(v string, visited map[string]bool, stack *[]string) {
visited[v] = true
node, ok := tm.nodes.Get(v)
if !ok {
fmt.Println("Not found", v)
}
for _, edge := range node.Edges {
if !visited[edge.To.ID] {
tm.topologicalSortUtil(edge.To.ID, visited, stack)
}
}
*stack = append(*stack, v)
}
func isDAGNode(node *Node) (*DAG, bool) {
switch node := node.processor.(type) {
case *DAG:
return node, true
default:
return nil, false
}
}