Files
mpp/osal/allocator/allocator_dma_heap.c
Herman Chen 8db63d761a fix[common]: Add mpp_dup function
mpp_dup function use fnctl F_DUPFD_CLOEXEC for fd dup with CLOEXEC flag.

Signed-off-by: Herman Chen <herman.chen@rock-chips.com>
Change-Id: Idd82eb935b06d2885685aeb696b95e910981539d
2024-01-10 18:15:45 +08:00

378 lines
11 KiB
C

/*
* Copyright 2010 Rockchip Electronics S.LSI Co. LTD
*
* Licensed under the Apache License, Versdrm 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITDRMS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissdrms and
* limitatdrms under the License.
*/
#define MODULE_TAG "mpp_dma_heap"
#include <unistd.h>
#include <string.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <sys/mman.h>
#include "os_mem.h"
#include "allocator_dma_heap.h"
#include "mpp_env.h"
#include "mpp_mem.h"
#include "mpp_lock.h"
#include "mpp_debug.h"
#include "mpp_common.h"
#include "mpp_thread.h"
#include "mpp_runtime.h"
#define DMA_HEAP_VALID_FD_FLAGS (O_CLOEXEC | O_ACCMODE)
#define DMA_HEAP_VALID_HEAP_FLAGS (0)
struct dma_heap_allocation_data {
RK_U64 len;
RK_U32 fd;
RK_U32 fd_flags;
RK_U64 heap_flags;
};
#define DMA_HEAP_IOC_MAGIC 'H'
#define DMA_HEAP_IOCTL_ALLOC _IOWR(DMA_HEAP_IOC_MAGIC, 0x0, struct dma_heap_allocation_data)
static RK_U32 dma_heap_debug = 0;
#define DMA_HEAP_OPS (0x00000001)
#define DMA_HEAP_DEVICE (0x00000002)
#define DMA_HEAP_IOCTL (0x00000004)
#define DMA_HEAP_CHECK (0x00000008)
#define dma_heap_dbg(flag, fmt, ...) _mpp_dbg(dma_heap_debug, flag, fmt, ## __VA_ARGS__)
#define dma_heap_dbg_f(flag, fmt, ...) _mpp_dbg_f(dma_heap_debug, flag, fmt, ## __VA_ARGS__)
#define dma_heap_dbg_ops(fmt, ...) dma_heap_dbg(DMA_HEAP_OPS, fmt, ## __VA_ARGS__)
#define dma_heap_dbg_dev(fmt, ...) dma_heap_dbg(DMA_HEAP_DEVICE, fmt, ## __VA_ARGS__)
#define dma_heap_dbg_ioctl(fmt, ...) dma_heap_dbg(DMA_HEAP_IOCTL, fmt, ## __VA_ARGS__)
#define dma_heap_dbg_chk(fmt, ...) dma_heap_dbg(DMA_HEAP_CHECK, fmt, ## __VA_ARGS__)
typedef struct {
RK_U32 alignment;
RK_S32 device;
RK_U32 flags;
} allocator_ctx_dmaheap;
typedef struct DmaHeapInfo_t {
const char *name;
RK_S32 fd;
RK_U32 flags;
} DmaHeapInfo;
static DmaHeapInfo heap_infos[MPP_ALLOC_FLAG_TYPE_NB] = {
{ "system-uncached", -1, MPP_ALLOC_FLAG_NONE , }, /* 0 */
{ "system-uncached-dma32", -1, MPP_ALLOC_FLAG_DMA32, }, /* 1 */
{ "system", -1, MPP_ALLOC_FLAG_CACHABLE , }, /* 2 */
{ "system-dma32", -1, MPP_ALLOC_FLAG_CACHABLE | MPP_ALLOC_FLAG_DMA32, }, /* 3 */
{ "cma-uncached", -1, MPP_ALLOC_FLAG_CMA , }, /* 4 */
{ "cma-uncached-dma32", -1, MPP_ALLOC_FLAG_CMA | MPP_ALLOC_FLAG_DMA32, }, /* 5 */
{ "cma", -1, MPP_ALLOC_FLAG_CMA | MPP_ALLOC_FLAG_CACHABLE , }, /* 6 */
{ "cma-dma32", -1, MPP_ALLOC_FLAG_CMA | MPP_ALLOC_FLAG_CACHABLE | MPP_ALLOC_FLAG_DMA32, }, /* 7 */
};
static int try_open_path(const char *name)
{
static const char *heap_path = "/dev/dma_heap/";
char buf[64];
int fd;
snprintf(buf, sizeof(buf) - 1, "%s%s", heap_path, name);
fd = open(buf, O_RDONLY | O_CLOEXEC); // read permission is enough
dma_heap_dbg_ops("open dma_heap %-24s -> fd %d\n", name, fd);
return fd;
}
static MPP_RET try_flip_flag(RK_U32 orig, RK_U32 flag)
{
DmaHeapInfo *dst = &heap_infos[orig];
DmaHeapInfo *src;
RK_U32 used;
if (orig & flag)
used = (RK_U32)(orig & (~flag));
else
used = (RK_U32)(orig | flag);
src = &heap_infos[used];
if (src->fd > 0) {
/* found valid heap use it */
dst->fd = mpp_dup(src->fd);
dst->flags = src->flags;
dma_heap_dbg_chk("dma-heap type %x %s remap to %x %s\n",
orig, dst->name, used, src->name);
}
return dst->fd > 0 ? MPP_OK : MPP_NOK;
}
__attribute__ ((constructor))
void dma_heap_init(void)
{
DmaHeapInfo *info = NULL;
RK_U32 all_success = 1;
RK_U32 i;
mpp_env_get_u32("dma_heap_debug", &dma_heap_debug, 0);
/* go through all heap first */
for (i = 0; i < MPP_ARRAY_ELEMS(heap_infos); i++) {
info = &heap_infos[i];
if (info->fd > 0)
continue;
info->fd = try_open_path(info->name);
if (info->fd <= 0)
all_success = 0;
}
if (!all_success) {
/* check remaining failed heap mapping */
for (i = 0; i < MPP_ARRAY_ELEMS(heap_infos); i++) {
info = &heap_infos[i];
if (info->fd > 0)
continue;
/* if original heap failed then try revert cacheable flag */
if (MPP_OK == try_flip_flag((RK_U32)i, MPP_ALLOC_FLAG_CACHABLE))
continue;
/* if cacheable heap failed then try revert dma32 flag */
if (MPP_OK == try_flip_flag((RK_U32)i, MPP_ALLOC_FLAG_DMA32))
continue;
/* if dma32 heap failed then try revert both cacheable and dma32 flag */
if (MPP_OK == try_flip_flag((RK_U32)i, MPP_ALLOC_FLAG_CACHABLE | MPP_ALLOC_FLAG_DMA32))
continue;
dma_heap_dbg_chk("dma-heap type %x - %s remap failed\n", i, info->name);
}
}
}
__attribute__ ((destructor))
void dma_heap_deinit(void)
{
RK_U32 i;
for (i = 0; i < MPP_ARRAY_ELEMS(heap_infos); i++) {
DmaHeapInfo *info = &heap_infos[i];
if (info->fd > 0) {
close(info->fd);
info->fd = -1;
}
}
}
static int dma_heap_alloc(int fd, size_t len, RK_S32 *dmabuf_fd, RK_U32 flags)
{
struct dma_heap_allocation_data data;
int ret;
memset(&data, 0, sizeof(data));
data.len = len;
data.fd_flags = O_RDWR | O_CLOEXEC;
data.heap_flags = 0; // heap_flags should be set to 0
ret = ioctl(fd, DMA_HEAP_IOCTL_ALLOC, &data);
if (ret < 0) {
mpp_err("ioctl alloc failed for %s\n", strerror(errno));
return ret;
}
dma_heap_dbg_ioctl("ioctl alloc get fd %d\n", data.fd);
*dmabuf_fd = data.fd;
(void) flags;
return ret;
}
static MPP_RET os_allocator_dma_heap_open(void **ctx, size_t alignment, MppAllocFlagType flags)
{
allocator_ctx_dmaheap *p;
DmaHeapInfo *info = NULL;
RK_U32 type = 0;
mpp_env_get_u32("dma_heap_debug", &dma_heap_debug, dma_heap_debug);
if (NULL == ctx) {
mpp_err_f("does not accept NULL input\n");
return MPP_ERR_NULL_PTR;
}
*ctx = NULL;
info = &heap_infos[flags];
if (info->fd <= 0) {
mpp_err_f("open dma heap type %x %s failed!\n", type, info->name);
return MPP_ERR_UNKNOW;
}
p = mpp_malloc(allocator_ctx_dmaheap, 1);
if (NULL == p) {
mpp_err_f("failed to allocate context\n");
return MPP_ERR_MALLOC;
} else {
p->alignment = alignment;
p->flags = info->flags;
p->device = info->fd;
*ctx = p;
}
dma_heap_dbg_ops("dev %d open heap type %x:%x\n", p->device, flags, info->flags);
return MPP_OK;
}
static MPP_RET os_allocator_dma_heap_alloc(void *ctx, MppBufferInfo *info)
{
MPP_RET ret = MPP_OK;
allocator_ctx_dmaheap *p = NULL;
if (NULL == ctx) {
mpp_err_f("does not accept NULL input\n");
return MPP_ERR_NULL_PTR;
}
p = (allocator_ctx_dmaheap *)ctx;
ret = dma_heap_alloc(p->device, info->size, (RK_S32 *)&info->fd, p->flags);
dma_heap_dbg_ops("dev %d alloc %3d size %d\n", p->device, info->fd, info->size);
if (ret) {
mpp_err_f("dma_heap_alloc failed ret %d\n", ret);
return ret;
}
info->ptr = NULL;
return ret;
}
static MPP_RET os_allocator_dma_heap_import(void *ctx, MppBufferInfo *data)
{
allocator_ctx_dmaheap *p = (allocator_ctx_dmaheap *)ctx;
RK_S32 fd_ext = data->fd;
MPP_RET ret = MPP_OK;
mpp_assert(fd_ext > 0);
data->fd = mpp_dup(fd_ext);
data->ptr = NULL;
dma_heap_dbg_ops("dev %d import %3d -> %3d\n", p->device, fd_ext, data->fd);
mpp_assert(data->fd > 0);
return ret;
}
static MPP_RET os_allocator_dma_heap_free(void *ctx, MppBufferInfo *data)
{
allocator_ctx_dmaheap *p = NULL;
MPP_RET ret = MPP_OK;
if (NULL == ctx) {
mpp_err_f("does not accept NULL input\n");
return MPP_ERR_NULL_PTR;
}
p = (allocator_ctx_dmaheap *)ctx;
dma_heap_dbg_ops("dev %d free %3d size %d ptr %p\n", p->device,
data->fd, data->size, data->ptr);
if (data->ptr) {
munmap(data->ptr, data->size);
data->ptr = NULL;
}
close(data->fd);
return ret;
}
static MPP_RET os_allocator_dma_heap_close(void *ctx)
{
if (NULL == ctx) {
mpp_err("os_allocator_close doesn't accept NULL input\n");
return MPP_ERR_NULL_PTR;
}
MPP_FREE(ctx);
return MPP_OK;
}
static MPP_RET os_allocator_dma_heap_mmap(void *ctx, MppBufferInfo *data)
{
allocator_ctx_dmaheap *p;
MPP_RET ret = MPP_OK;
if (NULL == ctx) {
mpp_err("os_allocator_close do not accept NULL input\n");
return MPP_ERR_NULL_PTR;
}
p = (allocator_ctx_dmaheap *)ctx;
if (NULL == ctx)
return MPP_ERR_NULL_PTR;
if (NULL == data->ptr) {
int flags = PROT_READ;
if (fcntl(data->fd, F_GETFL) & O_RDWR)
flags |= PROT_WRITE;
data->ptr = mmap(NULL, data->size, flags, MAP_SHARED, data->fd, 0);
if (data->ptr == MAP_FAILED) {
mpp_err("mmap failed: %s\n", strerror(errno));
data->ptr = NULL;
return -errno;
}
dma_heap_dbg_ops("dev %d mmap %3d ptr %p (%s)\n", p->device,
data->fd, data->ptr,
flags & PROT_WRITE ? "RDWR" : "RDONLY");
}
return ret;
}
static MppAllocFlagType os_allocator_dma_heap_flags(void *ctx)
{
allocator_ctx_dmaheap *p = (allocator_ctx_dmaheap *)ctx;
return p ? (MppAllocFlagType)p->flags : MPP_ALLOC_FLAG_NONE;
}
os_allocator allocator_dma_heap = {
.type = MPP_BUFFER_TYPE_DMA_HEAP,
.open = os_allocator_dma_heap_open,
.close = os_allocator_dma_heap_close,
.alloc = os_allocator_dma_heap_alloc,
.free = os_allocator_dma_heap_free,
.import = os_allocator_dma_heap_import,
.release = os_allocator_dma_heap_free,
.mmap = os_allocator_dma_heap_mmap,
.flags = os_allocator_dma_heap_flags,
};