Files
mpp/mpp/codec/dec/av1/av1d_cbs.c
shine.liu e2eeeb5764 fix[av1d]: add hdr metadata info to frame
Signed-off-by: shine.liu <shine.liu@rock-chips.com>
Signed-off-by: Yandong Lin <yandong.lin@rock-chips.com>
Change-Id: I713b357eb49e6f96267a64dc5c8239eaf2fa6f17
2023-12-27 14:30:56 +08:00

3082 lines
98 KiB
C

/*
* Copyright 2021 Rockchip Electronics Co. LTD
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#define MODULE_TAG "av1d_cbs"
#include <string.h>
#include "mpp_mem.h"
#include "mpp_debug.h"
#include "mpp_bitread.h"
#include "mpp_bitwrite.h"
#include "rk_hdr_meta_com.h"
#include "av1d_parser.h"
#ifndef UINT32_MAX
#define UINT32_MAX 0xFFFFFFFF
#endif
#ifndef INT_MAX
#define INT_MAX 2147483647 /* maximum (signed) int value */
#endif
#define BUFFER_PADDING_SIZE 64
#define MAX_UINT_BITS(length) ((UINT64_C(1) << (length)) - 1)
#define MAX_INT_BITS(length) ((INT64_C(1) << ((length) - 1)) - 1)
#define MIN_INT_BITS(length) (-(INT64_C(1) << ((length) - 1)))
/**
* Clip a signed integer into the -(2^p),(2^p-1) range.
* @param a value to clip
* @param p bit position to clip at
* @return clipped value
*/
static RK_U32 mpp_clip_uintp2(RK_S32 a, RK_S32 p)
{
if (a & ~((1 << p) - 1)) return -a >> 31 & ((1 << p) - 1);
else return a;
}
static RK_S32 mpp_av1_read_uvlc(BitReadCtx_t *gbc, const char *name, RK_U32 *write_to,
RK_U32 range_min, RK_U32 range_max)
{
RK_U32 value;
mpp_read_ue(gbc, &value);
if (value < range_min || value > range_max) {
mpp_err_f("%s out of range: "
"%d, but must be in [%d,%d].\n",
name, value, range_min, range_max);
return MPP_NOK;
}
*write_to = value;
return MPP_OK;
}
static RK_S32 mpp_av1_read_leb128(BitReadCtx_t *gbc, RK_U64 *write_to)
{
RK_U64 value;
RK_S32 err = 0, i;
value = 0;
for (i = 0; i < 8; i++) {
RK_U32 byte;
READ_BITS(gbc, 8, &byte);
if (err < 0)
return err;
value |= (RK_U64)(byte & 0x7f) << (i * 7);
if (!(byte & 0x80))
break;
}
if (value > UINT32_MAX)
return MPP_NOK;
*write_to = value;
return MPP_OK;
__bitread_error:
return MPP_NOK;
}
static RK_S32 mpp_av1_read_ns(BitReadCtx_t *gbc, const char *name,
RK_U32 n, RK_U32 *write_to)
{
RK_U32 m, v, extra_bit, value;
RK_S32 w;
w = mpp_log2(n) + 1;
m = (1 << w) - n;
if (mpp_get_bits_left(gbc) < w) {
mpp_err_f("Invalid non-symmetric value at "
"%s: bitstream ended.\n", name);
return MPP_NOK;
}
if (w - 1 > 0)
READ_BITS(gbc, w - 1, &v);
else
v = 0;
if (v < m) {
value = v;
} else {
READ_ONEBIT(gbc, &extra_bit);
value = (v << 1) - m + extra_bit;
}
*write_to = value;
return MPP_OK;
__bitread_error:
return MPP_NOK;
}
static RK_S32 mpp_av1_read_increment(BitReadCtx_t *gbc, RK_U32 range_min,
RK_U32 range_max, const char *name,
RK_U32 *write_to)
{
RK_U32 value;
RK_S32 i;
RK_S8 bits[33];
mpp_assert(range_min <= range_max && range_max - range_min < sizeof(bits) - 1);
for (i = 0, value = range_min; value < range_max;) {
RK_U8 tmp = 0;
if (mpp_get_bits_left(gbc) < 1) {
mpp_err_f("Invalid increment value at "
"%s: bitstream ended.\n", name);
return MPP_NOK;
}
READ_ONEBIT(gbc, &tmp);
if (tmp) {
bits[i++] = '1';
++value;
} else {
bits[i++] = '0';
break;
}
}
*write_to = value;
return MPP_OK;
__bitread_error:
return MPP_NOK;
}
RK_S32 mpp_av1_read_unsigned(BitReadCtx_t *gbc,
RK_S32 width, const char *name,
RK_U32 *write_to, RK_U32 range_min,
RK_U32 range_max)
{
RK_U32 value;
mpp_assert(width > 0 && width <= 32);
if (mpp_get_bits_left(gbc) < width) {
mpp_err_f("Invalid value at "
"%s: bitstream ended.\n", name);
return MPP_NOK;
}
READ_BITS_LONG(gbc, width, &value);
if (value < range_min || value > range_max) {
mpp_err_f("%s out of range: "
"%d, but must be in [%d,%d].\n",
name, value, range_min, range_max);
return MPP_NOK;
}
*write_to = value;
return 0;
__bitread_error:
return MPP_NOK;
}
static RK_S32 sign_extend(RK_S32 val, RK_U8 bits)
{
RK_U8 shift = 8 * sizeof(RK_S32) - bits;
union { RK_U8 u; RK_S32 s; } v = { (RK_U8) val << shift };
return v.s >> shift;
}
RK_S32 mpp_av1_read_signed(BitReadCtx_t *gbc,
RK_S32 width, const char *name,
RK_S32 *write_to, RK_S32 range_min,
RK_S32 range_max)
{
RK_S32 value;
mpp_assert(width > 0 && width <= 32);
if (mpp_get_bits_left(gbc) < width) {
mpp_err_f("Invalid value at "
"%s: bitstream ended.\n", name);
return MPP_NOK;
}
READ_BITS_LONG(gbc, width, &value);
value = sign_extend(value, width);
if (value < range_min || value > range_max) {
mpp_err_f("%s out of range: "
"%d, but must be in [%d,%d].\n",
name, value, range_min, range_max);
return MPP_NOK;
}
*write_to = value;
return 0;
__bitread_error:
return MPP_NOK;
}
static RK_S32 mpp_av1_read_subexp(BitReadCtx_t *gbc,
RK_U32 range_max, RK_U32 *write_to)
{
RK_U32 value;
RK_S32 err;
RK_U32 max_len, len, range_offset, range_bits;
max_len = mpp_log2(range_max - 1) - 3;
err = mpp_av1_read_increment(gbc, 0, max_len, "subexp_more_bits", &len);
if (err < 0)
return err;
if (len) {
range_bits = 2 + len;
range_offset = 1 << range_bits;
} else {
range_bits = 3;
range_offset = 0;
}
if (len < max_len) {
err = mpp_av1_read_unsigned(gbc, range_bits,
"subexp_bits", &value,
0, MAX_UINT_BITS(range_bits));
if (err < 0)
return err;
} else {
err = mpp_av1_read_ns(gbc, "subexp_final_bits", range_max - range_offset,
&value);
if (err < 0)
return err;
}
value += range_offset;
*write_to = value;
return err;
}
static RK_S32 mpp_av1_tile_log2(RK_S32 blksize, RK_S32 target)
{
RK_S32 k;
for (k = 0; (blksize << k) < target; k++);
return k;
}
static RK_S32 mpp_av1_get_relative_dist(const AV1RawSequenceHeader *seq,
RK_U32 a, RK_U32 b)
{
RK_U32 diff, m;
if (!seq->enable_order_hint)
return 0;
diff = a - b;
m = 1 << seq->order_hint_bits_minus_1;
diff = (diff & (m - 1)) - (diff & m);
return diff;
}
static size_t mpp_av1_get_payload_bytes_left(BitReadCtx_t *gbc)
{
size_t size = 0;
RK_U8 value = 0;
RK_S32 i = 0;
for (i = 0; mpp_get_bits_left(gbc) >= 8; i++) {
READ_BITS(gbc, 8, &value);
if (value)
size = i;
}
return size;
__bitread_error:
return MPP_NOK;
}
#define CHECK(call) do { \
err = (call); \
if (err < 0) \
return err; \
} while (0)
#define SUBSCRIPTS(subs, ...) (subs > 0 ? ((RK_S32[subs + 1]){ subs, __VA_ARGS__ }) : NULL)
#define fb(width, name) \
xf(width, name, current->name, 0, MAX_UINT_BITS(width), 0, )
#define fc(width, name, range_min, range_max) \
xf(width, name, current->name, range_min, range_max, 0, )
#define flag(name) fb(1, name)
#define su(width, name) \
xsu(width, name, current->name, 0, )
#define fbs(width, name, subs, ...) \
xf(width, name, current->name, 0, MAX_UINT_BITS(width), subs, __VA_ARGS__)
#define fcs(width, name, range_min, range_max, subs, ...) \
xf(width, name, current->name, range_min, range_max, subs, __VA_ARGS__)
#define flags(name, subs, ...) \
xf(1, name, current->name, 0, 1, subs, __VA_ARGS__)
#define sus(width, name, subs, ...) \
xsu(width, name, current->name, subs, __VA_ARGS__)
#define xf(width, name, var, range_min, range_max, subs, ...) do { \
RK_U32 value; \
CHECK(mpp_av1_read_unsigned(gb, width, #name, \
&value, range_min, range_max)); \
var = value; \
} while (0)
#define xsu(width, name, var, subs, ...) do { \
RK_S32 value; \
CHECK(mpp_av1_read_signed(gb, width, #name, \
&value, \
MIN_INT_BITS(width), \
MAX_INT_BITS(width))); \
var = value; \
} while (0)
#define uvlc(name, range_min, range_max) do { \
RK_U32 value; \
CHECK(mpp_av1_read_uvlc(gb, #name, \
&value, range_min, range_max)); \
current->name = value; \
} while (0)
#define ns(max_value, name) do { \
RK_U32 value; \
CHECK(mpp_av1_read_ns(gb, #name, max_value, \
&value)); \
current->name = value; \
} while (0)
#define increment(name, min, max) do { \
RK_U32 value; \
CHECK(mpp_av1_read_increment(gb, min, max, #name, &value)); \
current->name = value; \
} while (0)
#define subexp(name, max) do { \
RK_U32 value = 0; \
CHECK(mpp_av1_read_subexp(gb, max, \
&value)); \
current->name = value; \
} while (0)
#define delta_q(name) do { \
RK_U8 delta_coded; \
RK_S8 delta_q; \
xf(1, name.delta_coded, delta_coded, 0, 1, 0, ); \
if (delta_coded) \
xsu(1 + 6, name.delta_q, delta_q, 0, ); \
else \
delta_q = 0; \
current->name = delta_q; \
} while (0)
#define leb128(name) do { \
RK_U64 value; \
CHECK(mpp_av1_read_leb128(gb, &value)); \
current->name = value; \
} while (0)
#define infer(name, value) do { \
current->name = value; \
} while (0)
#define byte_alignment(gb) (mpp_get_bits_count(gb) % 8)
static RK_S32 mpp_av1_read_obu_header(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawOBUHeader *current)
{
RK_S32 err;
fc(1, obu_forbidden_bit, 0, 0);
fc(4, obu_type, 0, AV1_OBU_PADDING);
flag(obu_extension_flag);
flag(obu_has_size_field);
fc(1, obu_reserved_1bit, 0, 0);
if (current->obu_extension_flag) {
fb(3, temporal_id);
fb(2, spatial_id);
fc(3, extension_header_reserved_3bits, 0, 0);
} else {
infer(temporal_id, 0);
infer(spatial_id, 0);
}
ctx->temporal_id = current->temporal_id;
ctx->spatial_id = current->spatial_id;
return 0;
}
static RK_S32 mpp_av1_trailing_bits(AV1Context *ctx, BitReadCtx_t *gb, RK_S32 nb_bits)
{
(void)ctx;
mpp_assert(nb_bits > 0);
// fixed(1, trailing_one_bit, 1);
mpp_skip_bits(gb, 1);
--nb_bits;
while (nb_bits > 0) {
// fixed(1, trailing_zero_bit, 0);
mpp_skip_bits(gb, 1);
--nb_bits;
}
return 0;
}
static RK_S32 mpp_av1_byte_alignment(AV1Context *ctx, BitReadCtx_t *gb)
{
(void)ctx;
while (byte_alignment(gb) != 0)
mpp_skip_bits(gb, 1);
//fixed(1, zero_bit, 0);
return 0;
}
static RK_S32 mpp_av1_color_config(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawColorConfig *current, RK_S32 seq_profile)
{
RK_S32 err;
flag(high_bitdepth);
if (seq_profile == PROFILE_AV1_PROFESSIONAL &&
current->high_bitdepth) {
flag(twelve_bit);
ctx->bit_depth = current->twelve_bit ? 12 : 10;
} else {
ctx->bit_depth = current->high_bitdepth ? 10 : 8;
}
if (seq_profile == PROFILE_AV1_HIGH)
infer(mono_chrome, 0);
else
flag(mono_chrome);
ctx->num_planes = current->mono_chrome ? 1 : 3;
flag(color_description_present_flag);
if (current->color_description_present_flag) {
fb(8, color_primaries);
fb(8, transfer_characteristics);
fb(8, matrix_coefficients);
if (current->transfer_characteristics == MPP_FRAME_TRC_BT2020_10 ||
current->transfer_characteristics == MPP_FRAME_TRC_SMPTEST2084)
ctx->is_hdr = 1;
} else {
infer(color_primaries, MPP_FRAME_PRI_UNSPECIFIED);
infer(transfer_characteristics, MPP_FRAME_TRC_UNSPECIFIED);
infer(matrix_coefficients, MPP_FRAME_SPC_UNSPECIFIED);
}
if (current->mono_chrome) {
flag(color_range);
infer(subsampling_x, 1);
infer(subsampling_y, 1);
infer(chroma_sample_position, AV1_CSP_UNKNOWN);
infer(separate_uv_delta_q, 0);
} else if (current->color_primaries == MPP_FRAME_PRI_BT709 &&
current->transfer_characteristics == MPP_FRAME_TRC_IEC61966_2_1 &&
current->matrix_coefficients == MPP_FRAME_SPC_RGB) {
infer(color_range, 1);
infer(subsampling_x, 0);
infer(subsampling_y, 0);
flag(separate_uv_delta_q);
} else {
flag(color_range);
if (seq_profile == PROFILE_AV1_MAIN) {
infer(subsampling_x, 1);
infer(subsampling_y, 1);
} else if (seq_profile == PROFILE_AV1_HIGH) {
infer(subsampling_x, 0);
infer(subsampling_y, 0);
} else {
if (ctx->bit_depth == 12) {
fb(1, subsampling_x);
if (current->subsampling_x)
fb(1, subsampling_y);
else
infer(subsampling_y, 0);
} else {
infer(subsampling_x, 1);
infer(subsampling_y, 0);
}
}
if (current->subsampling_x && current->subsampling_y) {
fc(2, chroma_sample_position, AV1_CSP_UNKNOWN,
AV1_CSP_COLOCATED);
}
flag(separate_uv_delta_q);
}
return 0;
}
static RK_S32 mpp_av1_timing_info(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawTimingInfo *current)
{
(void)ctx;
RK_S32 err;
fc(32, num_units_in_display_tick, 1, MAX_UINT_BITS(32));
fc(32, time_scale, 1, MAX_UINT_BITS(32));
flag(equal_picture_interval);
if (current->equal_picture_interval)
uvlc(num_ticks_per_picture_minus_1, 0, MAX_UINT_BITS(32) - 1);
return 0;
}
static RK_S32 mpp_av1_decoder_model_info(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawDecoderModelInfo *current)
{
RK_S32 err;
(void)ctx;
fb(5, buffer_delay_length_minus_1);
fb(32, num_units_in_decoding_tick);
fb(5, buffer_removal_time_length_minus_1);
fb(5, frame_presentation_time_length_minus_1);
return 0;
}
static RK_S32 mpp_av1_sequence_header_obu(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawSequenceHeader *current)
{
RK_S32 i, err;
fc(3, seq_profile, PROFILE_AV1_MAIN,
PROFILE_AV1_PROFESSIONAL);
flag(still_picture);
flag(reduced_still_picture_header);
if (current->reduced_still_picture_header) {
infer(timing_info_present_flag, 0);
infer(decoder_model_info_present_flag, 0);
infer(initial_display_delay_present_flag, 0);
infer(operating_points_cnt_minus_1, 0);
infer(operating_point_idc[0], 0);
fb(5, seq_level_idx[0]);
infer(seq_tier[0], 0);
infer(decoder_model_present_for_this_op[0], 0);
infer(initial_display_delay_present_for_this_op[0], 0);
} else {
flag(timing_info_present_flag);
if (current->timing_info_present_flag) {
CHECK(mpp_av1_timing_info(ctx, gb, &current->timing_info));
flag(decoder_model_info_present_flag);
if (current->decoder_model_info_present_flag) {
CHECK(mpp_av1_decoder_model_info
(ctx, gb, &current->decoder_model_info));
}
} else {
infer(decoder_model_info_present_flag, 0);
}
flag(initial_display_delay_present_flag);
fb(5, operating_points_cnt_minus_1);
for (i = 0; i <= current->operating_points_cnt_minus_1; i++) {
fbs(12, operating_point_idc[i], 1, i);
fbs(5, seq_level_idx[i], 1, i);
if (current->seq_level_idx[i] > 7)
flags(seq_tier[i], 1, i);
else
infer(seq_tier[i], 0);
if (current->decoder_model_info_present_flag) {
flags(decoder_model_present_for_this_op[i], 1, i);
if (current->decoder_model_present_for_this_op[i]) {
RK_S32 n = current->decoder_model_info.buffer_delay_length_minus_1 + 1;
fbs(n, decoder_buffer_delay[i], 1, i);
fbs(n, encoder_buffer_delay[i], 1, i);
flags(low_delay_mode_flag[i], 1, i);
}
} else {
infer(decoder_model_present_for_this_op[i], 0);
}
if (current->initial_display_delay_present_flag) {
flags(initial_display_delay_present_for_this_op[i], 1, i);
if (current->initial_display_delay_present_for_this_op[i])
fbs(4, initial_display_delay_minus_1[i], 1, i);
}
}
}
fb(4, frame_width_bits_minus_1);
fb(4, frame_height_bits_minus_1);
fb(current->frame_width_bits_minus_1 + 1, max_frame_width_minus_1);
fb(current->frame_height_bits_minus_1 + 1, max_frame_height_minus_1);
if (current->reduced_still_picture_header)
infer(frame_id_numbers_present_flag, 0);
else
flag(frame_id_numbers_present_flag);
if (current->frame_id_numbers_present_flag) {
fb(4, delta_frame_id_length_minus_2);
fb(3, additional_frame_id_length_minus_1);
}
flag(use_128x128_superblock);
flag(enable_filter_intra);
flag(enable_intra_edge_filter);
if (current->reduced_still_picture_header) {
infer(enable_interintra_compound, 0);
infer(enable_masked_compound, 0);
infer(enable_warped_motion, 0);
infer(enable_dual_filter, 0);
infer(enable_order_hint, 0);
infer(enable_jnt_comp, 0);
infer(enable_ref_frame_mvs, 0);
infer(seq_force_screen_content_tools,
AV1_SELECT_SCREEN_CONTENT_TOOLS);
infer(seq_force_integer_mv,
AV1_SELECT_INTEGER_MV);
} else {
flag(enable_interintra_compound);
flag(enable_masked_compound);
flag(enable_warped_motion);
flag(enable_dual_filter);
flag(enable_order_hint);
if (current->enable_order_hint) {
flag(enable_jnt_comp);
flag(enable_ref_frame_mvs);
} else {
infer(enable_jnt_comp, 0);
infer(enable_ref_frame_mvs, 0);
}
flag(seq_choose_screen_content_tools);
if (current->seq_choose_screen_content_tools)
infer(seq_force_screen_content_tools,
AV1_SELECT_SCREEN_CONTENT_TOOLS);
else
fb(1, seq_force_screen_content_tools);
if (current->seq_force_screen_content_tools > 0) {
flag(seq_choose_integer_mv);
if (current->seq_choose_integer_mv)
infer(seq_force_integer_mv,
AV1_SELECT_INTEGER_MV);
else
fb(1, seq_force_integer_mv);
} else {
infer(seq_force_integer_mv, AV1_SELECT_INTEGER_MV);
}
if (current->enable_order_hint)
fb(3, order_hint_bits_minus_1);
}
flag(enable_superres);
flag(enable_cdef);
flag(enable_restoration);
CHECK(mpp_av1_color_config(ctx, gb, &current->color_config,
current->seq_profile));
flag(film_grain_params_present);
return 0;
}
static RK_S32 mpp_av1_temporal_delimiter_obu(AV1Context *ctx, BitReadCtx_t *gb)
{
(void)gb;
ctx->seen_frame_header = 0;
return 0;
}
/* spec 7.8 */
static RK_S32 mpp_av1_set_frame_refs(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
(void)gb;
const AV1RawSequenceHeader *seq = ctx->sequence_header;
static const RK_U8 ref_frame_list[AV1_NUM_REF_FRAMES - 2] = {
AV1_REF_FRAME_LAST2, AV1_REF_FRAME_LAST3, AV1_REF_FRAME_BWDREF,
AV1_REF_FRAME_ALTREF2, AV1_REF_FRAME_ALTREF
};
RK_S8 ref_frame_idx[AV1_REFS_PER_FRAME], used_frame[AV1_NUM_REF_FRAMES];
RK_S8 shifted_order_hints[AV1_NUM_REF_FRAMES];
RK_S32 cur_frame_hint, latest_order_hint, earliest_order_hint, ref;
RK_S32 i, j;
for (i = 0; i < AV1_REFS_PER_FRAME; i++)
ref_frame_idx[i] = -1;
ref_frame_idx[AV1_REF_FRAME_LAST - AV1_REF_FRAME_LAST] = current->last_frame_idx;
ref_frame_idx[AV1_REF_FRAME_GOLDEN - AV1_REF_FRAME_LAST] = current->golden_frame_idx;
/*
* An array usedFrame marking which reference frames
* have been used is prepared as follows:
*/
for (i = 0; i < AV1_NUM_REF_FRAMES; i++)
used_frame[i] = 0;
used_frame[current->last_frame_idx] = 1;
used_frame[current->golden_frame_idx] = 1;
/*
* An array shiftedOrderHints (containing the expected output order shifted
* such that the current frame has hint equal to curFrameHint) is prepared as follows:
*/
cur_frame_hint = 1 << (seq->order_hint_bits_minus_1);
for (i = 0; i < AV1_NUM_REF_FRAMES; i++)
shifted_order_hints[i] = cur_frame_hint +
mpp_av1_get_relative_dist(seq, ctx->ref_s[i].order_hint,
ctx->order_hint);
latest_order_hint = shifted_order_hints[current->last_frame_idx];
earliest_order_hint = shifted_order_hints[current->golden_frame_idx];
/* find_latest_backward */
ref = -1;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
RK_S32 hint = shifted_order_hints[i];
if (!used_frame[i] && hint >= cur_frame_hint &&
(ref < 0 || hint >= latest_order_hint)) {
ref = i;
latest_order_hint = hint;
}
}
/*
* The ALTREF_FRAME reference is set to be a backward reference to the frame
* with highest output order as follows:
*/
if (ref >= 0) {
ref_frame_idx[AV1_REF_FRAME_ALTREF - AV1_REF_FRAME_LAST] = ref;
used_frame[ref] = 1;
}
/* find_earliest_backward */
ref = -1;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
RK_S32 hint = shifted_order_hints[i];
if (!used_frame[i] && hint >= cur_frame_hint &&
(ref < 0 || hint < earliest_order_hint)) {
ref = i;
earliest_order_hint = hint;
}
}
/*
* The BWDREF_FRAME reference is set to be a backward reference to
* the closest frame as follows:
*/
if (ref >= 0) {
ref_frame_idx[AV1_REF_FRAME_BWDREF - AV1_REF_FRAME_LAST] = ref;
used_frame[ref] = 1;
}
ref = -1;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
RK_S32 hint = shifted_order_hints[i];
if (!used_frame[i] && hint >= cur_frame_hint &&
(ref < 0 || hint < earliest_order_hint)) {
ref = i;
earliest_order_hint = hint;
}
}
/*
* The ALTREF2_FRAME reference is set to the next closest
* backward reference as follows:
*/
if (ref >= 0) {
ref_frame_idx[AV1_REF_FRAME_ALTREF2 - AV1_REF_FRAME_LAST] = ref;
used_frame[ref] = 1;
}
/*
* The remaining references are set to be forward references
* in anti-chronological order as follows:
*/
for (i = 0; i < AV1_REFS_PER_FRAME - 2; i++) {
RK_S32 ref_frame = ref_frame_list[i];
if (ref_frame_idx[ref_frame - AV1_REF_FRAME_LAST] < 0 ) {
/* find_latest_forward */
ref = -1;
for (j = 0; j < AV1_NUM_REF_FRAMES; j++) {
RK_S32 hint = shifted_order_hints[j];
if (!used_frame[j] && hint < cur_frame_hint &&
(ref < 0 || hint >= latest_order_hint)) {
ref = j;
latest_order_hint = hint;
}
}
if (ref >= 0) {
ref_frame_idx[ref_frame - AV1_REF_FRAME_LAST] = ref;
used_frame[ref] = 1;
}
}
}
/*
* Finally, any remaining references are set to the reference
* frame with smallest output order as follows:
*/
ref = -1;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
RK_S32 hint = shifted_order_hints[i];
if (ref < 0 || hint < earliest_order_hint) {
ref = i;
earliest_order_hint = hint;
}
}
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
if (ref_frame_idx[i] < 0)
ref_frame_idx[i] = ref;
infer(ref_frame_idx[i], ref_frame_idx[i]);
}
return 0;
}
static RK_S32 mpp_av1_superres_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
const AV1RawSequenceHeader *seq = ctx->sequence_header;
RK_S32 denom, err;
if (seq->enable_superres)
flag(use_superres);
else
infer(use_superres, 0);
if (current->use_superres) {
fb(3, coded_denom);
denom = current->coded_denom + AV1_SUPERRES_DENOM_MIN;
} else {
denom = AV1_SUPERRES_NUM;
}
ctx->upscaled_width = ctx->frame_width;
ctx->frame_width = (ctx->upscaled_width * AV1_SUPERRES_NUM +
denom / 2) / denom;
return 0;
}
static RK_S32 mpp_av1_frame_size(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
const AV1RawSequenceHeader *seq = ctx->sequence_header;
RK_S32 err;
if (current->frame_size_override_flag) {
fb(seq->frame_width_bits_minus_1 + 1, frame_width_minus_1);
fb(seq->frame_height_bits_minus_1 + 1, frame_height_minus_1);
} else {
infer(frame_width_minus_1, seq->max_frame_width_minus_1);
infer(frame_height_minus_1, seq->max_frame_height_minus_1);
}
ctx->frame_width = current->frame_width_minus_1 + 1;
ctx->frame_height = current->frame_height_minus_1 + 1;
CHECK(mpp_av1_superres_params(ctx, gb, current));
return 0;
}
static RK_S32 mpp_av1_render_size(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
RK_S32 err;
flag(render_and_frame_size_different);
if (current->render_and_frame_size_different) {
fb(16, render_width_minus_1);
fb(16, render_height_minus_1);
} else {
infer(render_width_minus_1, current->frame_width_minus_1);
infer(render_height_minus_1, current->frame_height_minus_1);
}
ctx->render_width = current->render_width_minus_1 + 1;
ctx->render_height = current->render_height_minus_1 + 1;
return 0;
}
static RK_S32 mpp_av1_frame_size_with_refs(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
RK_S32 i, err;
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
flags(found_ref[i], 1, i);
if (current->found_ref[i]) {
AV1ReferenceFrameState *ref =
&ctx->ref_s[current->ref_frame_idx[i]];
if (!ref->valid) {
mpp_err_f("Missing reference frame needed for frame size "
"(ref = %d, ref_frame_idx = %d).\n",
i, current->ref_frame_idx[i]);
return MPP_ERR_PROTOL;
}
infer(frame_width_minus_1, ref->upscaled_width - 1);
infer(frame_height_minus_1, ref->frame_height - 1);
infer(render_width_minus_1, ref->render_width - 1);
infer(render_height_minus_1, ref->render_height - 1);
ctx->upscaled_width = ref->upscaled_width;
ctx->frame_width = ctx->upscaled_width;
ctx->frame_height = ref->frame_height;
ctx->render_width = ref->render_width;
ctx->render_height = ref->render_height;
break;
}
}
if (i >= AV1_REFS_PER_FRAME) {
CHECK(mpp_av1_frame_size(ctx, gb, current));
CHECK(mpp_av1_render_size(ctx, gb, current));
} else {
CHECK(mpp_av1_superres_params(ctx, gb, current));
}
return 0;
}
static RK_S32 mpp_av1_interpolation_filter(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
RK_S32 err;
(void)ctx;
flag(is_filter_switchable);
if (current->is_filter_switchable)
infer(interpolation_filter,
AV1_INTERPOLATION_FILTER_SWITCHABLE);
else
fb(2, interpolation_filter);
return 0;
}
static RK_S32 mpp_av1_tile_info(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
const AV1RawSequenceHeader *seq = ctx->sequence_header;
RK_S32 mi_cols, mi_rows, sb_cols, sb_rows, sb_shift, sb_size;
RK_S32 max_tile_width_sb, max_tile_height_sb, max_tile_area_sb;
RK_S32 min_log2_tile_cols, max_log2_tile_cols, max_log2_tile_rows;
RK_S32 min_log2_tiles, min_log2_tile_rows;
RK_S32 i, err;
mi_cols = 2 * ((ctx->frame_width + 7) >> 3);
mi_rows = 2 * ((ctx->frame_height + 7) >> 3);
sb_cols = seq->use_128x128_superblock ? ((mi_cols + 31) >> 5)
: ((mi_cols + 15) >> 4);
sb_rows = seq->use_128x128_superblock ? ((mi_rows + 31) >> 5)
: ((mi_rows + 15) >> 4);
sb_shift = seq->use_128x128_superblock ? 5 : 4;
sb_size = sb_shift + 2;
max_tile_width_sb = AV1_MAX_TILE_WIDTH >> sb_size;
max_tile_area_sb = AV1_MAX_TILE_AREA >> (2 * sb_size);
min_log2_tile_cols = mpp_av1_tile_log2(max_tile_width_sb, sb_cols);
max_log2_tile_cols = mpp_av1_tile_log2(1, MPP_MIN(sb_cols, AV1_MAX_TILE_COLS));
max_log2_tile_rows = mpp_av1_tile_log2(1, MPP_MIN(sb_rows, AV1_MAX_TILE_ROWS));
min_log2_tiles = MPP_MAX(min_log2_tile_cols,
mpp_av1_tile_log2(max_tile_area_sb, sb_rows * sb_cols));
flag(uniform_tile_spacing_flag);
if (current->uniform_tile_spacing_flag) {
RK_S32 tile_width_sb, tile_height_sb;
increment(tile_cols_log2, min_log2_tile_cols, max_log2_tile_cols);
tile_width_sb = (sb_cols + (1 << current->tile_cols_log2) - 1) >>
current->tile_cols_log2;
current->tile_cols = (sb_cols + tile_width_sb - 1) / tile_width_sb;
min_log2_tile_rows = MPP_MAX(min_log2_tiles - current->tile_cols_log2, 0);
increment(tile_rows_log2, min_log2_tile_rows, max_log2_tile_rows);
tile_height_sb = (sb_rows + (1 << current->tile_rows_log2) - 1) >>
current->tile_rows_log2;
current->tile_rows = (sb_rows + tile_height_sb - 1) / tile_height_sb;
for (i = 0; i < current->tile_cols - 1; i++)
infer(width_in_sbs_minus_1[i], tile_width_sb - 1);
infer(width_in_sbs_minus_1[i],
sb_cols - (current->tile_cols - 1) * tile_width_sb - 1);
for (i = 0; i < current->tile_rows - 1; i++)
infer(height_in_sbs_minus_1[i], tile_height_sb - 1);
infer(height_in_sbs_minus_1[i],
sb_rows - (current->tile_rows - 1) * tile_height_sb - 1);
} else {
RK_S32 widest_tile_sb, start_sb, size_sb, max_width, max_height;
widest_tile_sb = 0;
start_sb = 0;
for (i = 0; start_sb < sb_cols && i < AV1_MAX_TILE_COLS; i++) {
max_width = MPP_MIN(sb_cols - start_sb, max_tile_width_sb);
ns(max_width, width_in_sbs_minus_1[i]);
//ns(max_width, width_in_sbs_minus_1[i]);
size_sb = current->width_in_sbs_minus_1[i] + 1;
widest_tile_sb = MPP_MAX(size_sb, widest_tile_sb);
start_sb += size_sb;
}
current->tile_cols_log2 = mpp_av1_tile_log2(1, i);
current->tile_cols = i;
if (min_log2_tiles > 0)
max_tile_area_sb = (sb_rows * sb_cols) >> (min_log2_tiles + 1);
else
max_tile_area_sb = sb_rows * sb_cols;
max_tile_height_sb = MPP_MAX(max_tile_area_sb / widest_tile_sb, 1);
start_sb = 0;
for (i = 0; start_sb < sb_rows && i < AV1_MAX_TILE_ROWS; i++) {
max_height = MPP_MIN(sb_rows - start_sb, max_tile_height_sb);
ns(max_height, height_in_sbs_minus_1[i]);
size_sb = current->height_in_sbs_minus_1[i] + 1;
start_sb += size_sb;
}
current->tile_rows_log2 = mpp_av1_tile_log2(1, i);
current->tile_rows = i;
}
if (current->tile_cols_log2 > 0 ||
current->tile_rows_log2 > 0) {
fb(current->tile_cols_log2 + current->tile_rows_log2,
context_update_tile_id);
fb(2, tile_size_bytes_minus1);
} else {
infer(context_update_tile_id, 0);
current->tile_size_bytes_minus1 = 3;
}
ctx->tile_cols = current->tile_cols;
ctx->tile_rows = current->tile_rows;
return 0;
}
static RK_S32 mpp_av1_quantization_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
const AV1RawSequenceHeader *seq = ctx->sequence_header;
RK_S32 err;
fb(8, base_q_idx);
delta_q(delta_q_y_dc);
if (ctx->num_planes > 1) {
if (seq->color_config.separate_uv_delta_q)
flag(diff_uv_delta);
else
infer(diff_uv_delta, 0);
delta_q(delta_q_u_dc);
delta_q(delta_q_u_ac);
if (current->diff_uv_delta) {
delta_q(delta_q_v_dc);
delta_q(delta_q_v_ac);
} else {
infer(delta_q_v_dc, current->delta_q_u_dc);
infer(delta_q_v_ac, current->delta_q_u_ac);
}
} else {
infer(delta_q_u_dc, 0);
infer(delta_q_u_ac, 0);
infer(delta_q_v_dc, 0);
infer(delta_q_v_ac, 0);
}
flag(using_qmatrix);
if (current->using_qmatrix) {
fb(4, qm_y);
fb(4, qm_u);
if (seq->color_config.separate_uv_delta_q)
fb(4, qm_v);
else
infer(qm_v, current->qm_u);
}
return 0;
}
static RK_S32 mpp_av1_segmentation_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
static const RK_U8 bits[AV1_SEG_LVL_MAX] = { 8, 6, 6, 6, 6, 3, 0, 0 };
static const RK_U8 sign[AV1_SEG_LVL_MAX] = { 1, 1, 1, 1, 1, 0, 0, 0 };
static const RK_U8 default_feature_enabled[AV1_SEG_LVL_MAX] = { 0 };
static const RK_S16 default_feature_value[AV1_SEG_LVL_MAX] = { 0 };
RK_S32 i, j, err;
flag(segmentation_enabled);
if (current->segmentation_enabled) {
if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
infer(segmentation_update_map, 1);
infer(segmentation_temporal_update, 0);
infer(segmentation_update_data, 1);
} else {
flag(segmentation_update_map);
if (current->segmentation_update_map)
flag(segmentation_temporal_update);
else
infer(segmentation_temporal_update, 0);
flag(segmentation_update_data);
}
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
const RK_U8 *ref_feature_enabled;
const RK_S16 *ref_feature_value;
if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
ref_feature_enabled = default_feature_enabled;
ref_feature_value = default_feature_value;
} else {
ref_feature_enabled =
ctx->ref_s[current->ref_frame_idx[current->primary_ref_frame]].feature_enabled[i];
ref_feature_value =
ctx->ref_s[current->ref_frame_idx[current->primary_ref_frame]].feature_value[i];
}
for (j = 0; j < AV1_SEG_LVL_MAX; j++) {
if (current->segmentation_update_data) {
flags(feature_enabled[i][j], 2, i, j);
if (current->feature_enabled[i][j] && bits[j] > 0) {
if (sign[j]) {
RK_S32 sign_, data;
READ_ONEBIT(gb, &sign_);
READ_BITS(gb, bits[j], &data);
if (sign_) data -= (1 << bits[j]);
current->feature_value[i][j] = data;
} else
fbs(bits[j], feature_value[i][j], 2, i, j);
} else {
infer(feature_value[i][j], 0);
}
} else {
infer(feature_enabled[i][j], ref_feature_enabled[j]);
infer(feature_value[i][j], ref_feature_value[j]);
}
}
}
} else {
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
for (j = 0; j < AV1_SEG_LVL_MAX; j++) {
infer(feature_enabled[i][j], 0);
infer(feature_value[i][j], 0);
}
}
}
return 0;
__BITREAD_ERR:
return MPP_ERR_STREAM;
}
static RK_S32 mpp_av1_delta_q_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
RK_S32 err;
(void)ctx;
if (current->base_q_idx > 0)
flag(delta_q_present);
else
infer(delta_q_present, 0);
if (current->delta_q_present)
fb(2, delta_q_res);
return 0;
}
static RK_S32 mpp_av1_delta_lf_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
RK_S32 err;
(void)ctx;
if (current->delta_q_present) {
if (!current->allow_intrabc)
flag(delta_lf_present);
else
infer(delta_lf_present, 0);
if (current->delta_lf_present) {
fb(2, delta_lf_res);
flag(delta_lf_multi);
} else {
infer(delta_lf_res, 0);
infer(delta_lf_multi, 0);
}
} else {
infer(delta_lf_present, 0);
infer(delta_lf_res, 0);
infer(delta_lf_multi, 0);
}
return 0;
}
static RK_S32 mpp_av1_loop_filter_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
static const RK_S8 default_loop_filter_ref_deltas[AV1_TOTAL_REFS_PER_FRAME] =
{ 1, 0, 0, 0, -1, 0, -1, -1 };
static const RK_S8 default_loop_filter_mode_deltas[2] = { 0, 0 };
RK_S32 i, err;
if (ctx->coded_lossless || current->allow_intrabc) {
infer(loop_filter_level[0], 0);
infer(loop_filter_level[1], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_INTRA], 1);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST2], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_LAST3], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_BWDREF], 0);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_GOLDEN], -1);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_ALTREF], -1);
infer(loop_filter_ref_deltas[AV1_REF_FRAME_ALTREF2], -1);
for (i = 0; i < 2; i++)
infer(loop_filter_mode_deltas[i], 0);
return 0;
}
fb(6, loop_filter_level[0]);
fb(6, loop_filter_level[1]);
if (ctx->num_planes > 1) {
if (current->loop_filter_level[0] ||
current->loop_filter_level[1]) {
fb(6, loop_filter_level[2]);
fb(6, loop_filter_level[3]);
}
}
av1d_dbg(AV1D_DBG_HEADER, "orderhint %d loop_filter_level %d %d %d %d\n",
current->order_hint,
current->loop_filter_level[0], current->loop_filter_level[1],
current->loop_filter_level[2], current->loop_filter_level[3]);
fb(3, loop_filter_sharpness);
flag(loop_filter_delta_enabled);
if (current->loop_filter_delta_enabled) {
const RK_S8 *ref_loop_filter_ref_deltas, *ref_loop_filter_mode_deltas;
if (current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
ref_loop_filter_ref_deltas = default_loop_filter_ref_deltas;
ref_loop_filter_mode_deltas = default_loop_filter_mode_deltas;
} else {
ref_loop_filter_ref_deltas =
ctx->ref_s[current->ref_frame_idx[current->primary_ref_frame]].loop_filter_ref_deltas;
ref_loop_filter_mode_deltas =
ctx->ref_s[current->ref_frame_idx[current->primary_ref_frame]].loop_filter_mode_deltas;
}
flag(loop_filter_delta_update);
for (i = 0; i < AV1_TOTAL_REFS_PER_FRAME; i++) {
if (current->loop_filter_delta_update)
flags(update_ref_delta[i], 1, i);
else
infer(update_ref_delta[i], 0);
if (current->update_ref_delta[i])
sus(1 + 6, loop_filter_ref_deltas[i], 1, i);
else
infer(loop_filter_ref_deltas[i], ref_loop_filter_ref_deltas[i]);
}
for (i = 0; i < 2; i++) {
if (current->loop_filter_delta_update)
flags(update_mode_delta[i], 1, i);
else
infer(update_mode_delta[i], 0);
if (current->update_mode_delta[i])
sus(1 + 6, loop_filter_mode_deltas[i], 1, i);
else
infer(loop_filter_mode_deltas[i], ref_loop_filter_mode_deltas[i]);
}
} else {
for (i = 0; i < AV1_TOTAL_REFS_PER_FRAME; i++)
infer(loop_filter_ref_deltas[i], default_loop_filter_ref_deltas[i]);
for (i = 0; i < 2; i++)
infer(loop_filter_mode_deltas[i], default_loop_filter_mode_deltas[i]);
}
return 0;
}
static RK_S32 mpp_av1_cdef_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
const AV1RawSequenceHeader *seq = ctx->sequence_header;
RK_S32 i, err;
if (ctx->coded_lossless || current->allow_intrabc ||
!seq->enable_cdef) {
infer(cdef_damping_minus_3, 0);
infer(cdef_bits, 0);
infer(cdef_y_pri_strength[0], 0);
infer(cdef_y_sec_strength[0], 0);
infer(cdef_uv_pri_strength[0], 0);
infer(cdef_uv_sec_strength[0], 0);
return 0;
}
fb(2, cdef_damping_minus_3);
fb(2, cdef_bits);
for (i = 0; i < (1 << current->cdef_bits); i++) {
fbs(4, cdef_y_pri_strength[i], 1, i);
fbs(2, cdef_y_sec_strength[i], 1, i);
if (ctx->num_planes > 1) {
fbs(4, cdef_uv_pri_strength[i], 1, i);
fbs(2, cdef_uv_sec_strength[i], 1, i);
}
}
return 0;
}
static RK_S32 mpp_av1_lr_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
const AV1RawSequenceHeader *seq = ctx->sequence_header;
RK_S32 uses_lr, uses_chroma_lr;
RK_S32 i, err;
if (ctx->all_lossless || current->allow_intrabc ||
!seq->enable_restoration) {
return 0;
}
uses_lr = uses_chroma_lr = 0;
for (i = 0; i < ctx->num_planes; i++) {
fbs(2, lr_type[i], 1, i);
if (current->lr_type[i] != AV1_RESTORE_NONE) {
uses_lr = 1;
if (i > 0)
uses_chroma_lr = 1;
}
}
if (uses_lr) {
if (seq->use_128x128_superblock)
increment(lr_unit_shift, 1, 2);
else
increment(lr_unit_shift, 0, 2);
if (seq->color_config.subsampling_x &&
seq->color_config.subsampling_y && uses_chroma_lr) {
fb(1, lr_uv_shift);
} else {
infer(lr_uv_shift, 0);
}
}
return 0;
}
static RK_S32 mpp_av1_read_tx_mode(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
RK_S32 err;
if (ctx->coded_lossless)
infer(tx_mode, 0);
else {
flag(tx_mode);
current->tx_mode = current->tx_mode ? 4 : 3;
}
return 0;
}
static RK_S32 mpp_av1_frame_reference_mode(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
RK_S32 err;
(void)ctx;
if (current->frame_type == AV1_FRAME_INTRA_ONLY ||
current->frame_type == AV1_FRAME_KEY)
infer(reference_select, 0);
else
flag(reference_select);
return 0;
}
static RK_S32 mpp_av1_skip_mode_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
const AV1RawSequenceHeader *seq = ctx->sequence_header;
RK_S32 skip_mode_allowed;
RK_S32 err;
if (current->frame_type == AV1_FRAME_KEY ||
current->frame_type == AV1_FRAME_INTRA_ONLY ||
!current->reference_select || !seq->enable_order_hint) {
skip_mode_allowed = 0;
} else {
RK_S32 forward_idx, backward_idx;
RK_S32 forward_hint, backward_hint;
RK_S32 ref_hint, dist, i;
forward_idx = -1;
backward_idx = -1;
forward_hint = -1;
backward_hint = -1;
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
ref_hint = ctx->ref_s[current->ref_frame_idx[i]].order_hint;
dist = mpp_av1_get_relative_dist(seq, ref_hint,
ctx->order_hint);
if (dist < 0) {
if (forward_idx < 0 ||
mpp_av1_get_relative_dist(seq, ref_hint,
forward_hint) > 0) {
forward_idx = i;
forward_hint = ref_hint;
}
} else if (dist > 0) {
if (backward_idx < 0 ||
mpp_av1_get_relative_dist(seq, ref_hint,
backward_hint) < 0) {
backward_idx = i;
backward_hint = ref_hint;
}
}
}
if (forward_idx < 0) {
skip_mode_allowed = 0;
} else if (backward_idx >= 0) {
skip_mode_allowed = 1;
ctx->skip_ref0 = MPP_MIN(forward_idx, backward_idx) + 1;
ctx->skip_ref1 = MPP_MAX(forward_idx, backward_idx) + 1;
// Frames for skip mode are forward_idx and backward_idx.
} else {
RK_S32 second_forward_idx;
RK_S32 second_forward_hint;
second_forward_idx = -1;
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
ref_hint = ctx->ref_s[current->ref_frame_idx[i]].order_hint;
if (mpp_av1_get_relative_dist(seq, ref_hint,
forward_hint) < 0) {
if (second_forward_idx < 0 ||
mpp_av1_get_relative_dist(seq, ref_hint,
second_forward_hint) > 0) {
second_forward_idx = i;
second_forward_hint = ref_hint;
}
}
}
if (second_forward_idx < 0) {
skip_mode_allowed = 0;
} else {
ctx->skip_ref0 = MPP_MIN(forward_idx, second_forward_idx) + 1;
ctx->skip_ref1 = MPP_MAX(forward_idx, second_forward_idx) + 1;
skip_mode_allowed = 1;
// Frames for skip mode are forward_idx and second_forward_idx.
}
}
}
if (skip_mode_allowed)
flag(skip_mode_present);
else
infer(skip_mode_present, 0);
return 0;
}
static RK_S32 mpp_av1_global_motion_param(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current,
RK_S32 type, RK_S32 ref, RK_S32 idx)
{
RK_U32 abs_bits, prec_bits, num_syms;
RK_S32 err;
(void)ctx;
if (idx < 2) {
if (type == AV1_WARP_MODEL_TRANSLATION) {
abs_bits = AV1_GM_ABS_TRANS_ONLY_BITS - !current->allow_high_precision_mv;
prec_bits = AV1_GM_TRANS_ONLY_PREC_BITS - !current->allow_high_precision_mv;
} else {
abs_bits = AV1_GM_ABS_TRANS_BITS;
prec_bits = AV1_GM_TRANS_PREC_BITS;
}
} else {
abs_bits = AV1_GM_ABS_ALPHA_BITS;
prec_bits = AV1_GM_ALPHA_PREC_BITS;
}
num_syms = 2 * (1 << abs_bits) + 1;
subexp(gm_params[ref][idx], num_syms);// 2, ref, idx);
// Actual gm_params value is not reconstructed here.
(void)prec_bits;
return 0;
}
/*
* Actual gm_params value is not reconstructed here.
* Real gm_params update in av1d_parser.c->global_motion_params()
*/
static RK_S32 mpp_av1_global_motion_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
RK_S32 ref, type;
RK_S32 err;
if (current->frame_type == AV1_FRAME_KEY ||
current->frame_type == AV1_FRAME_INTRA_ONLY)
return 0;
for (ref = AV1_REF_FRAME_LAST; ref <= AV1_REF_FRAME_ALTREF; ref++) {
flags(is_global[ref], 1, ref);
if (current->is_global[ref]) {
flags(is_rot_zoom[ref], 1, ref);
if (current->is_rot_zoom[ref]) {
type = AV1_WARP_MODEL_ROTZOOM;
} else {
flags(is_translation[ref], 1, ref);
type = current->is_translation[ref] ? AV1_WARP_MODEL_TRANSLATION
: AV1_WARP_MODEL_AFFINE;
}
} else {
type = AV1_WARP_MODEL_IDENTITY;
}
if (type >= AV1_WARP_MODEL_ROTZOOM) {
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 2));
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 3));
if (type == AV1_WARP_MODEL_AFFINE) {
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 4));
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 5));
} else {
current->gm_params[ref][4] = -current->gm_params[ref][3];
current->gm_params[ref][5] = current->gm_params[ref][2];
}
}
if (type >= AV1_WARP_MODEL_TRANSLATION) {
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 0));
CHECK(mpp_av1_global_motion_param(ctx, gb, current, type, ref, 1));
}
}
return 0;
}
static RK_S32 mpp_av1_film_grain_params(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFilmGrainParams *current,
AV1RawFrameHeader *frame_header)
{
const AV1RawSequenceHeader *seq = ctx->sequence_header;
RK_S32 num_pos_luma, num_pos_chroma;
RK_S32 i, err;
if (!seq->film_grain_params_present ||
(!frame_header->show_frame && !frame_header->showable_frame))
return 0;
flag(apply_grain);
if (!current->apply_grain)
return 0;
fb(16, grain_seed);
if (frame_header->frame_type == AV1_FRAME_INTER)
flag(update_grain);
else
infer(update_grain, 1);
if (!current->update_grain) {
fb(3, film_grain_params_ref_idx);
return 0;
}
fc(4, num_y_points, 0, 14);
for (i = 0; i < current->num_y_points; i++) {
fcs(8, point_y_value[i],
i ? current->point_y_value[i - 1] + 1 : 0,
MAX_UINT_BITS(8) - (current->num_y_points - i - 1),
1, i);
fbs(8, point_y_scaling[i], 1, i);
}
if (seq->color_config.mono_chrome)
infer(chroma_scaling_from_luma, 0);
else
flag(chroma_scaling_from_luma);
if (seq->color_config.mono_chrome ||
current->chroma_scaling_from_luma ||
(seq->color_config.subsampling_x == 1 &&
seq->color_config.subsampling_y == 1 &&
current->num_y_points == 0)) {
infer(num_cb_points, 0);
infer(num_cr_points, 0);
} else {
fc(4, num_cb_points, 0, 10);
for (i = 0; i < current->num_cb_points; i++) {
fcs(8, point_cb_value[i],
i ? current->point_cb_value[i - 1] + 1 : 0,
MAX_UINT_BITS(8) - (current->num_cb_points - i - 1),
1, i);
fbs(8, point_cb_scaling[i], 1, i);
}
fc(4, num_cr_points, 0, 10);
for (i = 0; i < current->num_cr_points; i++) {
fcs(8, point_cr_value[i],
i ? current->point_cr_value[i - 1] + 1 : 0,
MAX_UINT_BITS(8) - (current->num_cr_points - i - 1),
1, i);
fbs(8, point_cr_scaling[i], 1, i);
}
}
fb(2, grain_scaling_minus_8);
fb(2, ar_coeff_lag);
num_pos_luma = 2 * current->ar_coeff_lag * (current->ar_coeff_lag + 1);
if (current->num_y_points) {
num_pos_chroma = num_pos_luma + 1;
for (i = 0; i < num_pos_luma; i++)
fbs(8, ar_coeffs_y_plus_128[i], 1, i);
} else {
num_pos_chroma = num_pos_luma;
}
if (current->chroma_scaling_from_luma || current->num_cb_points) {
for (i = 0; i < num_pos_chroma; i++)
fbs(8, ar_coeffs_cb_plus_128[i], 1, i);
}
if (current->chroma_scaling_from_luma || current->num_cr_points) {
for (i = 0; i < num_pos_chroma; i++)
fbs(8, ar_coeffs_cr_plus_128[i], 1, i);
}
fb(2, ar_coeff_shift_minus_6);
fb(2, grain_scale_shift);
if (current->num_cb_points) {
fb(8, cb_mult);
fb(8, cb_luma_mult);
fb(9, cb_offset);
}
if (current->num_cr_points) {
fb(8, cr_mult);
fb(8, cr_luma_mult);
fb(9, cr_offset);
}
flag(overlap_flag);
flag(clip_to_restricted_range);
return 0;
}
static RK_S32 mpp_av1_uncompressed_header(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current)
{
const AV1RawSequenceHeader *seq;
RK_S32 id_len, diff_len, all_frames, frame_is_intra, order_hint_bits;
RK_S32 i, err;
if (!ctx->sequence_header) {
mpp_err_f("No sequence header available: "
"unable to decode frame header.\n");
return MPP_ERR_UNKNOW;
}
seq = ctx->sequence_header;
id_len = seq->additional_frame_id_length_minus_1 +
seq->delta_frame_id_length_minus_2 + 3;
all_frames = (1 << AV1_NUM_REF_FRAMES) - 1;
if (seq->reduced_still_picture_header) {
infer(show_existing_frame, 0);
infer(frame_type, AV1_FRAME_KEY);
infer(show_frame, 1);
infer(showable_frame, 0);
frame_is_intra = 1;
} else {
flag(show_existing_frame);
if (current->show_existing_frame) {
AV1ReferenceFrameState *ref;
fb(3, frame_to_show_map_idx);
ref = &ctx->ref_s[current->frame_to_show_map_idx];
if (!ref->valid) {
mpp_err_f("Missing reference frame needed for "
"show_existing_frame (frame_to_show_map_idx = %d).\n",
current->frame_to_show_map_idx);
return MPP_ERR_UNKNOW;
}
if (seq->decoder_model_info_present_flag &&
!seq->timing_info.equal_picture_interval) {
fb(seq->decoder_model_info.frame_presentation_time_length_minus_1 + 1,
frame_presentation_time);
}
if (seq->frame_id_numbers_present_flag)
fb(id_len, display_frame_id);
infer(frame_type, ref->frame_type);
if (current->frame_type == AV1_FRAME_KEY) {
infer(refresh_frame_flags, all_frames);
// Section 7.21
infer(current_frame_id, ref->frame_id);
ctx->upscaled_width = ref->upscaled_width;
ctx->frame_width = ref->frame_width;
ctx->frame_height = ref->frame_height;
ctx->render_width = ref->render_width;
ctx->render_height = ref->render_height;
ctx->bit_depth = ref->bit_depth;
ctx->order_hint = ref->order_hint;
} else
infer(refresh_frame_flags, 0);
infer(frame_width_minus_1, ref->upscaled_width - 1);
infer(frame_height_minus_1, ref->frame_height - 1);
infer(render_width_minus_1, ref->render_width - 1);
infer(render_height_minus_1, ref->render_height - 1);
// Section 7.20
goto update_refs;
}
fb(2, frame_type);
frame_is_intra = (current->frame_type == AV1_FRAME_INTRA_ONLY ||
current->frame_type == AV1_FRAME_KEY);
ctx->frame_is_intra = frame_is_intra;
if (current->frame_type == AV1_FRAME_KEY) {
RK_U32 refresh_frame_flags = (1 << NUM_REF_FRAMES) - 1;
Av1GetCDFs(ctx, current->frame_to_show_map_idx);
Av1StoreCDFs(ctx, refresh_frame_flags);
}
flag(show_frame);
if (current->show_frame &&
seq->decoder_model_info_present_flag &&
!seq->timing_info.equal_picture_interval) {
fb(seq->decoder_model_info.frame_presentation_time_length_minus_1 + 1,
frame_presentation_time);
}
if (current->show_frame)
infer(showable_frame, current->frame_type != AV1_FRAME_KEY);
else
flag(showable_frame);
if (current->frame_type == AV1_FRAME_SWITCH ||
(current->frame_type == AV1_FRAME_KEY && current->show_frame))
infer(error_resilient_mode, 1);
else
flag(error_resilient_mode);
}
if (current->frame_type == AV1_FRAME_KEY && current->show_frame) {
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
ctx->ref_s[i].valid = 0;
ctx->ref_s[i].order_hint = 0;
}
}
flag(disable_cdf_update);
if (seq->seq_force_screen_content_tools ==
AV1_SELECT_SCREEN_CONTENT_TOOLS) {
flag(allow_screen_content_tools);
} else {
infer(allow_screen_content_tools,
seq->seq_force_screen_content_tools);
}
if (current->allow_screen_content_tools) {
if (seq->seq_force_integer_mv == AV1_SELECT_INTEGER_MV)
flag(force_integer_mv);
else
infer(force_integer_mv, seq->seq_force_integer_mv);
} else {
infer(force_integer_mv, 0);
}
if (seq->frame_id_numbers_present_flag) {
fb(id_len, current_frame_id);
diff_len = seq->delta_frame_id_length_minus_2 + 2;
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
if (current->current_frame_id > (RK_S32)(1 << diff_len)) {
if (ctx->ref_s[i].frame_id > current->current_frame_id ||
ctx->ref_s[i].frame_id < (current->current_frame_id -
(RK_S32)(1 << diff_len)))
ctx->ref_s[i].valid = 0;
} else {
if (ctx->ref_s[i].frame_id > current->current_frame_id &&
ctx->ref_s[i].frame_id < ((RK_S32)(1 << id_len) +
current->current_frame_id -
(RK_S32)(1 << diff_len)))
ctx->ref_s[i].valid = 0;
}
}
} else {
infer(current_frame_id, 0);
}
if (current->frame_type == AV1_FRAME_SWITCH)
infer(frame_size_override_flag, 1);
else if (seq->reduced_still_picture_header)
infer(frame_size_override_flag, 0);
else
flag(frame_size_override_flag);
order_hint_bits =
seq->enable_order_hint ? seq->order_hint_bits_minus_1 + 1 : 0;
if (order_hint_bits > 0)
fb(order_hint_bits, order_hint);
else
infer(order_hint, 0);
ctx->order_hint = current->order_hint;
if (frame_is_intra || current->error_resilient_mode)
infer(primary_ref_frame, AV1_PRIMARY_REF_NONE);
else
fb(3, primary_ref_frame);
if (seq->decoder_model_info_present_flag) {
flag(buffer_removal_time_present_flag);
if (current->buffer_removal_time_present_flag) {
for (i = 0; i <= seq->operating_points_cnt_minus_1; i++) {
if (seq->decoder_model_present_for_this_op[i]) {
RK_S32 op_pt_idc = seq->operating_point_idc[i];
RK_S32 in_temporal_layer = (op_pt_idc >> ctx->temporal_id ) & 1;
RK_S32 in_spatial_layer = (op_pt_idc >> (ctx->spatial_id + 8)) & 1;
if (seq->operating_point_idc[i] == 0 ||
(in_temporal_layer && in_spatial_layer)) {
fbs(seq->decoder_model_info.buffer_removal_time_length_minus_1 + 1,
buffer_removal_time[i], 1, i);
}
}
}
}
}
if (current->frame_type == AV1_FRAME_SWITCH ||
(current->frame_type == AV1_FRAME_KEY && current->show_frame))
infer(refresh_frame_flags, all_frames);
else
fb(8, refresh_frame_flags);
ctx->refresh_frame_flags = current->refresh_frame_flags;
if (!frame_is_intra || current->refresh_frame_flags != all_frames) {
if (seq->enable_order_hint) {
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
if (current->error_resilient_mode)
fbs(order_hint_bits, ref_order_hint[i], 1, i);
else
infer(ref_order_hint[i], ctx->ref_s[i].order_hint);
if (current->ref_order_hint[i] != ctx->ref_s[i].order_hint)
ctx->ref_s[i].valid = 0;
}
}
}
if (current->frame_type == AV1_FRAME_KEY ||
current->frame_type == AV1_FRAME_INTRA_ONLY) {
CHECK(mpp_av1_frame_size(ctx, gb, current));
CHECK(mpp_av1_render_size(ctx, gb, current));
if (current->allow_screen_content_tools &&
ctx->upscaled_width == ctx->frame_width)
flag(allow_intrabc);
else
infer(allow_intrabc, 0);
} else {
if (!seq->enable_order_hint) {
infer(frame_refs_short_signaling, 0);
} else {
flag(frame_refs_short_signaling);
if (current->frame_refs_short_signaling) {
fb(3, last_frame_idx);
fb(3, golden_frame_idx);
CHECK(mpp_av1_set_frame_refs(ctx, gb, current));
}
}
for (i = 0; i < AV1_REFS_PER_FRAME; i++) {
if (!current->frame_refs_short_signaling)
fbs(3, ref_frame_idx[i], 1, i);
if (seq->frame_id_numbers_present_flag) {
fbs(seq->delta_frame_id_length_minus_2 + 2,
delta_frame_id_minus1[i], 1, i);
}
}
if (current->frame_size_override_flag &&
!current->error_resilient_mode) {
CHECK(mpp_av1_frame_size_with_refs(ctx, gb, current));
} else {
CHECK(mpp_av1_frame_size(ctx, gb, current));
CHECK(mpp_av1_render_size(ctx, gb, current));
}
if (current->force_integer_mv)
infer(allow_high_precision_mv, 0);
else
flag(allow_high_precision_mv);
CHECK(mpp_av1_interpolation_filter(ctx, gb, current));
flag(is_motion_mode_switchable);
if (current->error_resilient_mode ||
!seq->enable_ref_frame_mvs)
infer(use_ref_frame_mvs, 0);
else
flag(use_ref_frame_mvs);
infer(allow_intrabc, 0);
}
if (!frame_is_intra) {
// Derive reference frame sign biases.
}
if (seq->reduced_still_picture_header || current->disable_cdf_update)
infer(disable_frame_end_update_cdf, 1);
else
flag(disable_frame_end_update_cdf);
ctx->disable_frame_end_update_cdf = current->disable_frame_end_update_cdf;
if (current->use_ref_frame_mvs) {
// Perform motion field estimation process.
}
av1d_dbg(AV1D_DBG_HEADER, "ptile_info in %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_tile_info(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "ptile_info out %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_quantization_params(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "quantization out %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_segmentation_params(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "segmentation out %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_delta_q_params(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "delta_q out %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_delta_lf_params(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "lf out %d", mpp_get_bits_count(gb));
// Init coeff CDFs / load previous segments.
if (current->error_resilient_mode || frame_is_intra || current->primary_ref_frame == AV1_PRIMARY_REF_NONE) {
// Init non-coeff CDFs.
// Setup past independence.
ctx->cdfs = &ctx->default_cdfs;
ctx->cdfs_ndvc = &ctx->default_cdfs_ndvc;
Av1DefaultCoeffProbs(current->base_q_idx, ctx->cdfs);
} else {
// Load CDF tables from previous frame.
// Load params from previous frame.
RK_U32 idx = current->ref_frame_idx[current->primary_ref_frame];
Av1GetCDFs(ctx, idx);
}
av1d_dbg(AV1D_DBG_HEADER, "show_existing_frame_index %d primary_ref_frame %d %d (%d) refresh_frame_flags %d base_q_idx %d\n",
current->frame_to_show_map_idx,
current->ref_frame_idx[current->primary_ref_frame],
ctx->ref[current->ref_frame_idx[current->primary_ref_frame]].slot_index,
current->primary_ref_frame,
current->refresh_frame_flags,
current->base_q_idx);
Av1StoreCDFs(ctx, current->refresh_frame_flags);
ctx->coded_lossless = 1;
for (i = 0; i < AV1_MAX_SEGMENTS; i++) {
RK_S32 qindex;
if (current->feature_enabled[i][AV1_SEG_LVL_ALT_Q]) {
qindex = (current->base_q_idx +
current->feature_value[i][AV1_SEG_LVL_ALT_Q]);
} else {
qindex = current->base_q_idx;
}
qindex = mpp_clip_uintp2(qindex, 8);
if (qindex || current->delta_q_y_dc ||
current->delta_q_u_ac || current->delta_q_u_dc ||
current->delta_q_v_ac || current->delta_q_v_dc) {
ctx->coded_lossless = 0;
}
}
ctx->all_lossless = ctx->coded_lossless &&
ctx->frame_width == ctx->upscaled_width;
av1d_dbg(AV1D_DBG_HEADER, "filter in %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_loop_filter_params(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "cdef in %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_cdef_params(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "lr in %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_lr_params(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "read_tx in %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_read_tx_mode(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "reference in%d", mpp_get_bits_count(gb));
CHECK(mpp_av1_frame_reference_mode(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "kip_mode in %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_skip_mode_params(ctx, gb, current));
if (frame_is_intra || current->error_resilient_mode ||
!seq->enable_warped_motion)
infer(allow_warped_motion, 0);
else
flag(allow_warped_motion);
flag(reduced_tx_set);
av1d_dbg(AV1D_DBG_HEADER, "motion in%d", mpp_get_bits_count(gb));
CHECK(mpp_av1_global_motion_params(ctx, gb, current));
av1d_dbg(AV1D_DBG_HEADER, "grain in %d", mpp_get_bits_count(gb));
CHECK(mpp_av1_film_grain_params(ctx, gb, &current->film_grain, current));
av1d_dbg(AV1D_DBG_HEADER, "film_grain out %d", mpp_get_bits_count(gb));
av1d_dbg(AV1D_DBG_REF, "Frame %d: size %dx%d "
"upscaled %d render %dx%d subsample %dx%d "
"bitdepth %d tiles %dx%d.\n", ctx->order_hint,
ctx->frame_width, ctx->frame_height, ctx->upscaled_width,
ctx->render_width, ctx->render_height,
seq->color_config.subsampling_x + 1,
seq->color_config.subsampling_y + 1, ctx->bit_depth,
ctx->tile_rows, ctx->tile_cols);
update_refs:
for (i = 0; i < AV1_NUM_REF_FRAMES; i++) {
if (current->refresh_frame_flags & (1 << i)) {
ctx->ref_s[i] = (AV1ReferenceFrameState) {
.valid = 1,
.frame_id = current->current_frame_id,
.upscaled_width = ctx->upscaled_width,
.frame_width = ctx->frame_width,
.frame_height = ctx->frame_height,
.render_width = ctx->render_width,
.render_height = ctx->render_height,
.frame_type = current->frame_type,
.subsampling_x = seq->color_config.subsampling_x,
.subsampling_y = seq->color_config.subsampling_y,
.bit_depth = ctx->bit_depth,
.order_hint = ctx->order_hint,
};
memcpy(ctx->ref_s[i].loop_filter_ref_deltas, current->loop_filter_ref_deltas,
sizeof(current->loop_filter_ref_deltas));
memcpy(ctx->ref_s[i].loop_filter_mode_deltas, current->loop_filter_mode_deltas,
sizeof(current->loop_filter_mode_deltas));
memcpy(ctx->ref_s[i].feature_enabled, current->feature_enabled,
sizeof(current->feature_enabled));
memcpy(ctx->ref_s[i].feature_value, current->feature_value,
sizeof(current->feature_value));
}
}
return 0;
}
static RK_S32 mpp_av1_frame_header_obu(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrameHeader *current, RK_S32 redundant,
void *rw_buffer_ref)
{
RK_S32 start_pos, fh_bits, fh_bytes, err;
RK_U8 *fh_start;
(void)rw_buffer_ref;
if (ctx->seen_frame_header) {
if (!redundant) {
mpp_err_f("Invalid repeated "
"frame header OBU.\n");
return MPP_ERR_UNKNOW;
} else {
BitReadCtx_t fh;
size_t i, b;
RK_U32 val;
// mpp_assert(ctx->frame_header_ref && ctx->frame_header);
mpp_set_bitread_ctx(&fh, ctx->frame_header,
ctx->frame_header_size);
for (i = 0; i < ctx->frame_header_size; i += 8) {
b = MPP_MIN(ctx->frame_header_size - i, 8);
mpp_read_bits(&fh, b, (RK_S32*)&val);
xf(b, frame_header_copy[i],
val, val, val, 1, i / 8);
}
}
} else {
start_pos = mpp_get_bits_count(gb);
CHECK(mpp_av1_uncompressed_header(ctx, gb, current));
ctx->tile_num = 0;
if (current->show_existing_frame) {
ctx->seen_frame_header = 0;
} else {
ctx->seen_frame_header = 1;
fh_bits = mpp_get_bits_count(gb) - start_pos;
fh_start = (RK_U8*)gb->buf + start_pos / 8;
fh_bytes = (fh_bits + 7) / 8;
ctx->frame_header_size = fh_bits;
MPP_FREE(ctx->frame_header);
ctx->frame_header =
mpp_malloc(RK_U8, fh_bytes + BUFFER_PADDING_SIZE);
if (!ctx->frame_header) {
mpp_err_f("frame header malloc failed\n");
return MPP_ERR_NOMEM;
}
memcpy(ctx->frame_header, fh_start, fh_bytes);
}
}
return 0;
}
static RK_S32 mpp_av1_tile_group_obu(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawTileGroup *current)
{
RK_S32 num_tiles, tile_bits;
RK_S32 err;
num_tiles = ctx->tile_cols * ctx->tile_rows;
if (num_tiles > 1)
flag(tile_start_and_end_present_flag);
else
infer(tile_start_and_end_present_flag, 0);
if (num_tiles == 1 || !current->tile_start_and_end_present_flag) {
infer(tg_start, 0);
infer(tg_end, num_tiles - 1);
} else {
tile_bits = mpp_av1_tile_log2(1, ctx->tile_cols) +
mpp_av1_tile_log2(1, ctx->tile_rows);
fc(tile_bits, tg_start, ctx->tile_num, num_tiles - 1);
fc(tile_bits, tg_end, current->tg_start, num_tiles - 1);
}
ctx->tile_num = current->tg_end + 1;
CHECK(mpp_av1_byte_alignment(ctx, gb));
// Reset header for next frame.
if (current->tg_end == num_tiles - 1)
ctx->seen_frame_header = 0;
// Tile data follows.
return 0;
}
static RK_S32 mpp_av1_frame_obu(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawFrame *current,
void *rw_buffer_ref)
{
RK_S32 err;
RK_U32 start_pos = mpp_get_bits_count(gb);
CHECK(mpp_av1_frame_header_obu(ctx, gb, &current->header,
0, rw_buffer_ref));
CHECK(mpp_av1_byte_alignment(ctx, gb));
CHECK(mpp_av1_tile_group_obu(ctx, gb, &current->tile_group));
ctx->frame_tag_size += (mpp_get_bits_count(gb) - start_pos + 7) >> 3;
return 0;
}
static RK_S32 mpp_av1_tile_list_obu(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawTileList *current)
{
RK_S32 err;
(void)ctx;
fb(8, output_frame_width_in_tiles_minus_1);
fb(8, output_frame_height_in_tiles_minus_1);
fb(16, tile_count_minus_1);
// Tile data follows.
return 0;
}
static RK_S32 mpp_av1_metadata_hdr_cll(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawMetadataHDRCLL *current)
{
RK_S32 err;
(void)ctx;
fb(16, max_cll);
fb(16, max_fall);
ctx->content_light.MaxCLL = current->max_cll;
ctx->content_light.MaxFALL = current->max_fall;
return 0;
}
static RK_S32 mpp_av1_metadata_hdr_mdcv(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawMetadataHDRMDCV *current)
{
RK_S32 err, i;
(void)ctx;
for (i = 0; i < 3; i++) {
fbs(16, primary_chromaticity_x[i], 1, i);
fbs(16, primary_chromaticity_y[i], 1, i);
}
fb(16, white_point_chromaticity_x);
fb(16, white_point_chromaticity_y);
fc(32, luminance_max, 1, MAX_UINT_BITS(32));
// luminance_min must be lower than luminance_max. Convert luminance_max from
// 24.8 fixed point to 18.14 fixed point in order to compare them.
fc(32, luminance_min, 0, MPP_MIN(((RK_U64)current->luminance_max << 6) - 1,
MAX_UINT_BITS(32)));
for (i = 0; i < 3; i++) {
ctx->mastering_display.display_primaries[i][0] = current->primary_chromaticity_x[i];
ctx->mastering_display.display_primaries[i][1] = current->primary_chromaticity_y[i];
}
ctx->mastering_display.white_point[0] = current->white_point_chromaticity_x;
ctx->mastering_display.white_point[1] = current->white_point_chromaticity_y;
ctx->mastering_display.max_luminance = current->luminance_max;
ctx->mastering_display.min_luminance = current->luminance_min;
return 0;
}
static RK_S32 mpp_av1_scalability_structure(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawMetadataScalability *current)
{
const AV1RawSequenceHeader *seq;
RK_S32 err, i, j;
if (!ctx->sequence_header) {
mpp_err_f("No sequence header available: "
"unable to parse scalability metadata.\n");
return MPP_ERR_UNKNOW;
}
seq = ctx->sequence_header;
fb(2, spatial_layers_cnt_minus_1);
flag(spatial_layer_dimensions_present_flag);
flag(spatial_layer_description_present_flag);
flag(temporal_group_description_present_flag);
fc(3, scalability_structure_reserved_3bits, 0, 0);
if (current->spatial_layer_dimensions_present_flag) {
for (i = 0; i <= current->spatial_layers_cnt_minus_1; i++) {
fcs(16, spatial_layer_max_width[i],
0, seq->max_frame_width_minus_1 + 1, 1, i);
fcs(16, spatial_layer_max_height[i],
0, seq->max_frame_height_minus_1 + 1, 1, i);
}
}
if (current->spatial_layer_description_present_flag) {
for (i = 0; i <= current->spatial_layers_cnt_minus_1; i++)
fbs(8, spatial_layer_ref_id[i], 1, i);
}
if (current->temporal_group_description_present_flag) {
fb(8, temporal_group_size);
for (i = 0; i < current->temporal_group_size; i++) {
fbs(3, temporal_group_temporal_id[i], 1, i);
flags(temporal_group_temporal_switching_up_point_flag[i], 1, i);
flags(temporal_group_spatial_switching_up_point_flag[i], 1, i);
fbs(3, temporal_group_ref_cnt[i], 1, i);
for (j = 0; j < current->temporal_group_ref_cnt[i]; j++) {
fbs(8, temporal_group_ref_pic_diff[i][j], 2, i, j);
}
}
}
return 0;
}
static RK_S32 mpp_av1_metadata_scalability(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawMetadataScalability *current)
{
RK_S32 err;
fb(8, scalability_mode_idc);
if (current->scalability_mode_idc == AV1_SCALABILITY_SS)
CHECK(mpp_av1_scalability_structure(ctx, gb, current));
return 0;
}
static RK_S32 mpp_av1_get_dolby_rpu(AV1Context *ctx, BitReadCtx_t *gb)
{
MppFrameHdrDynamicMeta *hdr_dynamic_meta = ctx->hdr_dynamic_meta;
RK_U32 emdf_payload_size = 0;
/* skip emdf_container{} */
SKIP_BITS(gb, 3);
SKIP_BITS(gb, 2);
SKIP_BITS(gb, 5);
SKIP_BITS(gb, 5);
SKIP_BITS(gb, 1);
SKIP_BITS(gb, 5);
SKIP_BITS(gb, 1);
/* skip emdf_payload_config{} */
SKIP_BITS(gb, 5);
/* get payload size */
#define VARIABLE_BITS8(gb, value) \
for (;;) { \
RK_U32 tmp, flag; \
\
READ_BITS(gb, 8, &tmp); \
value += tmp; \
READ_ONEBIT(gb, &flag); \
if (!flag) break; \
value <<= 8; \
value += (1 << 8); \
}
VARIABLE_BITS8(gb, emdf_payload_size);
if (!hdr_dynamic_meta) {
hdr_dynamic_meta = mpp_calloc_size(MppFrameHdrDynamicMeta,
sizeof(MppFrameHdrDynamicMeta) + SZ_1K);
if (!hdr_dynamic_meta) {
mpp_err_f("malloc hdr dynamic data failed!\n");
return MPP_ERR_NOMEM;
}
}
RK_U32 i;
MppWriteCtx bit_ctx;
mpp_writer_init(&bit_ctx, hdr_dynamic_meta->data, SZ_1K);
mpp_writer_put_raw_bits(&bit_ctx, 0, 24);
mpp_writer_put_raw_bits(&bit_ctx, 1, 8);
mpp_writer_put_raw_bits(&bit_ctx, 0x19, 8);
for (i = 0; i < emdf_payload_size; i++) {
RK_U8 data;
READ_BITS(gb, 8, &data);
mpp_writer_put_bits(&bit_ctx, data, 8);
}
hdr_dynamic_meta->size = mpp_writer_bytes(&bit_ctx);
hdr_dynamic_meta->hdr_fmt = DOLBY;
av1d_dbg(AV1D_DBG_STRMIN, "dolby rpu size %d -> %d\n",
emdf_payload_size, hdr_dynamic_meta->size);
ctx->hdr_dynamic_meta = hdr_dynamic_meta;
ctx->hdr_dynamic = 1;
ctx->is_hdr = 1;
if (av1d_debug & AV1D_DBG_DUMP_RPU) {
RK_U8 *p = hdr_dynamic_meta->data;
char fname[128];
FILE *fp_in = NULL;
static RK_U32 g_frame_no = 0;
sprintf(fname, "/data/video/meta_%d.txt", g_frame_no++);
fp_in = fopen(fname, "wb");
mpp_err("open %s %p\n", fname, fp_in);
if (fp_in)
fwrite(p, 1, hdr_dynamic_meta->size, fp_in);
fflush(fp_in);
fclose(fp_in);
}
return 0;
__BITREAD_ERR:
return MPP_ERR_STREAM;
}
static RK_S32 mpp_av1_metadata_itut_t35(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawMetadataITUTT35 *current)
{
RK_S32 err;
fb(8, itu_t_t35_country_code);
if (current->itu_t_t35_country_code == 0xff)
fb(8, itu_t_t35_country_code_extension_byte);
current->payload_size = mpp_get_bits_left(gb) / 8 - 1;
av1d_dbg(AV1D_DBG_STRMIN, "%s itu_t_t35_country_code %d payload_size %d\n",
__func__, current->itu_t_t35_country_code, current->payload_size);
fb(16, itu_t_t35_terminal_provider_code);
READ_BITS_LONG(gb, 32, &current->itu_t_t35_terminal_provider_oriented_code);
av1d_dbg(AV1D_DBG_STRMIN, "itu_t_t35_country_code 0x%x\n",
current->itu_t_t35_country_code);
av1d_dbg(AV1D_DBG_STRMIN, "itu_t_t35_terminal_provider_code 0x%x\n",
current->itu_t_t35_terminal_provider_code);
av1d_dbg(AV1D_DBG_STRMIN, "itu_t_t35_terminal_provider_oriented_code 0x%x\n",
current->itu_t_t35_terminal_provider_oriented_code);
if (current->itu_t_t35_terminal_provider_code == 0x3B &&
current->itu_t_t35_terminal_provider_oriented_code == 0x800)
mpp_av1_get_dolby_rpu(ctx, gb);
return 0;
__BITREAD_ERR:
return 0;
}
static RK_S32 mpp_av1_metadata_timecode(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawMetadataTimecode *current)
{
RK_S32 err;
(void)ctx;
fb(5, counting_type);
flag(full_timestamp_flag);
flag(discontinuity_flag);
flag(cnt_dropped_flag);
fb(9, n_frames);
if (current->full_timestamp_flag) {
fc(6, seconds_value, 0, 59);
fc(6, minutes_value, 0, 59);
fc(5, hours_value, 0, 23);
} else {
flag(seconds_flag);
if (current->seconds_flag) {
fc(6, seconds_value, 0, 59);
flag(minutes_flag);
if (current->minutes_flag) {
fc(6, minutes_value, 0, 59);
flag(hours_flag);
if (current->hours_flag)
fc(5, hours_value, 0, 23);
}
}
}
fb(5, time_offset_length);
if (current->time_offset_length > 0)
fb(current->time_offset_length, time_offset_value);
else
infer(time_offset_length, 0);
return 0;
}
static RK_S32 mpp_av1_metadata_obu(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawMetadata *current)
{
RK_S32 err;
leb128(metadata_type);
av1d_dbg(AV1D_DBG_STRMIN, "%s meta type %lld\n", __func__, current->metadata_type);
switch (current->metadata_type) {
case AV1_METADATA_TYPE_HDR_CLL:
CHECK(mpp_av1_metadata_hdr_cll(ctx, gb, &current->metadata.hdr_cll));
break;
case AV1_METADATA_TYPE_HDR_MDCV:
CHECK(mpp_av1_metadata_hdr_mdcv(ctx, gb, &current->metadata.hdr_mdcv));
break;
case AV1_METADATA_TYPE_SCALABILITY:
CHECK(mpp_av1_metadata_scalability(ctx, gb, &current->metadata.scalability));
break;
case AV1_METADATA_TYPE_ITUT_T35:
CHECK(mpp_av1_metadata_itut_t35(ctx, gb, &current->metadata.itut_t35));
break;
case AV1_METADATA_TYPE_TIMECODE:
CHECK(mpp_av1_metadata_timecode(ctx, gb, &current->metadata.timecode));
break;
default:
mpp_err_f("unknown metadata type %lld\n", current->metadata_type);
break;
}
return 0;
}
static RK_S32 mpp_av1_padding_obu(AV1Context *ctx, BitReadCtx_t *gb,
AV1RawPadding *current)
{
RK_S32 err;
RK_U32 i;
(void)ctx;
current->payload_size = mpp_av1_get_payload_bytes_left(gb);
current->payload = mpp_malloc(RK_U8, current->payload_size);
if (!current->payload )
return MPP_ERR_NOMEM;
for (i = 0; i < current->payload_size; i++)
xf(8, obu_padding_byte[i], current->payload[i], 0x00, 0xff, 1, i);
return 0;
}
static MPP_RET mpp_insert_unit(Av1UnitFragment *frag, RK_S32 position)
{
Av1ObuUnit *units;
if (frag->nb_units < frag->nb_units_allocated) {
units = frag->units;
if (position < frag->nb_units)
memmove(units + position + 1, units + position,
(frag->nb_units - position) * sizeof(*units));
} else {
units = mpp_malloc(Av1ObuUnit, frag->nb_units * 2 + 1);
if (!units)
return MPP_ERR_NOMEM;
frag->nb_units_allocated = 2 * frag->nb_units_allocated + 1;
if (position > 0)
memcpy(units, frag->units, position * sizeof(*units));
if (position < frag->nb_units)
memcpy(units + position + 1, frag->units + position,
(frag->nb_units - position) * sizeof(*units));
}
memset(units + position, 0, sizeof(*units));
if (units != frag->units) {
mpp_free(frag->units);
frag->units = units;
}
++frag->nb_units;
return MPP_OK;
}
static MPP_RET mpp_insert_unit_data(Av1UnitFragment *frag,
RK_S32 position,
Av1UnitType type,
RK_U8 *data, size_t data_size)
{
Av1ObuUnit *unit;
MPP_RET ret;
if (position == -1)
position = frag->nb_units;
mpp_assert(position >= 0 && position <= frag->nb_units);
ret = mpp_insert_unit(frag, position);
if (ret < 0) {
return ret;
}
unit = &frag->units[position];
unit->type = type;
unit->data = data;
unit->data_size = data_size;
return MPP_OK;
}
RK_S32 mpp_av1_split_fragment(AV1Context *ctx, Av1UnitFragment *frag, RK_S32 header_flag)
{
BitReadCtx_t gbc;
RK_U8 *data;
size_t size;
RK_U64 obu_length;
RK_S32 pos, err;
data = frag->data;
size = frag->data_size;
if (INT_MAX / 8 < size) {
mpp_err( "Invalid fragment: "
"too large (%d bytes).\n", size);
err = MPP_NOK;
goto fail;
}
if (header_flag && size && data[0] & 0x80) {
// first bit is nonzero, the extradata does not consist purely of
// OBUs. Expect MP4/Matroska AV1CodecConfigurationRecord
RK_S32 config_record_version = data[0] & 0x7f;
if (config_record_version != 1) {
mpp_err(
"Unknown version %d of AV1CodecConfigurationRecord "
"found!\n",
config_record_version);
err = MPP_NOK;
goto fail;
}
if (size <= 4) {
if (size < 4) {
av1d_dbg(AV1D_DBG_STRMIN,
"Undersized AV1CodecConfigurationRecord v%d found!\n",
config_record_version);
err = MPP_NOK;
goto fail;
}
goto success;
}
// In AV1CodecConfigurationRecord v1, actual OBUs start after
// four bytes. Thus set the offset as required for properly
// parsing them.
data += 4;
size -= 4;
}
while (size > 0) {
AV1RawOBUHeader header;
RK_U64 obu_size = 0;
mpp_set_bitread_ctx(&gbc, data, size);
err = mpp_av1_read_obu_header(ctx, &gbc, &header);
if (err < 0)
goto fail;
if (header.obu_has_size_field) {
if (mpp_get_bits_left(&gbc) < 8) {
mpp_err( "Invalid OBU: fragment "
"too short (%d bytes).\n", size);
err = MPP_NOK;
goto fail;
}
err = mpp_av1_read_leb128(&gbc, &obu_size);
if (err < 0)
goto fail;
} else
obu_size = size - 1 - header.obu_extension_flag;
pos = mpp_get_bits_count(&gbc);
mpp_assert(pos % 8 == 0 && pos / 8 <= (RK_S32)size);
obu_length = pos / 8 + obu_size;
if (size < obu_length) {
mpp_err( "Invalid OBU length: "
"%lld, but only %d bytes remaining in fragment.\n",
obu_length, size);
err = MPP_NOK;
goto fail;
}
err = mpp_insert_unit_data(frag, -1, header.obu_type,
data, obu_length);
if (err < 0)
goto fail;
data += obu_length;
size -= obu_length;
}
success:
err = 0;
fail:
return err;
}
static RK_S32 mpp_av1_ref_tile_data(Av1ObuUnit *unit,
BitReadCtx_t *gbc,
AV1RawTileData *td)
{
RK_S32 pos;
pos = mpp_get_bits_count(gbc);
if (pos >= (RK_S32)(8 * unit->data_size)) {
mpp_err( "Bitstream ended before "
"any data in tile group (%d bits read).\n", pos);
return MPP_NOK;
}
// Must be byte-aligned at this point.
mpp_assert(pos % 8 == 0);
td->offset = pos / 8;
td->data = unit->data + pos / 8;
td->data_size = unit->data_size - pos / 8;
return 0;
}
static MPP_RET mpp_av1_alloc_unit_content(Av1ObuUnit *unit)
{
(void)unit;
MPP_FREE(unit->content);
unit->content = mpp_calloc(AV1RawOBU, 1);
if (!unit->content) {
return MPP_ERR_NOMEM; // drop_obu()
}
return MPP_OK;
}
MPP_RET mpp_av1_read_unit(AV1Context *ctx, Av1ObuUnit *unit)
{
AV1RawOBU *obu;
BitReadCtx_t gbc;
RK_S32 err = 0, start_pos, end_pos, hdr_start_pos;
err = mpp_av1_alloc_unit_content(unit);
if (err < 0)
return err;
obu = unit->content;
mpp_set_bitread_ctx(&gbc, unit->data, unit->data_size);
hdr_start_pos = mpp_get_bits_count(&gbc);
err = mpp_av1_read_obu_header(ctx, &gbc, &obu->header);
if (err < 0)
return err;
mpp_assert(obu->header.obu_type == unit->type);
if (obu->header.obu_has_size_field) {
RK_U64 obu_size = 0;
err = mpp_av1_read_leb128(&gbc, &obu_size);
if (err < 0)
return err;
obu->obu_size = obu_size;
} else {
if (unit->data_size < (RK_U32)(1 + obu->header.obu_extension_flag)) {
mpp_err( "Invalid OBU length: "
"unit too short (%d).\n", unit->data_size);
return MPP_NOK;
}
obu->obu_size = unit->data_size - 1 - obu->header.obu_extension_flag;
}
start_pos = mpp_get_bits_count(&gbc);
if (!ctx->fist_tile_group)
ctx->frame_tag_size += ((start_pos - hdr_start_pos + 7) >> 3);
if (obu->header.obu_extension_flag) {
if (obu->header.obu_type != AV1_OBU_SEQUENCE_HEADER &&
obu->header.obu_type != AV1_OBU_TEMPORAL_DELIMITER &&
ctx->operating_point_idc) {
RK_S32 in_temporal_layer =
(ctx->operating_point_idc >> ctx->temporal_id ) & 1;
RK_S32 in_spatial_layer =
(ctx->operating_point_idc >> (ctx->spatial_id + 8)) & 1;
if (!in_temporal_layer || !in_spatial_layer) {
return MPP_ERR_PROTOL; // drop_obu()
}
}
}
av1d_dbg(AV1D_DBG_HEADER, "obu type %d size %d\n",
obu->header.obu_type, obu->obu_size);
switch (obu->header.obu_type) {
case AV1_OBU_SEQUENCE_HEADER: {
err = mpp_av1_sequence_header_obu(ctx, &gbc,
&obu->obu.sequence_header);
if (err < 0)
return err;
ctx->frame_tag_size += obu->obu_size;
if (ctx->operating_point >= 0) {
AV1RawSequenceHeader *sequence_header = &obu->obu.sequence_header;
if (ctx->operating_point > sequence_header->operating_points_cnt_minus_1) {
mpp_err("Invalid Operating Point %d requested. "
"Must not be higher than %u.\n",
ctx->operating_point, sequence_header->operating_points_cnt_minus_1);
return MPP_ERR_PROTOL;
}
ctx->operating_point_idc = sequence_header->operating_point_idc[ctx->operating_point];
}
ctx->sequence_header = NULL;
ctx->sequence_header = &obu->obu.sequence_header;
} break;
case AV1_OBU_TEMPORAL_DELIMITER: {
err = mpp_av1_temporal_delimiter_obu(ctx, &gbc);
if (err < 0)
return err;
} break;
case AV1_OBU_FRAME_HEADER:
case AV1_OBU_REDUNDANT_FRAME_HEADER: {
err = mpp_av1_frame_header_obu(ctx, &gbc,
&obu->obu.frame_header,
obu->header.obu_type ==
AV1_OBU_REDUNDANT_FRAME_HEADER,
NULL);
if (err < 0)
return err;
ctx->frame_tag_size += obu->obu_size;
} break;
case AV1_OBU_TILE_GROUP: {
RK_U32 cur_pos = mpp_get_bits_count(&gbc);
err = mpp_av1_tile_group_obu(ctx, &gbc, &obu->obu.tile_group);
if (err < 0)
return err;
if (!ctx->fist_tile_group)
ctx->frame_tag_size += MPP_ALIGN(mpp_get_bits_count(&gbc) - cur_pos, 8) / 8;
ctx->fist_tile_group = 1;
err = mpp_av1_ref_tile_data(unit, &gbc,
&obu->obu.tile_group.tile_data);
if (err < 0)
return err;
} break;
case AV1_OBU_FRAME: {
err = mpp_av1_frame_obu(ctx, &gbc, &obu->obu.frame,
NULL);
if (err < 0)
return err;
err = mpp_av1_ref_tile_data(unit, &gbc,
&obu->obu.frame.tile_group.tile_data);
if (err < 0)
return err;
} break;
case AV1_OBU_TILE_LIST: {
err = mpp_av1_tile_list_obu(ctx, &gbc, &obu->obu.tile_list);
if (err < 0)
return err;
err = mpp_av1_ref_tile_data(unit, &gbc,
&obu->obu.tile_list.tile_data);
if (err < 0)
return err;
} break;
case AV1_OBU_METADATA: {
ctx->frame_tag_size += obu->obu_size;
err = mpp_av1_metadata_obu(ctx, &gbc, &obu->obu.metadata);
if (err < 0)
return err;
} break;
case AV1_OBU_PADDING: {
err = mpp_av1_padding_obu(ctx, &gbc, &obu->obu.padding);
if (err < 0)
return err;
} break;
default:
return MPP_ERR_VALUE;
}
end_pos = mpp_get_bits_count(&gbc);
mpp_assert(end_pos <= (RK_S32)(unit->data_size * 8));
if (obu->obu_size > 0 &&
obu->header.obu_type != AV1_OBU_TILE_GROUP &&
obu->header.obu_type != AV1_OBU_TILE_LIST &&
obu->header.obu_type != AV1_OBU_FRAME) {
RK_S32 nb_bits = obu->obu_size * 8 + start_pos - end_pos;
if (nb_bits <= 0)
return MPP_NOK;
err = mpp_av1_trailing_bits(ctx, &gbc, nb_bits);
if (err < 0)
return err;
}
return 0;
}
RK_S32 mpp_av1_read_fragment_content(AV1Context *ctx, Av1UnitFragment *frag)
{
int err, i, j;
AV1RawOBU *obu;
ctx->frame_tag_size = 0;
ctx->fist_tile_group = 0;
for (i = 0; i < frag->nb_units; i++) {
Av1ObuUnit *unit = &frag->units[i];
if (ctx->unit_types) {
for (j = 0; j < ctx->nb_unit_types; j++) {
if (ctx->unit_types[j] == unit->type)
break;
}
if (j >= ctx->nb_unit_types)
continue;
}
MPP_FREE(unit->content);
mpp_assert(unit->data);
err = mpp_av1_read_unit(ctx, unit);
if (err == MPP_ERR_VALUE) {
mpp_err_f("Decomposition unimplemented for unit %d "
"(type %d).\n", i, unit->type);
} else if (err == MPP_ERR_PROTOL) {
mpp_err_f("Skipping decomposition of"
"unit %d (type %d).\n", i, unit->type);
MPP_FREE(unit->content);
unit->content = NULL;
} else if (err < 0) {
mpp_err_f("Failed to read unit %d (type %d).\n", i, unit->type);
return err;
}
obu = unit->content;
av1d_dbg(AV1D_DBG_HEADER, "obu->header.obu_type %d, obu->obu_size = %d ctx->frame_tag_size %d",
obu->header.obu_type, obu->obu_size, ctx->frame_tag_size);
}
return 0;
}
int mpp_av1_set_context_with_sequence(Av1CodecContext *ctx,
const AV1RawSequenceHeader *seq)
{
int width = seq->max_frame_width_minus_1 + 1;
int height = seq->max_frame_height_minus_1 + 1;
ctx->profile = seq->seq_profile;
ctx->level = seq->seq_level_idx[0];
ctx->color_range =
seq->color_config.color_range ? MPP_FRAME_RANGE_JPEG : MPP_FRAME_RANGE_MPEG;
ctx->color_primaries = seq->color_config.color_primaries;
ctx->colorspace = seq->color_config.matrix_coefficients;
ctx->color_trc = seq->color_config.transfer_characteristics;
switch (seq->color_config.chroma_sample_position) {
case AV1_CSP_VERTICAL:
ctx->chroma_sample_location = MPP_CHROMA_LOC_LEFT;
break;
case AV1_CSP_COLOCATED:
ctx->chroma_sample_location = MPP_CHROMA_LOC_TOPLEFT;
break;
}
if (ctx->width != width || ctx->height != height) {
ctx->width = width;
ctx->height = height;
}
return 0;
}
void mpp_av1_fragment_reset(Av1UnitFragment *frag)
{
int i;
for (i = 0; i < frag->nb_units; i++) {
Av1ObuUnit *unit = &frag->units[i];
MPP_FREE(unit->content);
unit->data = NULL;
unit->data_size = 0;
}
frag->nb_units = 0;
frag->data = NULL;
frag->data_size = 0;
}
RK_S32 mpp_av1_assemble_fragment(AV1Context *ctx, Av1UnitFragment *frag)
{
size_t size, pos;
RK_S32 i;
(void)ctx;
size = 0;
for (i = 0; i < frag->nb_units; i++)
size += frag->units[i].data_size;
frag->data = mpp_malloc(RK_U8, size + BUFFER_PADDING_SIZE);
if (!frag->data)
return MPP_ERR_NOMEM;
memset(frag->data + size, 0, BUFFER_PADDING_SIZE);
pos = 0;
for (i = 0; i < frag->nb_units; i++) {
memcpy(frag->data + pos, frag->units[i].data,
frag->units[i].data_size);
pos += frag->units[i].data_size;
}
mpp_assert(pos == size);
frag->data_size = size;
return 0;
}
void mpp_av1_flush(AV1Context *ctx)
{
// ctx->sequencframe_headere_header = NULL;
// ctx-> = NULL;
memset(ctx->ref_s, 0, sizeof(ctx->ref_s));
ctx->operating_point_idc = 0;
ctx->seen_frame_header = 0;
ctx->tile_num = 0;
}
void mpp_av1_close(AV1Context *ctx)
{
MPP_FREE(ctx->frame_header);
MPP_FREE(ctx->sequence_header);
MPP_FREE(ctx->raw_frame_header);
}
void mpp_av1_free_metadata(void *unit, RK_U8 *content)
{
AV1RawOBU *obu = (AV1RawOBU*)content;
(void)unit;
mpp_assert(obu->header.obu_type == AV1_OBU_METADATA);
MPP_FREE(content);
}