package dag import ( "fmt" "os" "os/exec" "strings" ) func (tm *DAG) PrintGraph() { fmt.Println("DAG Graph structure:") tm.nodes.ForEach(func(_ string, node *Node) bool { fmt.Printf("Node: %s (%s) -> ", node.Label, node.ID) if conditions, ok := tm.conditions[node.ID]; ok { var c []string for when, then := range conditions { if target, ok := tm.nodes.Get(then); ok { c = append(c, fmt.Sprintf("If [%s] Then %s (%s)", when, target.Label, target.ID)) } } fmt.Println(strings.Join(c, ", ")) } var edges []string for _, target := range node.Edges { edges = append(edges, fmt.Sprintf("%s (%s)", target.To.Label, target.To.ID)) } fmt.Println(strings.Join(edges, ", ")) return true }) } func (tm *DAG) ClassifyEdges(startNodes ...string) (string, bool, error) { builder := &strings.Builder{} startNode := tm.GetStartNode() if len(startNodes) > 0 && startNodes[0] != "" { startNode = startNodes[0] } visited := make(map[string]bool) discoveryTime := make(map[string]int) finishedTime := make(map[string]int) timeVal := 0 inRecursionStack := make(map[string]bool) // track nodes in the recursion stack for cycle detection if startNode == "" { firstNode := tm.findStartNode() if firstNode != nil { startNode = firstNode.ID } } if startNode == "" { return "", false, fmt.Errorf("no start node found") } hasCycle, cycleErr := tm.dfs(startNode, visited, discoveryTime, finishedTime, &timeVal, inRecursionStack, builder) if cycleErr != nil { return builder.String(), hasCycle, cycleErr } return builder.String(), hasCycle, nil } func (tm *DAG) dfs(v string, visited map[string]bool, discoveryTime, finishedTime map[string]int, timeVal *int, inRecursionStack map[string]bool, builder *strings.Builder) (bool, error) { visited[v] = true inRecursionStack[v] = true // mark node as part of recursion stack *timeVal++ discoveryTime[v] = *timeVal node, _ := tm.nodes.Get(v) hasCycle := false var err error for _, edge := range node.Edges { if !visited[edge.To.ID] { builder.WriteString(fmt.Sprintf("Traversing Edge: %s -> %s\n", v, edge.To.ID)) hasCycle, err := tm.dfs(edge.To.ID, visited, discoveryTime, finishedTime, timeVal, inRecursionStack, builder) if err != nil { return true, err } if hasCycle { return true, nil } } else if inRecursionStack[edge.To.ID] { cycleMsg := fmt.Sprintf("Cycle detected: %s -> %s\n", v, edge.To.ID) return true, fmt.Errorf(cycleMsg) } } hasCycle, err = tm.handleConditionalEdges(v, visited, discoveryTime, finishedTime, timeVal, inRecursionStack, builder) if err != nil { return true, err } *timeVal++ finishedTime[v] = *timeVal inRecursionStack[v] = false // remove from recursion stack after finishing processing return hasCycle, nil } func (tm *DAG) handleConditionalEdges(v string, visited map[string]bool, discoveryTime, finishedTime map[string]int, time *int, inRecursionStack map[string]bool, builder *strings.Builder) (bool, error) { node, _ := tm.nodes.Get(v) for when, then := range tm.conditions[node.ID] { if targetNode, ok := tm.nodes.Get(then); ok { if !visited[targetNode.ID] { builder.WriteString(fmt.Sprintf("Traversing Conditional Edge [%s]: %s -> %s\n", when, v, targetNode.ID)) hasCycle, err := tm.dfs(targetNode.ID, visited, discoveryTime, finishedTime, time, inRecursionStack, builder) if err != nil { return true, err } if hasCycle { return true, nil } } else if inRecursionStack[targetNode.ID] { cycleMsg := fmt.Sprintf("Cycle detected in Conditional Edge [%s]: %s -> %s\n", when, v, targetNode.ID) return true, fmt.Errorf(cycleMsg) } } } return false, nil } func (tm *DAG) SaveDOTFile(filename string) error { dotContent := tm.ExportDOT() return os.WriteFile(filename, []byte(dotContent), 0644) } func (tm *DAG) SaveSVG(svgFile string) error { return tm.saveImage(svgFile, "-Tsvg") } func (tm *DAG) SavePNG(pngFile string) error { return tm.saveImage(pngFile, "-Tpng") } func (tm *DAG) saveImage(fileName string, arg string) error { dotFile := fileName[:len(fileName)-4] + ".dot" if err := tm.SaveDOTFile(dotFile); err != nil { return err } defer func() { _ = os.Remove(dotFile) }() cmd := exec.Command("dot", arg, dotFile, "-o", fileName) if err := cmd.Run(); err != nil { return fmt.Errorf("failed to convert image: %w", err) } return nil } func (tm *DAG) ExportDOT() string { var sb strings.Builder sb.WriteString(fmt.Sprintf(`digraph "%s" {`, tm.name)) sb.WriteString("\n") sb.WriteString(` label="Enhanced DAG Representation";`) sb.WriteString("\n") sb.WriteString(` labelloc="t"; fontsize=22; fontname="Helvetica";`) sb.WriteString("\n") sb.WriteString(` node [shape=box, fontname="Helvetica", fillcolor="#B3CDE0", fontcolor="#2C3E50", fontsize=10, margin="0.25,0.15", style="rounded,filled"];`) sb.WriteString("\n") sb.WriteString(` edge [fontname="Helvetica", fontsize=12, arrowsize=0.8];`) sb.WriteString("\n") sb.WriteString(` rankdir=TB;`) sb.WriteString("\n") sortedNodes := tm.TopologicalSort() for _, nodeKey := range sortedNodes { node, _ := tm.nodes.Get(nodeKey) nodeColor := "lightgray" nodeShape := "box" labelSuffix := "" // Apply styles based on NodeType switch node.NodeType { case Function: nodeColor = "#D4EDDA" labelSuffix = " [Function]" case Page: nodeColor = "#f0d2d1" labelSuffix = " [Page]" } sb.WriteString(fmt.Sprintf( ` "%s" [label="%s%s", fontcolor="#2C3E50", fillcolor="%s", shape="%s", style="rounded,filled", id="node_%s"];`, node.ID, node.Label, labelSuffix, nodeColor, nodeShape, node.ID)) sb.WriteString("\n") } // Define edges with unique styling by EdgeType for _, nodeKey := range sortedNodes { node, _ := tm.nodes.Get(nodeKey) for _, edge := range node.Edges { edgeStyle := "solid" edgeColor := "black" labelSuffix := "" // Apply styles based on EdgeType switch edge.Type { case Iterator: edgeStyle = "dashed" edgeColor = "blue" labelSuffix = " [Iter]" case Simple: edgeStyle = "solid" edgeColor = "black" labelSuffix = "" } sb.WriteString(fmt.Sprintf( ` "%s" -> "%s" [label="%s%s", color="%s", style="%s"];`, node.ID, edge.To.ID, edge.Label, labelSuffix, edgeColor, edgeStyle)) sb.WriteString("\n") } } for fromNodeKey, conditions := range tm.conditions { for when, then := range conditions { if toNode, ok := tm.nodes.Get(then); ok { sb.WriteString(fmt.Sprintf(` "%s" -> "%s" [label=" %s", color="purple", style=dotted, fontsize=10, arrowsize=0.6];`, fromNodeKey, toNode.ID, when)) sb.WriteString("\n") } } } // Optional: Group related nodes into subgraphs (e.g., loops) for _, nodeKey := range sortedNodes { node, _ := tm.nodes.Get(nodeKey) if node.processor != nil { subDAG, _ := isDAGNode(node) if subDAG != nil { sb.WriteString(fmt.Sprintf(` subgraph "cluster_%s" {`, subDAG.name)) sb.WriteString("\n") sb.WriteString(fmt.Sprintf(` label="Subgraph: %s";`, subDAG.name)) sb.WriteString("\n") sb.WriteString(` style=filled; color=gray90;`) sb.WriteString("\n") subDAG.nodes.ForEach(func(subNodeKey string, subNode *Node) bool { sb.WriteString(fmt.Sprintf(` "%s" [label="%s"];`, subNode.ID, subNode.Label)) sb.WriteString("\n") return true }) subDAG.nodes.ForEach(func(subNodeKey string, subNode *Node) bool { for _, edge := range subNode.Edges { sb.WriteString(fmt.Sprintf(` "%s" -> "%s" [label="%s"];`, subNodeKey, edge.To.ID, edge.Label)) sb.WriteString("\n") } return true }) sb.WriteString(" }\n") } } } sb.WriteString("}\n") return sb.String() } func (tm *DAG) TopologicalSort() (stack []string) { visited := make(map[string]bool) tm.nodes.ForEach(func(_ string, node *Node) bool { if !visited[node.ID] { tm.topologicalSortUtil(node.ID, visited, &stack) } return true }) for i, j := 0, len(stack)-1; i < j; i, j = i+1, j-1 { stack[i], stack[j] = stack[j], stack[i] } return } func (tm *DAG) topologicalSortUtil(v string, visited map[string]bool, stack *[]string) { visited[v] = true node, ok := tm.nodes.Get(v) if !ok { fmt.Println("Not found", v) } for _, edge := range node.Edges { if !visited[edge.To.ID] { tm.topologicalSortUtil(edge.To.ID, visited, stack) } } *stack = append(*stack, v) } func isDAGNode(node *Node) (*DAG, bool) { switch node := node.processor.(type) { case *DAG: return node, true default: return nil, false } }